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Abstract: In this paper an approach for flexible production scheduling for con-
tinuous multi-grade chemical processes is proposed. The approach integrates the
economics of production and of company-market interaction for single-machine
multi-grade continuous processes. The resulting grade transitions are realized using
a newly developed closed-loop stochastic MPC framework, that decomposes this
task into a deterministic feedforward constrained trajectory optimization task and
a stochastic feedback disturbance suppression task. The back-off used in the former
is provided by the latter. The approach is demonstrated on a gas phase HDPE
manufacturing plant.
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1. INTRODUCTION

During the past decades the chemical industry has
been faced with a major change into a globally
competing and demand driven mode of opera-
tion. Companies are required to respond quickly
to changing market situations and must meet
customer-specified product specifications. A main
challenge and a key to demand-driven operation,
is the allocation of production resources to com-
ply with orders and physical constraints such as
plant capacity and storage facilities. Such prob-
lems are generally referred to as scheduling prob-
lems, and their role in the internal supply chain is
broadly acknowledged. An overview can be found
in (Reklaitis, 1992). Although most of the schedul-
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ing literature focuses on batch operations, there is
recent work on continuous process scheduling see
(Mendez and Cerda, 2002), (Giannelos and Geor-
giadis, 2002). The approach here will consider
continuous, single-machine, multi-grade chemical
plants, and differs from the work cited in sev-
eral aspects. Our way of including the effect of
process transitions on the material flows appears
new. Further, most scheduling studies assume the
order base to be fixed in advance and strive for
‘minimum makespan’ or ‘minimum lateness’. In
our approach, the negotiation of sales orders and
purchases is an integral part of the decision mak-
ing that is supported by the scheduler, and to
this end the scheduler selects a set of appealing
purchase and sales transactions from a larger set
of possible transactions (denoted opportunities).
The optimal scheduling approach considered here
includes a formulation of the grade change prob-
lem that includes a truly economic objective. To



implement grade changes under practical process
conditions, the off-line computed process trajecto-
ries will be transferred into reality by a real-time
MPC algorithm. We will extend current MPC ca-
pabilities (Rawlings, 2000) for this purpose to deal
with back-off under stochastic disturbances, and
to obtain guaranteed control performance with re-
spect to disturbance suppression. Lee and Ricker
(Lee and Ricker, 1994) have proposed to decom-
pose the stochastic MPC problem into an optimal
Gaussian estimation and a deterministic predic-
tion problem, to be solved as separate optimiza-
tion problems in a receding horizon implementa-
tion. This view has become a major paradigm for
MPC research, in which stochastics are considered
in the past but not in the future. Three limita-
tions of this paradigm are (1) there is no back-off
to the constraints, (2) there is no possibility to
tune the implied feedback properties and (3) the
underlying assumption of the validity of the cer-
tainty equivalence property may be questionable
in the case of active inequality constraints. The
approach taken here suggests to decompose the
predictive control formulation into a feedforward
trajectory and a feedback controller. By creat-
ing a back-off to the constraints, the feedback
controller retains its linear behaviour, enabling
feedback properties to be assigned using an ap-
propriate disturbance suppression objective. This
in turn provides an estimate for the back-off to
be used in the feedforward trajectory optimiza-
tion, as in a bootstrap technique. Consequently,
optimal plant transitions can be realized using
feedforward whereas the inequality constraints are
guaranteed not to be violated under the closed-
loop control. The paper presents a survey of work
available in detail in (Tousain, 2002) and (van
Hessem, 2004).

2. DEMAND DRIVEN OPERATION

The scheduling task concerns the timing of feed-
stock and grade changes. Most of today’s multi-
grade plants are still operated according to a
predetermined sequence of product grades, called
a product slate or a product wheel, see figure 1
(Sinclair, 1987). The sequence is constructed such
that the necessary grade changes are relatively
easy, safe and well-known by the operating staff.
In order to operate market-responsive, short-term
production scheduling should consider the inter-
nal supply chain in interaction with the mar-
kets involved. The simple model is represented
schematically in figure 2. It provides a new,
broader scope for process control from a perspec-
tive of intentional dynamics, (Marquardt et al.,
1998). It captures some of the main mechanisms
in practical chemical supply chains: company-
market interactions, inventory control, process
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Fig. 1. A product grade slate A-B-C-B-A with on-
spec-ranges
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Fig. 2. A simple supply chain model for a contin-
uous chemical manufacturing site
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dynamics such as transitions, load changes, and
internal supply chain organization. Although dy-
namic supply chain phenomena such as demand
amplification (Towill, 1996) are important, here
we focus on production management decisions for
multi-grade processes. These involve scheduling,
plant optimal operation and control tasks. The in-
tegration of these tasks needs care to avoid incon-
sistencies. In (Bassett et al., 1996), three types of
model-based integration are distinguished: single-
level control, multi-level control and conceptual
decomposition. A single-level control strategy to
the problem of supply-chain-conscious process op-
erations implies to control the process while sup-
porting the purchasing and sales decision making
tasks, as represented schematically in Figure 3.
This necessitates to include all relevant time scales
of the operations problem (i.e. weeks/months to
capture market changes, and seconds/minutes to
describe plant dynamics which should be con-
trolled) into one control problem. This will gener-
ally lead to combinatorial control problems which
are of enormous dimension and hence computa-
tionally infeasible. The main decomposition that
we propose is hence to deal separately with the
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ering static production tasks and transition
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two questions 1: what products/feedstocks will
be produced/processed when? and 2: how will
the production be realized? We split up the pro-
duction management problem into a production
scheduling problem (section 3), and a production
control problem, (section 5), see figure 4. Both
solutions utilize the same dynamic model, which
is an important prerequisite for the consistency of
the decomposition approach.

