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Abstract:
The semiconductor industry is going through a technology transition from 200mm to
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300mm equipment and metrology tools and highly automated material handling
system. Relevant existing run-to-run technology is reviewed and analyzed in the fab-
wide control context, process and metrology data monitoring are discussed with an
example, and missing components are pointed out as opportunities for future research
and development. Concluding remarks are given at the end of the paper.
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1. INTRODUCTION

The semiconductor industry is going through a
technology transition from 200mm to 300mm
wafers to improve manufacturing efficiency and
reduce manufacturing cost per chip. Along with
this transition is the doubling of capital expendi-
ture in a 300mm fab versus a 200mm fab. Other
technological changes include:

• Single wafer processing capability;
• Fully automated material handling systems

(AMHS) with inter-bay and intra-bay trans-
portation;

• Integrated metrology that allows for timely
quality control; and
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• Highly automated process control and fault
diagnosis

Owing to the capital intensity of the new gen-
eration fabs, it is critical to maintain highly ef-
ficient operations, minimize downtime of equip-
ment, and optimize the yield of high quality
products. The International Technology Roadmap
(Semiconductor Industry Association, 2003) clearly
identifies that factory information and control sys-
tems are a critical enabling technology to reduce
cycle-time and improve yield. These technological
changes present a unique opportunity to optimally
design the process control systems for the new
generation fabs.

A persistent challenge in semiconductor manufac-
turing control is the lack of critical in-situ sen-
sors to provide real time information of the wafer



status for feedback control and optimization. For-
tunately, recent advance in metrology technology
provides an opportunity for improving the time-
liness and usefulness of the measurement data.
Typically a modern fab has the following mea-
surement data available for analysis and control:

(1) Real time trace data at the tool level which
reflect the equipment health condition and
provide feedback for real time control;

(2) Integrated metrology and in-line metrology
data available for geometric dimensions after
a major processing step, with small to mod-
erate metrology delay;

(3) Sample and final electrical test (E-test)
data available for electrical properties with
medium or long time delay, but they have
the most important information about the
manufacturing effectiveness.

Advanced control and optimization methodology
should maximize the use of all the information in
an integrated hierarchy for highly efficient manu-
facturing and tight product quality control.

Monitoring and control of semiconductor man-
ufacturing processes have been investigated at
a number of U.S. universities and industrial re-
search laboratories. Representative work includes
U.C. Berkeley (Lee and Spanos, 1995; May et
al., 1991) on statistical modeling and control of
plasma etchers, Michigan on real-time and run to
run multivariable control (Hamby et al., 1998), as
well as MIT on different sensor and control tech-
nologies (Boning et al., 1995; Boning et al., 1996).
Due to lack of in-situ sensors much of the con-
trol work is developed from the run-to-run (R2R)
control strategy (Butler and Stefani, 1994; Sachs
et al., 1995). Research groups at University of
Maryland contributed in the area of run to run
control (Adivikolanu and Zafiriou, 2000; Baras
and Patel, 1996; Zafiriou et al., 1995). Semat-
ech, a consortium of leading semiconductor manu-
facturers, posted several benchmark problems on
plasma equipment fault detection and diagnosis
(Bakshi, 1997). Adaptive and nonlinear control for
R2R operations is proposed by (Del Castillo and
Yeh, 1998). Model predictive control is applied
to R2R control as well which has additional ca-
pability in handling constraints explicitly (Edgar
et al., 1999). At UT-Austin we have developed
(i) stability conditions and tuning guidelines for
multivariable EWMA and double EWMA control
with metrology delays (Good and Qin, 2002; Good
and Qin, 2003), (ii) multivariate statistical moni-
toring of RTA and etchers (Yue et al., 2000; Yue et
al., 2001), and (iii) multivariate statistical control
of CD metrology data from lithography (Cherry
et al., 2002). Other new development and appli-
cations of control and fault detection are reported
at recent SPIE conferences and AEC/APC Sym-

posia organized by Sematech and summarized in
Del Castillo and Hurwitz (Del Castillo and Hur-
witz, 1997) and Moyne et al. (Moyne et al., 2001).
Manufacturing companies like AMD, Intel, Mo-
torola, and TI and vendors like Applied Materi-
als, Brooks-PRI Automation, and Yield Dynamics
are leaders in deploying APC technologies at the
manufacturing lines.

