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Université Catholique de Louvain
Bâtiment Euler, 4 Av. Georges Lemâıtre,
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1. INTRODUCTION

Identification for control! Identification and con-
trol have initially emerged as two separate disci-
plines, developed by two distinct communities.

Identification has for a long time been the terri-
tory of mathematicians, statisticians, time-series
analysts and econometricians. The history of sys-
tem identification goes as far back as the work of
Gauss and Legendre in the late 18th and early
19th century. An excellent presentation of the
history of system identification can be found in
(Deistler, 2002). Control theory has always been
the territory of engineers. Until about 1960, most
of control design was based on model-free meth-
ods, using Bode, Nyquist, or Ziegler-Nichols plots,
combined with graphical design techniques. The
introduction of state-space models in 1960, to-
gether with the solution of optimal control and
optimal filtering problems in a Linear Quadratic
Gaussian framework (Kalman, 1960a; Kalman,
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1960b), gave birth to a tremendous development
of model-based control design methods. Successful
applications abounded, particularly in aerospace,
where accurate models were readily available.

1965 saw the start of identification activity in the
control community. The paper (Ho and Kalman,
1965) set the stage for state space realization
theory which, 25 years later, became the found-
ing block for what is now called subspace iden-
tification. The paper (Åström and Bohlin, 1965)
introduced into the control community the Max-
imum Likelihood framework for the identifica-
tion of input-output models. This gave rise to
the celebrated Prediction Error (PE) framework
(Ljung, 1999) that has since proven so successful.
Undoubtedly the advent of identification theory
was spurred by a desire to extend the applicabil-
ity of model-based control design to broader and
broader fields of applications, for which no reliable
models could be obtained from first principles.

From 1965 to the late eighties, model-based con-
trol was applied to ever growing classes of dynam-
ical systems and processes, with models obtained
via the newly emerging identification techniques.



The prevailing habit at that time was to sepa-
rate the identification step and the control de-
sign step. A model was identified first using the
best available techniques; subsequently, a model-
based control design was performed based on the
“certainty equivalence principle”, i.e. the model
was treated as if it represented the true system.
Dual control and adaptive control were two early
attempts to address the issue of parametric un-
certainty and model-based control design in a
synergistic way. In dual control the parameter
estimation and the control design mechanism are
obtained as the result of a single but complex
optimization problem. In adaptive control, the
parameter adjustment scheme is subsidiary to the
control objective. Both schemes were developed
for the case where the structure of the true system
is assumed to be known, which severely limits
their practical applicability. The solution of the
dual control problem proved to be computation-
ally intractable, even in the simplest cases. As for
adaptive control, the major difficulty is that the
parameters of the feedback control system change
at every sampling instant, making the closed-loop
dynamics nonlinear and their stability analysis ex-
tremely complex. After convergence mechanisms
had been devised for the ideal case where the
system is in the model set, attempts were made
to robustify the adaptive control algorithms in
order to take account of some modest degree of
uncertainty. These attempts essentially consisted
of introducing cautionary safeguards in the com-
putation of the gain of the parameter adjustment
scheme; see e.g. (Anderson et al., 1986).

One of the main contributions of the control
community to system identification theory was to
consider identification as an exercise in estimating
the best possible approximate model within some
model set, rather than as a search for the true
system. Together with this effort came the char-
acterization of the approximate model in terms
of bias error and variance error on the estimated
transfer functions.

If the model of a system is exact, it is optimal
for all applications. However, if the model is only
an approximation of the “true system”, then the
quality of the model should be dependent on the
intended application. It thus makes sense to tune
the identification towards the objective for which
the model is to be used, i.e. to ensure that the
distribution of model error is such that it does
not deteriorate the objective too much. This gave
rise to the paradigm of goal-oriented identification
and it led one to view identification as a design
problem. Identification for control has been the
major outlet for this new paradigm. The reasons
for this are many: (i) control is very often the main
motivation for model building; (ii) high perfor-
mance control can often be achieved with very

simple models, provided some basic dynamical
features of the system are accurately reflected;
(iii) a powerful robust control theory, based on
nominal models and uncertainty sets, had been
developed all through the eighties, but these mod-
els and uncertainty sets were not data-based for
lack of a proper theory; (iv) identification for con-
trol research led to iterative model and controller
tuning tools that were intuitive, practical and easy
to implement by the process engineers.