3. SHORT TERM SCHEDULING DESIGN

To solve the production scheduling problem, we
concentrate on a description of the plant in terms
of operating tasks with accompanying precedence
rules. The use of quasi-static and dynamic tasks
in modeling the behavior of a continuous multi-
grade plant is illustrated in figure 5. Let a model
of the plant, including the basic control system, be
given by the following set of DAE’s

ẋ = f(x, u, y)
0 = g(x, u, y)
z = Cxx+ Cuu, (1)

where x(t) ∈ R
nx , u(t) ∈ R

nu , and y(t) ∈ R
ny

are respectively the state, input and algebraic
variables of the model. For ease of notation, the
dependency of these variables on time will be
omitted in the remainder. z ∈ R

nz contains the so-
called performance channels, i.e. all variables that
are required for the performance evaluation of the
plant. The performance computation involves a
so-called objective function as well as the violation

of constraints. These operating constraints are
expressed as

h(z) < 0. (2)

All feasible steady state operating conditions are
given by the set

F = {x, u | ∃ y, z such that f(x, u, y) = 0,
g(x, u, y) = 0, z = Cxx+ Cuu, h(z) < 0}

(3)

In general we are only interested in a limited num-
ber of interesting scenarios, e.g. a finite number
of product grades or feedstock conditions. The
production grade conditions Gg are by definition
given by specific sets of conditions (z) that obey
the corresponding constraints:

Gg = {(x, u) ∈ F | ∃z = Cxx+ Cuu, such that

gg(z) < 0} (4)

where gg defines the quality bounds of grade g.
For example, in a distillation plant, these would be
lower and upper limits on the purity. The different
production grades are connected via process tran-
sitions. We define a transition Thg from an element
(xg, ug) ∈ Gg to an element (xh, uh) ∈ Gh as a
quadruple (x, u, y, z) satisfying

plant

ẋ = f(x, u, y)
0 = g(x, u, y)
z = Cxx+ Cuu

init. cond.

x(0) = xg,
u(0) = ug

end cond.

x(T ) = xh,

u(T ) = uh

constraints

h(z) < 0

(5)
for some T > 0. Let T hg be the set of all these
transitions. The sets Gg and Gh are said to be
compatible if there exists a transition Thg from
any (xg, ug) ∈ Gg to any (xh, uh) ∈ Gh. Fi-
nally, all sequences of transitions are feasible if
all pairs [g, h] are compatible. The verification of
such conditions is not straightforward, only for
specific cases there may exist a computationally
feasible approach. We assume that during the
static production tasks, the operating conditions
are determined according to the maximization of
an economic criterion. As the basic economic cri-
terion we will use the added value. Let Cr and
Ye denote the consumption of raw materials and
utilities r, and the production of end product e,
respectively. We assume these are given as func-
tions of the performance variables: Cr = Cr(z),
Ye = Ye(z). Then, in case of a static production
task, the added value rate is given by

L(z) := −
∑
r

pC,rCr(z) +
∑
e

pY,eYe(z) (6)

where pC,r and pY,e are the instantaneous prices
of respectively raw material r and the product
e. Using this expression for the added value and
disregarding the effect of noise and disturbances,
the optimal operating conditions for grade g are



found by solving the following, static optimization
problem

(x̄g, ūg) = argmin {−L(z) | ∃z = Cxx+ Cuu

such that (x, u) ∈ Gg} (7)

and the corresponding raw material and product
flows are given by Cgr = Cr(z̄g) and Y ge = Ye(z̄g),
where z̄g = Cxx̄

g + Cuū
g. The dynamic transi-

tion tasks are designed to be the solution of a
dynamic optimization with an economic criterion
as performance index. We also require that the
process control system governing the implemen-
tation of process transitions is based on dynamic
optimization involving the same criterion. A gen-
eral formulation of the corresponding trajectory
optimization problem is given as follows

min
T,u∈U

{∫ T

0

Ld(z)dt
∣∣∣∣∃x, y, z, s.t. (x, u, y, z) ∈ T h̄ḡ ,

x(0) = x̄g, x(T ) = x̄h
}
(8)

where Ld is chosen so as to represent the eco-
nomics of the transition. In case of a demanding
market, the main incentive is to maximize pro-
duction. Then transition times should be limited
to the minimum. Transition costs are of secondary
importance. In case of low demand and mod-
erately filled order books, there is no incentive
to minimize the transition times. Instead, the
difference between the transition revenues and
the transition costs should be maximized. This
leads to a truly economic transition optimization,
where Ld(z) is selected to represent the negative
added value rate during the transition. The grade
change optimization problem is hard to solve us-
ing standard gradient-based numerical optimiza-
tion techniques due to the fact that the production
rate of a certain grade depends discontinuously
on the quality variables. One possible approach
uses a smooth approximation of the definition
of the grade region and exploits the structure of
the problem in the definition of a Nonlinear Pro-
gramming (NLP) based inner loop optimization
to compute accurate search directions. A second
approach uses integer variables to describe the
grade regions and solves a sequence of MILP’s to
converge to a solution. The grade change problem
is non convex and both approaches can be ex-
pected to converge to local minima only. However
they are believed to do so much faster than the
conventional control parametrization method.