In this paper we draw the analogy between
semiconductor manufacturing fabs and chemical
plants and propose a hierarchical optimization
and control system for semiconductor fab control.
A schematic diagram is shown in Figure 1 for
this analogy. The equipment level control involves
automatic feedback control of tool parameters and
small scale run-to-run control using integrated
metrology. The next level run-to-run control in-
volves sharing information from multiple steps to
achieve feedforward and predictive control. Since
there are multiple tools in each module and each
of them are different in terms of manufacturing ef-
fectiveness, a module level optimization is needed
to make sure that each wafer is processed by the
best combination of tools (or threads). The top
level of the hierarchy is the fab-wide control which
is the highest level optimization to achieve desired
electrical properties by recalculating the optimal
geometric targets and dosage for the lower level.

The organization of the paper is given as follows.
We first propose a hierarchical fab-wide control
strategy with the integration of 300mm equipment
and metrology tools and highly automated ma-
terial handling system. Relevant existing run-to-
run technology is reviewed and analyzed in the
fab-wide control context, process and metrology
data monitoring are discussed with an example,
and missing components are pointed out as op-
portunities for future research and development.
Concluding remarks are given at the end of the
paper.

2. A FRAMEWORK FOR FAB-WIDE
CONTROL

Almost all existing development is on R2R control
which adjusts recipes of a step based on metrology
data at the equipment level. These are known as
islands of control as illustrated in the lower part
of Figure 1. None of the existing control strategies
examine the coordination of multiple manufactur-
ing steps to improve the overall product quality
in terms of electrical parameters. The R2R con-
trollers compensate for equipment drifts through
metrology feedback, but they cannot compensate
for metrology drifts and uncertainties. The direct
control of electrical parameters proposed here can
compensate for metrology drifts and systematic
errors in the geometric measurements. It is be-



lieved that the control and optimization of elec-
trical parameters represent the next generation of
semiconductor manufacturing control system as
it directly controls the electrical properties to a
desired product profile by manipulating the oper-
ation requirements for lower level R2R controllers.
The electrical parametric control and optimiza-
tion will maximize the yield of high-grade prod-
ucts or reduce operational cost when a demand
profile is specified by market orders.

The fab-wide control framework in Figure 1 pro-
vides optimization and coordination from step to
step to reduce variability, reworks, and scraps,
thus improving the overall equipment effectiveness
and reducing manufacturing cost. This frame-
work was first presented by Qin and Sonderman
(Qin and Sonderman, 2002) after having deployed
many R2R controllers at AMD and analyzed the
need for a higher level control. The equipment
level control involves automatic feedback control
of tool parameters. The next level is run-to-run
control using integrated or in-line metrology to
achieve a specified target. The third level is a
module level control that shares information from
multiple steps to perform feedforward and feed-
back control and tool performance matching. The
top level of the hierarchy, which is one of the
focuses of the proposal, is electrical parametric
control (EPC) to achieve desired electrical prop-
erties by recalculating the optimal targets for the
lower levels. Equipment drifts, metrology drifts,
and material variations are compensated by feed-
back at the EPC level, leading to improved pro-
cess and metrology availability and reduced use of
calibration and test wafers.

This multiple level control framework resembles
the hierarchical control framework that has been
successful in the refinery industry (Qin and Badg-
well, 1997), but significant differences exist: (i) the
lowest level control is mostly batch operations;
(ii) the middle level R2R control has virtually
no R2R process dynamics except for disturbance
dynamics; and (iii) the top level EPC is a multi-
step operation control that aims to compensate
for errors made in prior steps, regardless of the
nature of the errors as long as step-wise metrology
measurement is available. This makes it different
from model predictive control (MPC) of batch
processes with shrinking horizons.

The E-test data are used to update the device
model parameters based on mismatch between
the E-test data and the model. After parame-
ter estimation is performed, the estimated pa-
rameters are sent to a fab-wide optimizer, which
distributes targets to lower-level controllers that
regulate steps within the manufacturing process.
The model updated with the new set of model
parameters is used for EPC control.