One early approach to optimal identification de-
sign for control, that established a direct link
between experimental conditions and controller
performance, was obtained in (Gevers and Ljung,
1986) by considering variance errors only, i.e. the
system was assumed to be in the model set. This
approach consists, for a given certainty equiva-
lence control design procedure, of computing the
experimental conditions of the identification that
minimize the average performance degradation
that results from the fact that the controller is
computed from an estimated (and hence random)
model rather than from the exact true system.
Like with all optimal experiment design methods,
the optimal experiment depends on the unknown
system: see Section 4. Hence, even though such
results give useful insights, they do not provide an
operational design method for the identification
for control problem. In addition, they are based
on a certainty equivalence controller design mech-
anism, rather than on a robust control design.

Except for the methods already mentioned (dual
control, adaptive control, control-oriented optimal
design), which are restricted to the case where the
true system is in the model set, the first contri-
butions in which identification and control design
with restricted complexity models were looked
upon as a combined design problem appeared only
around 1990. The plenary (Gevers, 1991) at the
1991 IFAC Symposium on System Identification
addressed many of the key issues; however, it
was more an agenda for research than a presen-
tation of solutions. Indeed, there was very little
understanding at that time about the interplay
between system identification and robust control.
The two theories had been developed by separate
communities with very little interaction. In the
nineties, the activity in identification for control
surged: in the plenary (Hjalmarsson, 2003), the
author estimated that about 1,500 papers have
appeared on the topic of identification for control
after the plenary (Gevers, 1991).

When the application of a model is the design of
a controller, then what really matters is the per-
formance achieved by this model-based controller
on the “true system”, not the intrinsic quality of
the model. We illustrate this idea with a very
simple example inspired by (Skelton, 1989). Let



a ‘true system’ be represented by G0(s) = 1
s+1 .

Then the ‘model’ Ĝ(s) = 1
s would clearly be

deemed to be absurd as a model for G0. However,
if the objective is to design a high gain static
output feedback controller, then Ĝ would be a
perfectly acceptable model. Indeed, with a high
gain static output feedback u = −Ky, the closed
loop transfer functions K

s+1+K and K
s+K become

indistinguishable. Thus, whether or not a model
is appropriate for control design depends as much
on the controller that will be implemented as it
depends on the plant/model mismatch.

In practice, the true system is unknown, the model
is unknown at the identification design stage, and
the controller that will be implemented is un-
known because it depends on that model. What is
typically known in control-oriented identification
is the control performance objective. Some prior
knowledge about the true system may also be
available. Ideally, the design of a control-oriented
identification procedure could then be formulated
as follows: Given a control performance objec-
tive, design the identification in such a way that
the performance achieved by the model-based con-
troller on the true system is as high as possible.
Identification design includes many choices: in-
put data, feedback configuration (possibly), data
length, model structure, identification criterion,
validation criterion, etc. The identification design
problem is impossible to solve in such generality.
In order to get a handle on the problem, it has
been customary to fix some of the choices; the
number of data is usually taken to be fixed, and
so is the model structure.

In the first half of the nineties, the research
focused on the bias error distribution, assuming
that low complexity models were being used for
the design of the controller. It produced a string of
results on the design of control-oriented nominal
models (Schrama and Bosgra, 1993; Lee et al.,
1993; Åström and Nilsson, 1994; Zang et al., 1995;
de Callafon and Van den Hof, 1997). The first
and rather obvious result was to establish that
a model is good for control design if the closed
loop system obtained by the feedback connection
of that model with the designed controller is close
to the system obtained by the feedback connection
of the true system with that same controller. Since
the ‘to be designed controller’ is not available at
the identification stage, this led to the necessity
of using an iterative scheme of model updates and
controller updates.

A second important result that emerged from the
understanding of control-oriented nominal mod-
els was that the experimental conditions of the
identification should resemble as much as possible
the experimental conditions obtained when the
designed controller is applied to the true system

(Anderson and Gevers, 1998). This led to the
observation that, for most control performance
objectives, identification should be performed in
closed loop (Hjalmarsson et al., 1996; Forssell and
Ljung, 2000). This observation triggered a revival
of interest for closed loop identification, and the
emergence of new identification methods specifi-
cally designed for this situation: see e.g. (Hansen
et al., 1989; Van den Hof and Schrama, 1993).