The company-market interaction is repre-
sented here by a transactions-based framework.
The sales actions are (1) orders originating from
long term sales contracts or short term commit-
ments to customers; the main order attributes are
the quantity, the price and the time span during
which the order can be delivered; (2) oppro-
tunities arising from predictions of the market-
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framework in case (left) transition time is
smaller than τ , and (right) transition time
is smaller than 2τ

company interaction made by the sales decision
makers. In opportunities they express their esti-
mate of future sales deals. The attributes of the
opportunities are the same as those of the orders.
The representation of the time axis is discussed by
(Zentner et al., 1998). Here we adopt the Uniform
Discretization of time Modeling (UDM) frame-
work, in which the horizon is divided into a finite
number of time slots of uniform length. Only at
the beginning of each interval changes may occur.
The choice of the interval length, denoted τ in the
sequel, is a trade-off between solution resolution
and computational tractability. Transition tasks
can occur within a single time interval or within
more than one, as shown in figure 6. Here we will
only consider the first case. We introduce decision
variables Ggk, g = 1, . . . , ng as the production
decision variables, where Ggk = 1 means that
production task g is started at the beginning of
the k-th time span and executed during this time
span. Only one task can be performed at the same
time: ∑

g

Ggk = 1. (9)

To model the transitions we introduce variables
T g,h,mk which, if equal to 1, indicate that a transi-
tion from grade g to h and of mode 3 m is executed
at the end of time span k. T g,h,mk relates to Ggk and
Ghk+1 in the following manner.∑

g

∑
h

∑
m

T g,h,m
k

= 1,
∑
m

T g,h,m
k

≤ Gg
k
,

∑
m

T g,h,m
k

≤ Gh
k+1. (10)

Further, let TMm
k be one if transition mode m is

executed in time span k and zero otherwise. Then
the following holds:

T g,h,mk < TMm
k . (11)

Because all transition times are shorter than τ
we need to take the quasi-static production pre-
ceding the transition into account to arrive at
the appropriate production attributes (raw ma-
terial consumption and end product yield). Let
the transition time for a mode m transition from
grade g to grade h be denoted τg,h,m. Then, the

3 The transition mode m refers to the market scenario for
which the transition characteristics are computed.



consumption of raw material r and the production
of end product e for the corresponding transition
are computed as

TCg,h,mr = (τ − τg,h,m)Cgr + C
g,h,m
r , (12)

TY g,h,me = (τ − τg,h,m)Y ge + Y
g,h,m
e . (13)

For ‘transitions’ T g,g,mk the transition time is zero
which yields the corresponding steady state pro-
duction figures: TCg,g,mr = τCgr and TY

g,g,m
e =

τY ge . C
g
r , Y

g
e , C

g,h,m
r , and Y g,h,me are the con-

sumption and yield variables as defined in the
previous section. To formulate the transaction-
based market description, a binary decision vari-
able Se,sk ∈ {0, 1} is used to indicate whether sales
order/opportunity s for end product e is executed
in time span k (in which case Se,sk = 1) or not
(Se,sk = 0). Further, for each order/opportunity we
introduce a set of time spans Ωe,s outside which
it may not be executed. Attached to each sales
order/opportunity the market database stores the
amount of product, SAe,s and the unit price of-
fered, S$e,s. By definition of Ωe,s we have:

Se,sk = 0, ∀k /∈ Ωe,s. (14)

Further, each order must be executed exactly once
and each opportunity at most once. This gives rise
to the following constraints

SOe,s ≤
∑
k∈Ωe,s

Se,sk ≤ 1, (15)

where SOe,s is zero if s is an opportunity and one
if s is an order. Similar reasoning for purchasing
orders and opportunities leads to the introduction
of binary decision variables P r,pk and the con-
straints

P r,pk = 0, ∀k /∈ Ωr,p, (16)

POr,p ≤
∑
k∈Ωr,p

P r,pk ≤ 1, (17)

where Ωr,p is defined as the set of time spans k
outside which purchase ord./opp. p may not be
executed and POr,p is zero if transaction p for raw
material r is a purchase opportunity and 1 if it is
an order. The purchase attributes are PAr,pk and
$P r,pk : the amount of feedstock r and its unit price
for purchase ord./opp. p. Let us introduce ESek as
the storage level of end-product e at the beginning
of time span k and RSrk as the storage level of raw
material r at the beginning of time span k. The
material balances for the raw material storage and
the end-product storage are defined as follows

ESek+1 =ES
e
k +

∑
g

∑
h

∑
m

T g,h,mk TY g,h,me −
∑
s

Se,sk+1SA
e,s, (18)

RSrk+1 =RS
r
k −

∑
g

∑
h

∑
m

T g,h,mk TCg,h,mr +

∑
p

P r,pk PAp,r (19)

with initial conditions ESe1 = ESeinitial and
RSr1 = RSrinitial. Note that the recursive formu-
lation is conservative. Minimum and maximum
constraints on the storage capacity can be imposed
as follows