The multi-step EPC control minimizes an objec-
tive function that penalizes the difference between
the desired electrical properties and the updated
model output subject to constraints. At the be-
ginning before the first step is processed, all geo-
metric input parameters are used to minimize the
objective function. After the first step is processed
for a wafer or a lot, metrology data for the first
step is available as u1, which will be different from
the target û1 calculated before implementing the
first step. To compensate for the manufacturing
error in the first step the objective function is re-
optimized over the remaining inputs with the first
input fixed at u1. Then the second processing step
is implemented with the newly optimized target.
This procedure is repeated until all processing
steps are implemented for the processed wafer or
lot. The objective function at each step is given
as follows:

J = ‖yEPC − f (û, u)‖
2

+ λ ‖û − unom‖
2

(1)

subject to

umin ≤ û ≤ umax

ymin ≤ f (û, u) ≤ ymax

where u contains implemented inputs at the step,
û contains the remaining inputs that can still be
optimized, and unom is some nominal values for
u that could be the values from previous runs. λ
is a weight parameter that balances between the
output target error and the input deviation from
the nominal values. In the case that the output
target is exactly feasible within the constraints,
the optimization gives a solution that has minimal
change from the nominal values or the values from
previous runs. The feature is desirable to generate
stable targets for the lower level R2R controllers.
The constraints are derived from product specifi-
cations and requirements.

The vector yEPC can have multiple entries con-
taining multiple electrical parameters to be con-
trolled simultaneously. Some of the electrical pa-
rameters have a target value based on the product
specifications; others have only upper and lower
constraints to make sure that these parameters
meet the specifications. The EPC objective can be
adapted to represent several modes of operations.
For logic products one can choose to optimize the
oscillation frequency subject to constraints that
all major electrical parameters meet the specifica-
tions. The target yEPC in this case is set at the
highest desirable value for the product. In another
mode of operation the target yEPC is set based on
the demand profile. In this case the target yEPC

can be easily achievable; the optimization gen-
erates a target that has smallest deviation from
the nominal values, thus minimizing variability at
lower levels due to target adjustment.

The optimization algorithm can be fulfilled us-
ing a nonlinear programming solution when the



device model is nonlinear. There is no perceived
difficulty in the implementation of such an algo-
rithm. A case study of a flash memory EPC is
presented in (Harrison et al., 2003).

3. RUN TO RUN CONTROL ALGORITHMS

3.1 Run to Run Control

In recent years, run-to-run (R2R) control tech-
nology has received tremendous interest in semi-
conductor manufacturing. Moyne and Hurwitz
(2001) (Moyne et al., 2001) define the run-to-run
control as ”a form of discrete process and machine
control in which the product recipe with respect
to a particular process is modified ex situ, i.e.,
between machine ’runs’, so as to minimize process
drift, shift, and variability”. In order to modify the
recipe to address the process drift, shift and other
variability, the current tool and wafer states need
to be estimated. One class of widely used run-
to-run controllers is based on the exponentially
weighted moving average (EWMA) statistics to
estimate process disturbances.

The EWMA has been used for a long time for
quality monitoring purposes (Box and Jenkins,
1963). Its use as a basis for run-to-run control
is relatively recent (Sachs et al., 1991). For a
time series of measurement

{

x[n], x[n − 1], · · ·
}

,
where n denotes the run number, the EWMA is
given in the following recursive formula:

x̂[n] = ωx̂[n − 1] + (1 − ω)x[n] (2)

where x̂ is the EWMA estimate of x, ω is the
EWMA weight, and x[n] is the measurement
of the process disturbance or parameter to be
estimated. For a linear process model

y[n] = bu[n] + x[n] (3)

the disturbance

x[n] = y[n] − bu[n]

.

After the EWMA filter has estimated the process
offset, a control law is used to determine the
control input (or recipe) for the following run.
In the unconstrained SISO case, the recipe is
determined through simple model inversion,

u[n + 1] =
T − x̂[n + 1]

b
(4)

where T is the process target.

The MIMO control law is somewhat more compli-
cated as b may be non-square so that an inverse is
not attainable. The MIMO control law therefore
can take several different forms depending on the
objective function of the optimization problem. A
few of the commonly seen unconstrained MIMO
control laws are listed below.