The iterative identification and control design
schemes do not necessarily converge to a station-
ary point, corresponding to a stable closed loop
system. Thus, they must be applied with caution,
and a lot of work has gone into developing tools
for safe model and controller updates. Even so,
these iterative schemes have had a remarkably fast
transfer into the world of applications. There are
two main reasons for this:

• whereas much of the industrial world was still
living with the belief that one should ‘open
the loop’ to perform a valid identification
experiment, here was a theory that showed
the benefits of closed-loop identification; this
came as welcome news to process control
engineers who had never really liked the idea
of opening the loop;

• in the process industry, thousands of mea-
surements flow into the computer; here was
a theory that showed how these data could
be used for the design of a better controller.

As stated above, the work on control-oriented
nominal models focused on the bias error dis-
tribution of the identified model, with the con-
troller computed from the model in a certainty
equivalence framework. Thus, that work did not
incorporate the robust control concepts developed
during the eighties. It focused on the design of
identification criteria that minimize a (control-
oriented) measure of the model error.

The second half of the nineties saw a shift to-
wards the definition and estimation of control-
oriented uncertainty sets (Kosut and Anderson,
1994; Mäkilä et al., 1995; de Vries and Van den
Hof, 1995; Bombois et al., 2000) in order to put
the control design into the framework of robust
control design. The focus turned to shaping the
distribution of the variance error of the identified
models, i.e. on manipulating the shape of the un-
certainty set. Indeed, the paradigm of robust con-
trol design is to compute a controller that achieves
the best possible worst case performance, i.e. the
best possible performance over all models in an
uncertainty set. Such best worst case performance
depends as much on the controller as it depends
on the uncertainty set, and this set is directly
dependent on the experimental conditions under
which the identification is performed. The study
of the interplay between experiment conditions



of the identification and properties of the robust
controller has been split up into two questions:

(1) what is the connection between a model un-
certainty set and the properties of robust
controllers computed from that set and, con-
sequently, how should one define a control-
oriented uncertainty set?

(2) how should one design the identification ex-
periment in such a way that the uncertainty
set around the identified model has such
‘control-oriented’ property?

Even though many new insights have been gained
on the first question, there is at this point no clear
view as to the most operational definition of a
‘control-oriented uncertainty set’. We shall come
back to this in Section 7.

To summarize this brief historical account, the
work on identification of the last 15 years has been
essentially developed in three directions: optimal
control-oriented experiment design for identifica-
tion, the definition and computation of control-
oriented nominal models, and the connection be-
tween data-based uncertainty sets and the proper-
ties of robust controllers resulting from such sets.
In addition, the demands of this highly visible field
have generated lots of parallel work on estimation
and validation of uncertainty sets from data, and
on closed-loop identification. Some of the concepts
that have emerged from these 15 years of work,
such as the idea of improving the performance
of an existing controller on the basis of closed
loop data collected with the presently operat-
ing controller, have immediately found their way
into practice. However, many questions remain
unsolved, particularly on the optimal tuning of
uncertainty sets, and we are still far from an auto-
matic procedure that would go from the collection
of experimental data to the design of a robust
controller via a model and its uncertainty set.

In the rest of this paper, we explain in some more
detail the specific achievements and the remaining
unsolved questions in the different subtopics that
we have sketched: what is optimal control-oriented
experiment design? what is a control-oriented
nominal model? why iterative design? what is
a control-oriented uncertainty set? how can we
match experiment design and uncertainty set?
We have chosen to do the presentation of these
ideas in a Prediction Error (PE) identification
framework, because PE identification is by far
the most successful and widely used identification
method. In the next section, we first present
the bare essentials of PE identifcation that are
necessary to understand the remaining issues.