ESel ≤ ESek ≤ ESeu, (20)
RSrl ≤ RSrk ≤ RSru. (21)

In a simple form, the cumulative added value
(CAV) is the difference between all revenues
through sales of end products and all expenses
on raw materials over a certain period of time.
Here, the objective is defined as the CAV extended
by interest on the capital balance, and can be
formulated as follows

Vk+1 = (1 + γ)Vk +
∑
e

∑
s

Se,sk+1SA
e,s
S $

e,s−
∑
r

∑
p

P r,pk+1PA
r,pP$r,p (22)

J = VH +
∑
r

RSr,HRVr +
∑
e

ESe,HEVe (23)

where γ is the fractional interest rate and H is the
horizon length. The last two terms in (23) account
for end-storage appreciation which is necessary
because we solve a finite horizon approximation
of an infinite (or much longer)-horizon problem.
The number of binary variables changes with the
choice of the transition modeling. A formulation
with multiple, distinct transition modes leads to
the introduction ofH(n+m) binary variables only
for the production modeling. Additional binary
variables arise from the modeling of the purchase
and sales actions. Their number can be limited
through an appropriate choice of the validity sets
Ωe,s and Ωr,p.

Because the objective as well as all constraints are
linear and the total set of variables contains binary
as well as continuous variables, the scheduling
problem is a MILP:

maximize the objective J (23) subject to the ob-
jective recursion (22), the storage constraints (20,
21), the inventory recursion (18, 19), the purchase
constraints (16, 17), the sales constraints (14, 15),
the transition constraints (10, 11), and the grade
constraints (9).

This MILP is, like most scheduling problems, NP-
hard. This means that no polynomial time algo-
rithm has been found for solving the problem.
For NP-hard problems one can in general only
hope that an acceptable solution be found in a
reasonable time.

4. CASE STUDY: GAS PHASE HDPE PLANT

We consider a nonlinear model of an industrial
high density poly-ethylene (HDPE) fluidized bed



performance channels (z)
1 polymer density
2 polymer melt index
3 production flow
4 cooling water flow
5 ethylene feed flow
6 butylene feed flow
7 hydrogen feed flow
8 catalyst feed flow
9 setpoint pressure control

inputs (u)
1 butylene feed flow
2 hydrogen feed flow
3 catalyst feed flow
4 setpoint pressure control

...........
...........
............
............
.............
.............
..............
...............
................
..................
....................
.......................
...........................
.......................................

..................................................................................................................................................................................................................................................................................................................................................................................... ✖✕
✗✔

✲
✲
✲
✲

✲
✻

✻

❄

❥✛

✻

✲

❄

✲

C2H4

C4H8

H2

N2

product removal

purge
gas recycle

cooling water

reactor

mixer

heat
exchanger

catalyst
feed

Fig. 7. Schematic process flow sheet of the gas
phase HDPE polymerization process

Table 1. The five production grades for the

HDPE reactor.

g constraints constraints

1 932.8 < z1 < 933.2 0.8 < z2 < 1.2

2 937.8 < z1 < 938.2 0.8 < z2 < 1.2
3 937.8 < z1 < 938.2 2.8 < z2 < 3.2
4 932.8 < z1 < 933.2 2.8 < z2 < 3.2
5 942.8 < z1 < 943.2 0.8 < z2 < 1.2

reactor, schematically described in figure 4. Here
we consider 5 different product grades. The prod-
uct grades are defined by bounds on the density
(z1) and the natural logarithm of the melt index
(z2) of the polymer as given in Table 1. The
model is based on (Choi and Ray, 1985) and
(McAuley, 1991) and further refined by Tousain
and Van Brempt 4 . It contains about 1000 vari-
ables amongst which 40 differential variables. The
model has the following properties:

• The fluidized bed consists of a bubble phase,
an emulsion gas phase and an emulsion poly-
mer phase. Both emulsion phases are as-
sumed perfectly mixed. Mass transfer be-
tween the bubble phase and the emulsion gas
phase is modeled using Fick’s law.

• Co-polymerization reactions (butylene co-
monomer) occur on the surface of Ziegler-
Natta catalyst particles in the emulsion
polymer phase. The following reactions are
modeled according to Ziegler-Natta kinetics

4 IMPACT (Eureka project number E! 2063), IPCOS
Technology, Leuven, Belgium
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Fig. 8. (SSQP) Optimal trajectories of the density
(z1), melt index (z2), production (z3) and
cooling water flow (z4) for a transition from
grade 3 to grade 5

(Dotson et al., 1996): 1. catalyst activation,
2. chain initiation, 3. chain propagation, 4.
chain transfer, 5. catalyst deactivation.

• On top of the reactor a wide gas cap is
modeled as being ideally mixed.

• The counter current heat exchanger is mod-
eled using a multi-compartment model.

• A purge outlet flow makes it possible to
remove nitrogen (and other gases) from the
reactor.