(1) Minimize the sum of the manipulated vari-
ables squared subject to the model hitting
the process target:

min
u[n+1]

J = u[n + 1]T u[n + 1]

s.t. T = bu[n + 1] + x̂[n + 1]

u[n + 1] = bT (bbT )−1(T − x̂[n + 1]) (5)

(2) Minimize the sum of the change in the manip-
ulated variables squared subject to the the
model hitting the process target (Tseng et
al., 2002):

min
u[n+1]

J = δu[n + 1]T δu[n + 1]

s.t. T = bu[n + 1] + x̂[n + 1]

u[n + 1] = bT (bbT )−1(T − x̂[n + 1])

+(bT (bbT )−1b − I)u[n] (6)

(3) Minimize the sum of squares deviation from
target (Del Castillo and Rajagopal, 2002):

min
u[n+1]

J = ŷ[n + 1]T ŷ[n + 1]

s.t. ŷ[n + 1] = bu[n + 1] + x̂[n + 1]

u[n + 1] = (bT b)−1bT (T − x̂[n + 1]) (7)

(4) Model predictive control formulation:

min
u[n+1]

J = (T − ŷ[n + 1])T Q(T − ŷ[n + 1])

+u[n + 1]T Ru[n + 1]

+∆u[n + 1]T S∆u[n + 1]

s.t. ŷ[n + 1] = bu[n + 1] + x̂[n + 1]

u[n + 1] = (bT Qb + R + S)−1(Su[n] +

bT Q(T − x̂[n + 1])) (8)

The first two control laws are used when the
number of outputs exceeds the number of in-
puts. In this case there are an infinite number
of control inputs that will bring the process to
the expected target, T . An objective function is
defined to establish a criteria to choose the ‘best’
controller input. The first objective function is
to minimize the sum of squared controller input.
The second objective function is to minimize the
sum of squared change in the controller input.
The third control law is used when the number of
outputs exceeds the number of inputs. In this case
there exists no controller inputs that will bring
the process to the expected target. The objective
function in this case is to minimize the sum of
squared deviation of the expected output from
the target. The final control law is a more general
controller as the objective is to find the optimal
balance between missing the process target, the
absolute controller input, and the change in the



controller input from the previous run. The con-
trol law in (8) can be made to return equivalent
results as the other three control laws by selecting
the appropriate values of Q, R, and S.

Ingolfson and Sachs (Ingolfsson and Sachs, 1993)
show that the EWMA controller is a discrete
integral controller, which explains why it is able to
compensate for process shifts and offsets. Butler
and Stefani (Butler and Stefani, 1994) noticed
that for processes with severe drifts, the EWMA
controller is insufficient even when large weights
are used. This problem becomes more severe when
there is a measurement delay, which is almost
inevitable in semiconductor manufacturing.

In order to control drifting processes, a predictor-
corrector controller (PCC) (Butler and Stefani,
1994) and a double EWMA (dEWMA) controller
(Chen and Guo, 2001) have been developed. The
PCC algorithm uses two parameters, ω1 and ω2 to
weight noise and drift respectively. The double-
EWMA is very similar to PCC, as can be seen
from the following equations:

a[n] = ω1x[n] + (1 − ω1)(a[n − 1] + p[n − 1])

p[n] = ω2(x[n] − a[n − 1]) + (1 − ω2)p[n − 1]

x̂[n] = a[n] + p[n]

The only difference between double-EWMA and
PCC is the estimate of intercept term ai. Chen
and Guo (Chen and Guo, 2001) show that both
PCC and double-EWMA controller are in effect
Integral-double-Integral (I-II) controllers, which
are able to control drifting processes. However,
since offset is often coupled with the noise of the
process, the second filter may add variability to
the control action in the presence of significant
noise (Bode, 2001). In addition, tuning the second
filter is not as intuitive as a single EWMA filter.
Therefore, PCC or double-EWMA controller is
not as widely used as EWMA controllers.