2. THE BARE ESSENTIALS OF
PREDICTION ERROR IDENTIFICATION

The purpose of this paper is to present concepts
rather than technicalities. Thus, to simplify the
presentation, we assume that the unknown true
system can be represented by a single-input single-
output linear time-invariant system:

S : yt = G0(z)ut + vt = G0(z)ut + H0(z)et, (1)

where G0(z) is a linear time-invariant causal
operator, y is the measured output, u is the
control input, and v is noise, assumed to be
quasistationary, modelled as the output of a
model vt = H0(z)et, where e is white noise.
One considers a parametrized model set: M =
{(G(z, θ),H(z, θ), θ ∈ Dθ ⊂ Rd} where G(z, θ)
and H(z, θ) are typically rational transfer func-
tions, and Dθ is a subset of admissible values for
the parameter vector θ. To every θ corresponds a
one-step ahead predictor:

ŷt|t−1(θ) = H−1(z, θ)G(z, θ)ut

+[1−H−1(z, θ)]yt, (2)

and hence a one-step ahead prediction error:

εt(θ) , yt − ŷt|t−1(θ) (3)

= H−1(z, θ)[(G0(z)−G(z, θ))ut + vt]

These prediction errors can, possibly, be filtered
by a data filter D(z), thus defining the filtered
prediction errors εf

t (θ) = D(z)εt(θ). The least
squares PE estimate θ̂N based on N input-output
data is then defined as

θ̂N = arg min
θ∈Dθ

VN (θ), (4)

where the PE criterion is defined as

VN (θ) =
1
N

N∑
t=1

[εf
t (θ)]2. (5)

The estimate θ̂N defines the model Ĝ = G(z, θ̂N ),
Ĥ = H(z, θ̂N ). Under reasonable conditions,
θ̂N

N→∞−→ θ∗, where θ∗ , arg minθ∈Dθ
V̄ (θ),

with V̄ (θ) , E[εf
t (θ)]2 (Ljung, 1999) .

Two different situations need to be considered.
The first one is when the model structure M
has been chosen sufficiently complex that the
true system belongs to the model set. This is
denoted S ∈ M, and means that there exists a
value θ0 ∈ Dθ such that G(z, θ0) = G0(z) and
H(z, θ0) = H0(z). In such case, under reasonable
conditions, θ∗ = θ0, which means that the PE
estimates of the transfer functions converge to the
true transfer functions: G(z, θ̂N ) N→∞−→ G0(z),
H(z, θ̂N ) N→∞−→ H0(z). When S ∈ M, the



parameter error converges to a Gaussian random
variable:

√
N(θ̂N − θ0)

N→∞−→ N(0, Pθ). (6)

The asymptotic parameter covariance Pθ can be
estimated from the data, and the true parameter
vector θ0 belongs to an ellipsoid:

Uθ = {θ|N(θ − θ̂N )T P−1
θ (θ − θ̂N ) < χ2} (7)

with probability α(d, χ2) = Pr(χ2(d) ≤ χ2),
where χ2(d) denotes the χ2 distribution with d
degrees of freedom. Thus, when the system is in
the model set, PE identification delivers a nom-
inal model G(z, θ̂N ),H(z, θ̂N ), together with an
ellipsoidal confidence region in parameter space.
This, in turn, defines an uncertainty region in the
space of transfer functions:

D = {G(z, θ) | θ ∈ Uθ}. (8)

In the more general situation where the system is
not in the model set, limN→∞ θ̂N = θ∗ 6= θ0. In
such case, the transfer function error, G0(ejω) −
G(ejω, θ̂N ), at a given frequency ω, can be decom-
posed as:

G0(ejω)−G(ejω, θ̂N ) = (9)

G0(ejω)−G(ejω, θ∗)︸ ︷︷ ︸
bias error

+ G(ejω, θ∗)−G(ejω, θ̂N )︸ ︷︷ ︸
variance error

.

The bias error arises when the model structure is
unable to represent the true system. The variance
error is caused by the noise and the finiteness
of the data set; by definition of θ∗, it goes to
zero asymptotically. In the mid-eighties, Ljung
produced some important formulas for the char-
acterization of bias and variance errors of iden-
titfied transfer functions (Ljung, 1985; Wahlberg
and Ljung, 1986). The bias was characterized
implicitly by representing θ∗ as the minimizing
argument of a frequency integral. A variance error
estimate for the estimated transfer functions was
obtained under an assumption of model order
going to infinity. More recent work has produced
formulas for the estimation of an uncertainty set
D around Ĝ, with the property that G0 ∈ D with
probability α, where α is any desired level close to
1 (e.g. α = 0.95) even in the case where the system
is not in the model set, and for finite model orders:
see Section 6. Finally, we note that the results
described in this section are valid for both open
loop and closed loop identification.