• Four low-level PI controllers stabilize the
process

• A flow driven representation is used.
The general mathematical formulation of the
grade change problem is given by (8). For the
HDPE process, the economic objective is defined
as

Vec =
∫ T

0


 3∑
r=1

prFCr(z)−
∑

e∈{g,h,6}
pePYe(z)


 dt,

(24)
where the feed flows are given by C1(z) = z5,
C2(z) = z6, and C3(z) = z7. Yg and Yh refer
to the production flows of the departure grade
and the target grade, respectively. Y6 refers to the
production of off-spec material. It is assumed that
during a transition, all material that is not within
the specifications of either one of the grades con-
nected by the transition is off-spec material. With
the product prices, chosen according to a represen-
tative market scenario, 20 grade transitions have
been optimized. These are used to construct the
production database for the scheduler. A typical
optimized transition result is shown in Figure 8.

A uniform discretization of time is chosen with
production intervals of 12 hours. All transition
times being smaller than 12 hours, we can use the
single-interval transition model using production
data which is computed on the basis of the static
optimization of the grades and the dynamic op-
timization of grade transitions using (12,13). In



Table 2. Sales order and opportunity database

for the HDPE production facility.

Sales of grade 1
s SA1,s S$1,s Ω1,s SO1,s

1 300,000 0.7 {8} 1

2 150,000 1.55 {15,22} 0
3 200,000 0.71 {15,22} 1
4 250,000 0.72 {43,50} 1
5 180,000 1.20 {71,78} 0

Sales of grade 2
s SA2,s S$2,s Ω2,s SO2,s

1 250,000 0.70 {8,15} 1
2 200,000 1.31 {22,29} 0
3 250,000 1.60 {28,35} 0
4 150,000 1.20 {43,50,57} 0
5 200,000 0.65 {64,71} 1

Sales of grade 3
s SA3,s S$3,s Ω3,s SO3,s

1 250,000 1.60 {8,15} 0

2 300,000 0.70 {22,29} 1
3 200,000 1.65 {50,57} 0
4 150,000 1.30 {64,65} 0

Sales of grade 4
s SA4,s S$4,s Ω4,s SO4,s

1 250,000 0.70 {8} 1
2 200,000 1.15 {22,29,36} 0
3 300,000 0.71 {36,43,50} 1
4 150,000 1.20 {57,64,71} 0

Sales of grade 5
s SA5,s S$5,s Ω5,s SO5,s

1 200,000 0.60 {8,15} 1
2 250,000 1.35 {15,22,29} 0
3 200,000 1.50 {29,36,43} 0
4 220,000 0.73 {50,57,64} 1
5 150,000 1.25 {71,78} 0

Sales of off-spec material
s SA6,s S$6,s Ω6,s SO6,s

1 100,000 0.32 {8,..,36} 0
2 100,000 0.33 {43,..,78} 0

Table 3. Raw material storage attributes for the

HDPE plant.

r RSr
l RSr

u RSr
1 RSr

H,l R$r

1 0 10,000,000 1,100,000 600,000 0.45
2 0 450,000 60,000 35,000 0.60
3 0 2,000 250 100 3.30

addition, a fictional order/opportunity database
has been constructed such that about 80% of
the production capacity is used for production
orders, the remaining is to be used for attractive
sales opportunities. The sales order/opportunity
database is given in Table 2. The sets of time
instances at which transactions can take place
are chosen sparse in order to limit the number of
binary decision variables. The order/opportunity
database should be seen as being the result of
previous interactions of sales managers with the
market. Initial inventory levels, the storage con-
straints and the end-storage appreciation of re-
spectively the raw materials and the end products
are finally given in tables 3 and 4. In traditional
slate scheduling, the slate is going back and forth
through a sequence of grades. The sequence is
determined in such a way that the overall grade
change effort, which can be characterized for ex-

Table 4. End product storage attributes for the

HDPE plant.

e ESe
l ESe

u ESe
1 ESe

H,l E$e

1 0 5,000,000 325,000 300,000 1.02
2 0 5,000,000 315,000 300,000 0.98
3 0 5,000,000 270,000 300,000 1.06
4 0 5,000,000 270,000 300,000 1.05
5 0 5,000,000 306,000 300,000 1.03
6 0 5,000,000 22,000 0 0.33
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Fig. 9. Flexible schedule for HDPE production.
Grades (top) and storage levels of the end-
products (bottom)

ample by grade change time or off-spec produc-
tion, is minimized. Here, we exploit that further
improvements can be achieved if, by means of ad-
vanced process control technology, all transitions
are enabled, leading to a flexible scheduling ap-
proach. In this approach the production is allowed
to switch to any other grade at each production
interval, providing much improved flexibility to
deal with changes in the market situation and to
react to attractive sales opportunities. A solution
to the flexible scheduling problem was found in
several hours and to a guaranteed optimality of
slightly more than 2.3 %. The objective value was
equal to 3,339,845 which is over 16.8 % better than



the performance achieved with a fixed-duration
slate. The result is displayed in figure 9.