Like all feedback controllers, run-to-run control is
subject to closed loop instability. The first study
on the conditions for stability of the single input-
single output (SISO) EWMA controller was pub-
lished shortly after Ingolfsson and Sachs’s first
work on run-to-run control (Ingolfsson and Sachs,
1993). They noted that a process will become
unstable when the input-output relationship be-
tween the tool recipes and quality measurements
are not accurately estimated. Their work showed
the allowable range of model mismatch that a
process can have and still maintain asymptotic
stability. This work was later extended by Tseng
et al to show the stable region of a particular
formulation of the multiple input-multiple output
(MIMO) EWMA controller (Tseng et al., 2002) .
In addition, the effect of metrology delay on the
stability of the SISO and multiple input-single

output (MISO) EWMA controller was studied
by Adivikolanu and Zafiriou (Adivikolanu and
Zafiriou, 2000). They utilized an internal model
control approach to derive the stability region of
an EWMA controller with a delay of one run. A
numerical method was then introduced for deter-
mining the stability region of the EWMA con-
troller for processes with longer metrology de-
lays. Good and Qin (Good and Qin, 2002; Good
and Qin, 2003) extend the work of Tseng et al
and Ingolffson and Sachs by deriving the stability
conditions of the MIMO EWMA controller with
metrology delay.

3.2 Simplified dEWMA with RLS

To simplify the double EWMA control Wang et al.
(Wang et al., 2004) consider the double EWMA
control in the recursive least squares (RLS) frame-
work and reduce the tuning parameters to a for-
getting factor. Consider the process model as

y[n] = g(u[n]) + x[n] (9)

where g is the nonlinear input-output model and
the disturbance x has the following polynomial
form,

x[n + i] = θ0 + θ1i + θ2
i2

2!
+ · · · + θk

ik

k!
+ ε[n + i]

=

k
∑

j=0

θj

ij

j!
+ ε[n + i] (10)

where θ =
[

θ0 θ1 · · · θk

]T
are the parameters of

the model to be determined, i is the time index,
and ε is the a sequence of uncorrelated errors with
variance σ2. k denotes the model order, which can
be determined by cross-validation. The model ad-
equacy can be checked by calculating the sample
autocorrelations of the residuals (Abraham and
Ledolter, 1983).

The model (10) assumes that the model parame-
ters are constant over all time periods. However,
in many instances, the assumption of a time in-
variant model is restrictive and a locally constant
model would be more reasonable. By applying
the forgetting factor in the least squares crite-
rion, more weight is given to more recent ob-
servations and past observations are discounted.

Letting ϕ[n + i] =

[

1 i · · ·
ik

k!

]T

, the model pa-

rameter estimates are determined by minimizing
the following loss function,

V (θ, n) =
1

2

n
∑

i=1

λn−i(x[i] − θT ϕ[i])2 (11)

where λ (0 < λ ≤ 1) is the forgetting factor that
gives more weight to recent prediction error (x[i]−



θT ϕ[i]). The recursive algorithms to estimate the
model parameters is (Åström and Wittenmark,
1995; Ljung, 1999):

θ̂[n] = θ̂[n − 1] + K[n](x[n] − ϕT [n]θ̂[n − 1])

K[n] = P [n − 1]ϕ[n](λ + ϕT [n]P [n − 1]ϕ[n])−1

P [n] = (Im − K[n]ϕT [n])P [n − 1]/λ

where K[n] is an (k + 1) × 1 vector of gains and
P [n] is an (k +1)× (k +1) matrix proportional to
the covariance matrix of the estimated parameter.
In the above recursive algorithm, the initial esti-
mates θ̂[0] and P [0] can be obtained from a priori
knowledge. The better the initial estimates, the
smaller the effect of the transient behavior (Del
Castillo and Hurwitz, 1997).

For k = 0, model (10) becomes the constant mean
model,

x[n + i] = θ0 + ε[n + i] (12)

In this case the RLS gives a form that is very
similar to EWMA except that K[n] depends on
the number data points n. Wang et al. (2004)
show that the RLS converges exactly to EWMA
with ω = 1 − λ when n approaches infinity. For
finite n, K[n] varies with n which is similar to the
unsteady state Kalman filter.

For k = 1, model (10) becomes a linear trend
model,

x[n + i] = θ0 + θ1i + ε[n + i] (13)

In this case the RLS gives a form that is very
similar to double EWMA except that K[n] de-
pends on the number data points n. Wang et al.
(2004) show that the RLS converges exactly to
double EWMA when n approaches infinity. The
equivalence is achieved with

ω1 = 1 − λ2 (14)

ω2 = (1 − λ)2 (15)

This result relates the double EWMA tuning
parameters to the forgetting factor in RLS. The
number of tuning parameters reduces from two to
one which has the physical meaning of a forgetting
factor.