3. THE GAME AND THE PLAYERS

In identification for control, a typical situation
is that we can perform experiments on the true
system (1) with the purpose of designing a feed-
back controller. The system may already be under

feedback control, in which case the task is to
replace the present controller by one that achieves
better performance. This situation is representa-
tive of many practical industrial situations. We
then denote the present controller by Cid and the
reference signal, if any, by rt:

ut = Cid(z)[rt − yt]. (10)

Using N data collected on the system, in open
loop or in closed loop, we can compute a model
Ĝ of the unknown G0, and possibly also a noise
model Ĥ of H0 by PE identification. Since the
complexity of a model-based controller is of the
same order as that of the model, one often per-
forms the identification with a low order model.

The traditional scenario in model-based robust
control design was: First estimate a model Ĝ and
an uncertainty set D, then design a new controller
C(z) that achieves closed-loop stability and meets
the required performance with all models in D, and
hence with the unknown true system G0. For this
scenario to be successful, a very accurate model
Ĝ was typically required.

The objective in identification for control is to
replace that traditional scenario by the following.
On the basis of the required performance, and
of any knowledge of the unknown system, design
a control-oriented identification experiment that
produces a model Ĝ and an uncertainty set D; then
design a new controller C that achieves closed-
loop stability and meets the required performance
with all models in D, and hence with the unknown
true system G0. If necessary, repeat this design
procedure, possibly with a more demanding per-
formance criterion. In some scenarios, one first
computes a class C(Ĝ,D) of controllers, each of
which achieves the required performance with all
models inD; the controller C is then chosen within
this class in such a way as to have some additional
nice features (e.g. low complexity).

The goal of the new scenario is to achieve the same
or better performance based on models (and hence
controllers) of lower complexity. The class C of
controllers that achieve the required performance
is larger if the model uncertainty set D can be
tuned towards that aim.

The players within this (iterative) identification
and robust control design scenario are therefore:

• the unknown plant G0

• the optimal controller Copt for G0

• the present controller Cid (if any)
• the present model Ĝinit (if any)
• the identified model Ĝ
• the uncertainty set of models D around Ĝ
• the set C of controllers that achieve the

prescribed performance
• the new model-based controller C ∈ C



Except for the unknown plant G0 and its corre-
sponding optimal controller C0, the designer has a
handle on all other players. It is the complexity of
the interplay between these players that makes the
problem challenging and interesting. To illustrate
the interplay, it is important to understand that
one deals with five different feedback loops, which
impact on one another: see Figures 1 to 5.
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rt ût
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ȳt

+
-

Fig. 3 : Design loop

h h
6

- - - - ? -G0C(Ĝ)
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Fig. 5 : Optimal loop

In identification for control, the designer collects
data on the experimental loop of Figure 1, and
estimates a model Ĝ such that the closed loop
system of Figure 2 is “as close as possible” to
the actual system of Figure 1. Sometimes, one of
his design choices is the choice of a controller Cid

and of a reference signal rt in the experimental
loop. On the basis of the identified model Ĝ,
possibly with an estimated uncertainty set D, the
designer then computes the new controller C(Ĝ),
or C(Ĝ,D): this generates the designed loop of
Figure 3. However, what really matters is the
performance achieved by this controller with the
real system, i.e. the performance of the achieved
loop of Figure 4. Thus, if the identifier performs a

good job, then the identified loop will be close to
the experimental loop; but what is really desired
is that the achieved performance on the loop of
Figure 4 is close to the designed performance on
the loop of Figure 3. If the experimental setup was
such that Cid was identical (or at least close to)
the “to-be-designed controller” C, then closeness
of the loops of Figures 1 and 2 would entail close-
ness of the loops of Figures 3 and 4. This explains
why it pays to have experimental conditions that
closely match the conditions in which the “to-be-
designed controller” will operate.

The first identification for control results, men-
tioned earlier, were based on a different approach.
The aim was to find the optimal experiment condi-
tions such that the output of the achieved loop of
Figure 4 is as close as possible to the output of the
optimal loop of Figure 5 that would be obtained
if the true system were known exactly. Because of
its historical precedence, and its intuitive appeal,
we first present this approach in the next section.

4. OPTIMAL CONTROL-ORIENTED
IDENTIFICATION DESIGN

In this approach an identification experiment de-
sign is called “optimal” if the controller computed
from the estimated model is one that minimizes
the average performance degradation vis-à-vis the
performance that would be achieved with the ideal
controller. The ideal controller is the controller
that would be computed if the true system were
known. We now explain this in some more detail.