5. CLOSED-LOOP STOCHASTIC MPC

In this section a closed-loop stochastic model-
predictive control formulation will be discussed.
The formulation is model-based and predictive,
with constraints on the process variables. The
approach is developed using the following obser-
vations:

• The smooth dynamic model (1) is assumed
to be available, enabling to determine nu-
merically a trajectory along which a time-
varying linearized model can be computed.
The trajectory is initially given by the sched-
uler and is subsequently improved in an iter-
ative implementation of the closed-loop MPC
formulation (CLMPC)

• CLMPC exploits the availability of future
measurements, i.e. future feedback, and de-
rives desirable feedback properties from this
structure

• CLMPC considers stochastic disturbances,
here assumed as Gaussian

• The constraints are taken into consideration
with a backoff resulting from the effect of the
stochastic disturbances

• In (van Hessem and Bosgra, 2003) we have
shown that for any controller of the CLMPC
there exists an equivalent finite horizon LQG
controller (FHLQG) having the same perfor-
mance and which can be implemented in a
receding horizon mode

• The receding horizon CLMPC controller im-
plementation inherits the stability properties
of the optimal CLMPC solution

• In (van Hessem and Bosgra, 2002a),(van Hes-
sem and Bosgra, 2002b) it has been shown
how a Youla parametrization that renders
CLMPC convex can be replaced by an inno-
vations feedback controller structure which
allows the solution to be put in a receding
horizon formulation. It has an observer-based
structure as shown in figure 11.

• For its actual solution, the CLMPC prob-
lem is decomposed into a deterministic con-
strained optimization problem and a mini-
mum variance problem

• The solution of the latter provides the back-
off used in the former

• The idea is shown in figure 10 based on
a strong concept of classical LQG con-
trol (Athans, 1971). The deterministic opti-
mization using the back-off is implemented
as feedforward, the minimum variance con-
troller provides the feedback. In fact any
(robust) feedback controller with desirable

disturbance-suppressing properties can be
used here.

Consider a linear discrete time-varying stochastic
system derived from the model (1):(

xk+1(ξ)

zk(ξ)
yk(ξ)

)
=

(
Ak Gk Bk

Cz
k O Dz

k

Ck Fk O

)(
xk(ξ)

wk(ξ)
uk(ξ)

)
(25)

where ξ is a Gaussian random process, wk(ξ) is
a white noise sequence with variance matrix Wk

and with the property GkWkF
T
k = 0 (process and

measurement noise are independent). In ‘lifted’
form (see (Furuta and Wongsaisuwan, 1993)) over
a time horizon of n samples, the vector-stochastic
processes are

yk(ξ) =


 yk(ξ)

..

.
yk+n(ξ)


 , zk(ξ) =


 zk(ξ)

..

.
zk+n(ξ)


 (26)

and so on, representing each signal y, z from
sample k to sample k + n. The two stochastic
processes y, z are the measured and performance
output process, respectively; z contains variables
appearing in the objective function or in the
constraints, or in the inputs.

yk(ξ) = Gyxxk(ξ) +Gyuuk(ξ) +Gywwk(ξ)
zk(ξ) = Gzxxk(ξ) +Gzuuk(ξ) +Gzwwk(ξ)

Define a finite horizon observer, having time
varying-feedback gains


x̂0(ξ)
x̂1(ξ)

.

.

.
x̂n(ξ)


 =




I
Φe

1,0

.

.

.
Φe

n,0


 x̂0(ξ) (27)

+




O O · · · O
B0 O · · · O
..
.

..

.
. . .

..

.
Φe

n,1B0 Φe
n,2B1 · · · O







u0(ξ)
u1(ξ)

.

..
un(ξ)




+




O O · · · O
N0 O · · · O
.
.
.

.

.

.
. . .

.

.

.
Φe

n,1N0 Φe
n,2N1 · · · O







y0(ξ)
y1(ξ)
.
.
.

yn(ξ)




where the transition matrix Φek,j for the observer
system mapping x̂j to x̂k is given for k > j by

Φe
k,j = Ae

k−1A
e
k−2 · · ·Ae

j , Φe
j,j = I, Ae

k = Ak −NkCk

and Nk is the Kalman predictor gain. Define

ek(ξ) := xk(ξ)− x̂k(ξ) (28)

which recursively satisfies

ek+1(ξ) = (Ak −NkCk)︸ ︷︷ ︸
Ae

k

ek(ξ) + (Gk −NkFk)︸ ︷︷ ︸
Ge

k

wk(ξ) (29)

In lifted form: e0(ξ) = Geee0(ξ) + Geww0(ξ) and
in terms of (Φek,l, G

e
k):





e0(ξ)
e1(ξ)
.
.
.

en(ξ)


 =




I
Φe

1,0

.

.

.
Φe

n,0


 e0(ξ) (30)

+




O O · · · O
Ge

0 O · · · O
.
..

.

..
. . .

.

..
Φe

n,1G
e
0 Φe

n,2G
e
1 · · · O






w0(ξ)
w1(ξ)

.

.

.
wn(ξ)




The corresponding innovation sequence (Kailath,
1968), is given by

vk(ξ) := yk(ξ)− ŷk(ξ) = Ckek(ξ) + Fkwk(ξ)

In lifted form

v(ξ) = Gvee0(ξ) +Gvww(ξ) (31)

and in terms of the matrices (Φek,l, G
e
k, C, F )


v0(ξ)
v1(ξ)
.
.
.

vn(ξ)


 =



C0

C1Φ
e
1,0

.

.

.
CnΦ

e
n,0


 e0(ξ) (32)

+




F0 O · · · O
C1G

e
0 O · · · O

.

.

.
.
.
.

. . .
.
.
.

CnΦ
e
n,1G

e
0 CnΦ

e
n,2G

e
1 · · · Fn






w0(ξ)
w1(ξ)

.

.