3.3 Kalman Filter Implementations

Realizing (9) and 10 in a state space form,

x[n + 1] = Ax[n] + w[n] (16)

y[n] = Cx[n] + g(u[n]) + v[n] (17)

where w and v are process and measurement noise,
the estimated disturbance is

x̂[n + 1] = Ax̂[n] + K[n](y[n] − g(u[n]) − Cx̂[n])

= (A − K[n]C)x̂[n] + K[n](y[n] − g(u[n]))

For a constant disturbance model, A = 1, C =
1. In this case the Kalman filter is equivalent
to EWMA with K[n] = ω as n approaches

infinity. For a linear trend model A =

[

1 1
0 1

]

and C =
[

1 1
]

. In this case the Kalman filter
is equivalent to the double EWMA with K[n] =
[

ω1 ω2

]T
as n approaches infinity. In the Kalman

filter interpretation both tuning constants are
necessary and are determined by the process and
measurement noise.

3.4 Time Control as R2R Control

One of the most effective manipulated variables
in R2R control is the processing time within a
processing step such as etch time, exposure time,
and planarization time. The controlled variables
in the case are typically the extent to which the
process develops under the processing time, such
as depth of etch and critical dimensions. Given the
processing rate as r(t, n) for Run n, the process
model can be described as

y[n] =

∫ Tf

0

r(t, n)dt (18)

The processing rate r(t, n) typically varies with
run and time in a run. In the rare case that the
rate can be measured in real time, the control
problem is trivial. If the rate is not measurable
in real time but some kind of end pointing mech-
anism or indirect measurement is available, the
monitoring of the indirect measurements are effec-
tive, such as optical emission spectra in dielectric
etch (Yue et al., 2001). In the most typical case
no real time measurement is available. In this case
end of the step metrology measurement can be
used for R2R control, with or without metrology
delay (Wang et al., 2004). Only the average rate
can be estimated from previous processing steps
and (18) becomes

y[n] = r̄[n]Tf [n]

This multiplicative model does not fit into the
typical linear state space model presented earlier,
but it can be converted to the linear state space
model with process and measurement noise by
simply taking the logarithm. Therefore, all the
control algorithms presented earlier in this are
applicable to time control.

4. FAULT DETECTION AND MONITORING

Processing tool data such as temperatures, pres-
sures, and gas flow rates will be used to mon-
itor recipes applied to single wafers or batches



of wafers. Some typical processing operations in-
clude plasma etching, thin film deposition, rapid
thermal annealing, ion implantation, and chemi-
cal mechanical planarization. At most processing
steps, sensors collect data for each wafer or batch
of wafers that are processed on the tool. This data
can be in the form of real-time traces for a recipe,
summary statistics available at the end of each
run, or data from more advanced sensor platforms
such as optical emission spectroscopy.

While the batch nature of semiconductor man-
ufacturing provides plenty of opportunities for
applying multi-way process monitoring (Nomikos
and MacGregor, 1995), many forms of semicon-
ductor metrology data are naturally organized in
three dimensions. One such case is CD metrology,
where the three dimensions are wafer, site, and pa-
rameter. Batch data are also commonly available
from processing tools, which exhibits the dimen-
sions of batch, time, and parameter (Figure 2).

Multi-way PCA has been successfully applied for
batch process monitoring across many different
industries. In the field of semiconductor manu-
facturing, Yue et al. (Yue et al., 2000) demon-
strated the concept of unfolding data by applying
multi-way PCA to optical emission spectra for
plasma etchers. For metrology and processing tool
monitoring, the data can be unfolded by site or
time (every row represents one site on a wafer or
time instant in a batch) or by wafer (every row
represents one wafer). In this work, wafer level
fault detection and identification is desired, so the
latter has been chosen as the more appropriate
unfolding method (Figure 4). However, as will
be discussed later, the advantages of analyzing
data by site or time can be realized simply by
implementing the multiblock approach.