We denote by J(G, H,C) the control design cri-
terion, and by C = c(G, H) the certainty equiva-
lence mapping that maps a model (G, H) into the
corresponding optimal controller. In particular,

Copt = c(G0,H0) = arg min
C

J(G0,H0, C).(11)

We consider PE identification of a parametric
model from N data, and assume that S ∈ M. The
control design mapping then defines a controller
ĈN = c(ĜN , ĤN ) for each model (ĜN , ĤN ). 2

The controller ĈN is a random variable, because
the estimated parameter vector θ̂N is random, and
hence also the model. Applying ĈN (rather than
Copt) to the true system results in an achieved
cost J(G0,H0, ĈN ) ≥ J(G0,H0, C

opt). This re-
sults in a “performance degradation” Jdeg =
J(G0,H0, ĈN ) − J(G0,H0, C

opt), which is again
a random variable.

The problem statement of optimal identification
design for control is then phrased as follows: “Find
the experimental conditions X that minimize the

2 Here ĜN is a shorthand notation for G(z, θ̂N ), and
similarly for ĤN .



average performance degradation” 3 . In view of
what precedes, this can be formulated as:

min
X

EJ(G0,H0, c(ĜN , ĤN )). (12)

The expected value is taken with respect to the
noise, which affects the model estimate, and hence
the controller estimate.

In the context of certainty equivalence control
design, this is probably the most logical (and
ideal) problem formulation for an optimal identi-
fication for control design. However, there are sev-
eral difficulties with this formulation (see Chapter
9 in (Albertos and Sala, 2002)), the main one
being that the optimal experiment X defined by
(12) necessarily depends on the unknown system
(G0,H0). This is specific to all experiment design
problems. It does not mean that such results are
meaningless: they give useful guidelines for the
identification design, and they may lead to iter-
ative schemes that converge to the optimal exper-
iment design: see e.g. (Hjalmarsson et al., 1996).

The first application of this optimal experiment
design concept to control-oriented identification
was in (Gevers and Ljung, 1986), where an appli-
cation to Minimum Variance control was treated.
The results showed that the optimal experiment
consists of performing closed-loop identification
with the unknown optimal Minimum Variance
controller in the loop. These results were later
extended to other control performance criteria
in (Hjalmarsson et al., 1996; Forssell and Ljung,
2000).

5. ITERATIVE DESIGN FOR THE NOMINAL
MODEL

In this section we discuss the control-oriented
identification design of the nominal model, and
we show why the pursuit of a control-oriented ob-
jective leads to iterative model and controller up-
dates. This observation was made independently
in the early nineties by several research teams,
who were using different combinations of identi-
fication method and control design criterion. To
understand the need for iterative design, consider
the closed loop systems of Figures 3 and 4, and
assume for simplicity that there is no noise (vt = 0
and v̂t = 0), i.e. the control objective is a tracking
performance objective.

3 X denotes the set of all admissible experimental condi-
tions that have an effect on the quality of the model esti-

mates (ĜN , ĤN ), such as use of open-loop or closed-loop
data, choice of input spectrum distribution, of regulator in
the case of closed-loop identification, etc. By ‘admissible’

experimental conditions, we refer to conditions that obey
possible constraints on signal powers or signal energies.

The controller is designed on the basis of the
model Ĝ and then applied to the system G0. The
achieved performance will therefore be close to the
desired performance if the two closed loop transfer
functions, or a weighted version of these, are close
to one another. Thus, we want the following error
to be small 4 :

G0C

1 + G0C
− ĜC

1 + ĜC
= (G0 − Ĝ)CS0Ŝ (13)

where S0 = 1
1+G0C and Ŝ = 1

1+ĜC
. Now, closed

loop PE identification with a given model struc-
ture M = {G(z, θ) | θ ∈ Dθ}, and with a con-
troller Cid in the loop, will asymptotically deliver
a model G(z, θ∗), where θ∗ = arg minθ∈Dθ

V (θ),
with V (θ) given by

V (θ) =

π∫
π

|G0 − Ĝ(θ)|2|CidS0|2|D|2Φrdω.(14)