.
wn(ξ)




In (van Hessem and Bosgra, 2003) it has been
shown that for the optimal CLMPC problem,
an optimal output feedback controller can be
equivalently replaced by an optimal innovations
feedback controller. Let this be the law (assuming
zero reference trajectories w.l.o.g.)

u0(ξ) = K0v0(ξ) (33)

where K0 ∈ is a non-anticipative controller, i.e.

K0 =



K11 O · · · O
K21 K22 · · · O
...

...
. . .
...

Kn1 Kn2 · · · Knn


 .

Then, at any time instant in the future, there exist
matrices Lk and Kk of appropriate dimension,
such that the control law

uk(ξ) = Lkx̂k(ξ) +Kkvk(ξ) (34)

generates the optimal control sequence for the
remainder of the horizon, provided the matrices
are appropriately parametrized. This is a solution
to a receding horizon implementation, using a
recursive expression for the variance matrices and
the feedback law. Observe that the actual controls
applied at each instant are given by L1k and K

11
k

which are the first nu rows of the control law Lk
and Kk respectively:

uk = L1kx̂k +K
11
k vk

From the preceding analysis it follows that zk(ξ)
in closed-loop is some function of x̂k(ξ), ek(ξ),wk(ξ).
Since x̂k(ξ), ek(ξ) are independent of wk(ξ) it fol-
lows that we only need to keep track of the joint
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variance matrix Vk of x̂k(ξ) and ek(ξ), generated
by(̂
xk+1(ξ)
ek+1(ξ)

)
=

(
Ak +BkL

1
k (Nk +BkK

11
k )Ck

O Ak −NkCk

)(̂
xk(ξ)
ek(ξ)

)
+

(
(Nk +BkK

11
k )Fk

Gk −NkFk

)
wk(ξ)

and recursively given by

Vk+1 =

(
Ak +BkL

1
k (Nk +BkK

11
k )Ck

O Ak −NkCk

)
Vk

(
  
  

)T

+

(
(Nk +BkK

11
k )Fk

Gk −NkFk

)
Wk

(
 
 

)T

, V0 =

(
O O
O P0

)
As ek(ξ)⊥x̂k(ξ) for any k, the joint variance ma-
trix Vk is block-diagonal for each k by construc-
tion. Thus the variance matrices follow from the
Riccati recursions for the estimation error
P

e
k+1 = AkP

e
kA

T
k −Nk(CkP

e
kC

T
k + FkWkF

T
k )N

T
k +GkWkG

T
k

having boundary condition P 0e = P0. The recur-
sion for the state-estimate
P

x̂
k+1 = (Ak + BkL

1
k)P

x̂
k (Ak + BkL

1
k)

T

+ (Nk + BkK
11
k )(CkP

e
kC

T
k + FkWkF

T
k )(Nk + BkK

11
k )

T

having boundary condition P x̂0 = O. L1k and K
11
k

are given externally in every cycle by the solution
of the control problem. The Kalman gain is

Nk = AkP
e
kC

T
k (CkP

e
kC

T
k + FkWkF

T
k )−1

The factored variance matrix of the initial condi-
tion and disturbances are
P

x
k = Exk(ξ)xk(ξ)

T
= P

x̂
k + P

e
k = FxF

T
x , Wk = FwF

T
w .

On the basis of the previous development, the
closed-loop MPC problem is defined as

(CLMPC)

min
zr

k
∈Rnu ,K∈K0

f(zrk)

r
√
hTj Zkhj + h

T
j z
r ≤ gj

(35)



where Z = E(zk(ξ) − zr
k)(zk(ξ) − zr

k)
T . and f is

a convex function. The constraints above follow
from the nominal inequality constraints which
trajectories must obey:

hTj z
r ≤ gj , j = 1 . . . nz

The extra term r
√
hTj Zkhj in CLMPC is added

as back-off to the constraints using an ellipsoidal
relaxation, with the intention to prevent violation
of constraints under stochastic disturbances. This
problem is a convex optimization problem that
can be solved for the global optimum using a
solver for second-order cone problems, (Lobo et
al., 1998) . However, it is a computationally ex-
pensive problem in its present format for medium-
and large-sized problems with many constraints
and long prediction horizons, due to the present
state of development of state-of-the-art cone pro-
gramming solvers. These solvers utilize a vector-
ization of the problem data and given the large
number of parameters in the controller K, the size
of the problem tends to grow. This especially holds
for the number of Lagrange multipliers in primal-
dual interior-point methods. One solution to this
situation is to derive new algorithms exploiting
the ellipsoidal structure of the (CLMPC), see for
example (Dabbene et al., 2003). However, there
exists a different approach. Given the quadratic
objective function

E

n∑
k=1

(zk(ξ)− zr
k)

TQk(zk(ξ)− zr
k) + ∆uk(ξ)

TRk∆uk(ξ)