4.1 Metrology Monitoring

While processing operations build the structures,
metrology operations characterize them. Some ex-
amples of metrology measurements include devel-
opment inspection critical dimension (DICD), fi-
nal inspection critical dimension (FICD), and film
thickness. Metrology measurements are normally
taken at several locations on the semiconductor
wafers, oftentimes for multiple features at the
same site (i.e., top and bottom DICD). Fault
detection and identification applied to site-level
metrology data is intended to validate whether
the structures built on the semiconductor wafers
hit their targets and do so uniformly across the
wafer surfaces.

As an example, we will use PCA to perform
fault detection and identification on DICD data
from Advanced Micro Devices’ Fab25 in Austin,

Texas. The DICD is the width of the pattern
in the photoresist after the photoresist has been
developed and before the next trim step. As shown
in Figure 3, isotropy in development results in a
small difference between the top of the photoresist
and the bottom. The data set consists of 700
wafers, where both the top and bottom of the
resist are measured at nine sites on each wafer.

An initial PCA model is built using the first 100
wafers and the VRE method (Qin and Dunia,
2000) selects 10 components as the optimal num-
ber for reconstruction. While this may seem high,
keep in mind that the goal of the VRE method
is the reconstruction of variables. After the PCA
model is formulated, it is applied to the remaining
600 wafers, with the fault detection indices, SPE,
T 2, and the combined index φ (Yue and Qin, 2001)
provided in Figure 5. Note that the statistics have
been scaled against their respective confidence
limits and logarithms have been taken. The result
is that the value of 1 represents the 99% threshold
for each of SPEr, T 2

r , and ϕr.

The indices charted in Figure 5 demonstrate that
there is some behavior within those 600 wafers
that is not consistent with the initial set of 100
wafers. In order to identify the cause of the ex-
cursion, multiblock contributions to the combined
index are calculated. For the case of site-level
metrology, the most logical blocking of the 18 vari-
ables are by parameter (top and bottom) and by
site (sites 1 through 9). These multiblock indices
are tracked by wafer in Figures 6 and 7.

Inspection of Figure 6 allows one to quickly reach
the conclusion that the general trend is caused by
drifts in both the bottom and top DICDs as time
goes on. On the other hand, the larger outliers
are more pronounced in either the top or bottom,
but not both. Because the two CDs are highly
correlated, the presence of such extreme outliers is
likely to be caused by inaccurate values provided
by the CD metrology tool, rather than problems
with the physical structures on the wafers. While
sensor faults are of interest, the more important
issue is the process drift, which is first experienced
in the bottom CD around wafer 200 and then
propagates to the top 100 wafers later, where the
signal becomes even more pronounced.

While Figure 6 grouped all 9 sites together for
each of the two parameters, the Figure 7 contri-
butions take into account both parameters at each
individual site. These nine plots make it easy to
identify problems based on wafer location. For the
data set provided, the excursion appears strongest
on sites 2, 3, and 4, while it is hardly noticeable
at sites 6, 8, and 9. With knowledge of each site’s
location on the wafer it would be possible to use
these plots to troubleshoot possible tilt or focus
issues with the masking tool.



While tracking the block contributions is good
practice for identifying excursions that influence
a large number of wafers, one must also consider
the case where a problem is identified on a single
wafer, and the cause needs to be identified. To
demonstrate this functionality, contribution plots
have been generated for wafers 395 and 450 (indi-
cated with arrows in Figure 5.

The contribution plot for wafer 395 is provided
in Figure 8. It is easy to see that measurements 4
(Bottom−Site 4), 12 (Top−Site 3), and 13 (Top−
Site 4) are suspect. Problems are also indicated
in both Bottom and Top parameters, along with
Site 4 as the only extreme site contribution. A
logical interpretation of these plots are that there
was a significant issue with Site 4 and further
investigation into that location on the wafer may
be warranted to explore any issues that may affect
product yield or performance. Although the top
dimension on Site 3 was also singled out, the
overall site contribution was normal when both
the top and bottom were considered collectively.

The contribution plot for wafer 450 is provided
in Figure 9. As previously shown in the ϕr plot
(Figure 5), this was a less extreme fault than 395,
but it did lie within the set of wafers experiencing
some form of process drift. Although none of the
contributions are as extreme as those for wafer
395, the plots suggest that four of the nine sites
were faulty for both the bottom and top CDs. This
fault signature appears to be quite typical of many
wafers during the same processing time span, as
corroborated in the variable and site contribution
plots tracked for the entire sequence. For the case
of wafer 450, the contribution plot showed that all
faults indicated in the measurement contribution
also propagated themselves to their corresponding
multiblock contributions for both parameters and
sites.

5. CHALLENGES AND OPPORTUNITIES

5.1 Modeling of Electrical Parameters

To implement the fab-wide control it is impor-
tant to develop a physics-based device model
that maps from geometric dimensions to electrical
parameters such as oscillation frequency, erase
time of flash memories, and sheet resistance. This
model is different from process models used in
R2R controllers that describe the relation between
process operation conditions to geometric param-
eters such as critical dimensions, depth, or thick-
ness. Since optimization is involved in EPC, which
could use the model in fairly wide operation re-
gions, nonlinear physics based models are chosen
to accomplish this task. The models suitable for
EPC must be implementable in real-time, making

it different from simulation and design models.
To illustrate the modeling task we use a flash
memory cell to demonstrate the steps needed for
these tasks.

5.2 Model Update with Long Delay

The developed models can work well for one op-
erating condition. As the process metrology and
material change over time it is important to adapt
the model from real data using parameter esti-
mation. In order to estimate a set of parameters,
a nonlinear least-squares method is employed for
the nonlinear physical model. The least squares
objective is a dual of the EPC objective that min-
imizes the difference between the E-test data and
the model output of finished wafers or lots subject
to possible constraints. An effective parameter for
model update is the intercept term or constant
disturbance model. A challenging task in model
updating is the long measurement delay in E-test
data. The updating mechanism should respond
only to long term persistent changes, not short-
lived temporary errors. The integrated learning
control and real time feedback control framework
by (Chin et al., 2003) is a possible solution. The
updated model is then used by the EPC controller
to generate input targets for the next incoming
lot.

5.3 Integration of FDC and R2R

As illustrated in Figure 1 each step in the fab
wide control framework has a R2R controller
and an FDC module for the step. The FDC
are designed to monitor deviation from normal
situations based on historical data analysis. One
of the approaches is the multi-way PCA approach
to equipment monitoring. The co-existence of the
FDC and R2R control presents a challenge for
their integration in two ways. First, FDC methods
usually assumes repeatable batch profiles with
similar or equal batch lengths. On the other hand,
the R2R module is designed to adjust the recipe,
e.g., process time to minimize variability due to
normal process drifts. The FDC module, if not
properly designed, could consider normal R2R
adjustments as deviation from normal situations
and signal a false alarm. Another challenge is the
impact of R2R feedback on the FDC module.
Because of tool control feedback the root cause of
the fault could be transferred from one variable to
another due to the existence of feedback. The use
of feedback invariant subspace for fault diagnosis
by (McNabb and Qin, 2004) is a possible solution.



5.4 Integrated Metrology for Control

The transition from 200mm to 300mm technol-
ogy and beyond makes it possible to replace in-
line metrology with integrated metrology into the
tools. The integrated metrology reduces the time
delay in the measurement and provides the pos-
sibility of wafer to wafer (W2W) control which
can reduce the variability further. Another possi-
bility is within wafer (WiW) control that allows
one to control from die to die (Sonderman and
Bode, 2004).

6. CONCLUDING REMARKS

The semiconductor industry is becoming one of
the most capital-intensive industries with a high
ratio of capital investment to revenue. On the
other hand, the optimization and control of man-
ufacturing operations have received significant at-
tentions only recently and shown to be a nec-
essary competitive advantage. A well designed
fab-wide control framework provides improved
competitiveness of the semiconductor manufac-
turers as they transition to 300mm technology
and 450mm technology in the foreseeable future.
The automated material handling systems and
automated R2R control capabilities provide the
necessary foundation for implementing fab-wide
control and fault detection in all levels of the
hierarchy. It is envisioned by the leading man-
ufacturers that most of the routine operations
will move from clean rooms to a centralized con-
trol room in the future. This transition provides
exciting challenges and opportunities to process
control researchers and engineers to develop a new
standard for this vigorously growing industry.
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