(36)

where ∆uk = uk − uk−1, and given the fact that
the optimal solution to (CLMPC) is a finite
horizon LQG controller. Then in the absence of
any inequality constraints, (36) can be separated
into a deterministic optimal control problem and
a stochastic optimal feedback problem by the
separation property of LQG optimal control. The
fact that the inequality constraints are treated
with a back-off implies that the unconstrained
case is effective for the stochastic problem. This
motivates to separate (36) in a stochastic feedback
problem and a deterministic feedforward problem.
This implies a considerable simplification in the
computational load of the problem, and makes
real-time implementation a realistic opportunity.
Assume that the weighting matrix R = RT > 0
has a full rank Cholesky factorization FRFTR . R
and S are weighting parameters in the quadratic
performance index in an LQG problem. The first
step is to solve for given FR, S, s the minimal
variance problem (subproblem CFHLQGA):

min
K∈K

tr SFRFZFTZ F
T
RS

T (37)

for

FZ =
(
GzxFx GzwFw

)
+GzuK

(
GvxFx GvwFw

)
Suppose one has solved this problem for the
optimal Q+, then the optimal variance matrix Z+

is also known, and the back-off terms using the
ellipsoidal relaxation are readily computed:

ν+j = r
√
hTj Z

+hj (38)

In the second step (subproblem CFHLQGB) one
solves the optimal transition, in which the terms
38 are used to keep back-off to the constraints:

min
ur

(Sẑ− s)TR(Sẑ− s)

ν+j + h
T
j z
r ≤ gj , j = 1, . . . ,m

zr = Gzxx
r
0 +Gzuu

r +Gzwwr

(39)

where the performance weighting matrix S and
vector s have to be chosen. Note that the sep-
aration into two subproblems also implies that
separate tuning of the feedback part and of the
feedforward transition part has been realized. This
enables especially to modify the criterion in the
second step to include a strong component repre-
senting the economic performance of a transition.

6. CASE STUDY (CONTINUED)

Application of a grade change from grade 5 to
grade 3 has been investigated for the CLMPC
approach. We require the grade change to be done
under two bias disturbances: +0.0025 kg/h on
the catalyst flow, and −0.05 kg/h on the hydro-
gen flow, results of imprecise valve positions and
errors in flow measurements. The hydrogen bias
influences the melt-index and a negative value
of this disturbance is chosen to counteract the
transition from grade 5 to grade 3. The controller
must increase the hydrogen feed to compensate
for this bias possibly violating the feed limitation.
A positive bias in the catalyst feed leads to a
significant increase in energy hold-up. The PI loop
in the basic control loop increases the cool water
flow threatening to saturate the flow constraint.
Additionally, measurement noise is active on all
output measurements, such that controller param-
eters cannot grow unbounded (high gain feedback)
to compensate the persistent disturbances, which
adds robustness to the control design. The perfor-
mance index has appropriately chosen quadratic
weights on performance variables 1, 2 and 4 and
on inputs 1, 2 and 3. The constraints are given
in table 5. The computed open-loop performance

Table 5. Constraints on process vari-
ables

Variable lo up

z4 [104kg/h] 2.5 5.2

z5 [102kg/h] 0.0 1.5
z6 [kg/h] 0.1 1.0
z7 [kg/h] 0.2 2.0
z9 [bar] 0.0 1.0

trajectories of density, melt index, coolwater flow
and production rate are shown in figure 12. With-
out feedback a serious offset results from the



computed optimal reference trajectories, due to
the active disturbances which are not taken into
consideration in the optimization. In figure 13, the
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performance trajectories of the same performance
variables are shown under closed-loop CLMPC
feedback. We see no violation of the feedwater
flow constraint as a consequence of the appropri-
ate back-off in the computation of the reference
trajectories. Figures 14 and 15 shows a close-up
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Fig. 13. Closed-loop: real (solid), reference (dash-
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of the reference trajectories of the cool water and
hydrogen feed flows, respectively, where the back-
off is visualized via the 1-dimensional confidence
intervals (projected ellipsoids). Due to the back-
off, inequality constraints play no role in the part
of the control moves related to disturbance rejec-
tion. Consequently, the control updates needed to
remove the biases on the feeds are very smooth.
Apart from the real actual trajectories, the error
bars in the figures show the evolution of the vari-
ance disturbances which are expected (and can be
accomodated) by the CLMPC controller.
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Fig. 14. Closed-loop cool water flow: real (solid),
reference (dash-dot), target (dash)
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7. CONCLUSIONS

In this paper a scheduling approach has been
presented that enables the production manage-
ment of a multi-grade chemical plant to operate
the plant according to a market-responsive and
economics-based objective. For single-machine
multi-grade processes, such a scheduler can be
designed by capturing the purchasing, production
and sales decisions and their effect on the com-
pany’s objective into a MILP which can be solved
using standard software. Process transitions and
their effect on material flows are included in the
formulation without the need to introduce addi-
tional binary variables. Reasonable solution times
were encountered for the HDPE production test
problem that was considered in this paper. The
application of the flexible short term scheduling
approach to a gas phase HDPE manufacturing
plant for a fictional market situation demonstrates
a significant increase in added value compared to
the traditional fixed and variable duration slate
scheduling.



For the actual realization of grade transitions
the paper has presented a new closed-loop MPC
formulation that separates a stochastic MPC
problem into a deterministic constrained feed-
forward trajectory optimization solution and a
stochastic minimum-variance feedback solution.
The stochastic solution provides the back-off
needed in the feedforward part. Conversely, the
implementation of the back-off allows the feedback
control to realise a proper disturbance suppression
task. The combined scheduling and closed-loop
MPC solution provides a coherent integration of
process control tasks covering the days-to-minutes
range of time scales.
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