Here D(z) is the data filter that can be freely
chosen by the user. Observe that, if Cid =
C, and if the data filter is chosen such that
|D(ejω)|2Φr(ω) = |Ŝ(ejω)|2, then the model
G(z, θ∗) obtained asymptotically by such closed
loop PE identification will make the error (13)
small in an H2 sense. By such design, the identifi-
cation criterion would be matched to the control
performance criterion. However, there are two dif-
ficulties with such design: (i) the controller C in
the design loop of Figure 3 is a function of the
identified model, C = C(Ĝ), and it is therefore
impossible to choose Cid = C(Ĝ) at the identifica-
tion design stage; (ii) the sensitivity function Ŝ is
also a function of the estimated model, Ŝ = Ŝ(Ĝ).
These observations have led to the concept of iter-
ative design, where successive steps of closed loop
identification and model-based controller design
are performed. Thus, at iteration k, where a model
Ĝk has been obtained, select Cid,k = C(Ĝk), and
|Dk|2Φr = |Ŝk|2, where Ŝk = 1

1+ĜkC(Ĝk)
.

The research work of the early nineties on the def-
inition and computation of control-oriented nom-
inal models led to several important conclusions,
that can be summarized as follows.

• The identification criterion for the nominal
model should aim at minimizing the distance
between the achieved and the designed loop,
where this distance is measured in a norm
determined by the control performance crite-
rion. An application of this principle to LQG
control can be found in (Zang et al., 1995), to
H∞ control in (Schrama and Bosgra, 1993)
and to GPC in (Shook et al., 1992), the latter
result being based on dual control ideas.

4 For simplicity of notation, we omit all ω-dependent
arguments whenever there is no risk of confusion.



• The identification must be performed in
closed loop, with a specific data filter.

• The data filter is model-dependent (i.e. θ-
dependent). Thus, one has to resort to itera-
tive model/controller updates for the practi-
cal implementation of this design.

In summary, in identification for control, the con-
trol performance objective shapes the bias error
distribution of the nominal model. This means
that the nominal model has a bias error that is
small in the frequency areas where it needs to be
small for the design of a better controller, typically
around the present cross-over frequency.

Iterative identification and control schemes flour-
ished in the nineties, with various combinations
of control criteria and identification criteria. The
reader is referred to (Gevers, 1993; Bitmead, 1993;
Van den Hof and Schrama, 1995) for details and
for a survey on such iterative schemes. Unfortu-
nately, it was found (Hjalmarsson et al., 1995)
that these iterative schemes do not generically
converge to the achievable minimum (within the
model/controller set) of the control performance
cost.

Despite this, the concept of iterative identification
and control design was rapidly adopted in process
control applications: see e.g. (Partanen and Bit-
mead, 1995; Schrama and Bosgra, 1993; de Calla-
fon et al., 1993; Holmberg et al., 2000; Cooley
and Lee, 2001). One reason is that it is typical
in such applications that large numbers of closed
loop data are flowing into the control computer,
and it then makes sense to use these data to
replace the existing controller by one that achieves
better performance. The practical impact of iter-
ative model and controller redesign has been as-
sessed in (Landau, 1999), where some interesting
observations are made on the distinction between
this batch-like mode of operation and the more
classical methods of adaptive control.

6. MODEL UNCERTAINTY SETS AND THE
ROBUST CONTROL PARADIGM

We have shown how control-oriented nominal
models are obtained by minimization of an identi-
fication criterion that is determined by the overall
control performance criterion. In establishing this
result, one has assumed that the controller is com-
puted from the estimated model Ĝ using the cer-
tainty equivalence paradigm. At no point has the
model uncertainty due to the noise been taken into
account. Conversely, the control design step that
has led to the iterative design schemes developed
above is not based on robust control principles.

The paradigm of modern 5 robust control design
can be briefly summarized as follows.

One wants to design a controller for an unknown
system G0. Some prior knowledge about G0 allows
one to assume that G0 belongs to some model
uncertainty set D. Most often, a nominal model
Ĝ of G0 is available, typically the centre of D.
Some performance objective is often given in the
form of a criterion J(G, C), to be minimized. If
the true system were perfectly known, the opti-
mal controller would then be defined as Copt =
arg min J(G0, C), where the minimization is per-
formed over some predefined set of admissible con-
trollers C. In the robust control paradigm, the true
system is unknown, but the information (Ĝ,D) is
available. One then seeks a robust controller C
with the following properties:

(1) C must stabilize all models in D;
(2) the worst performance achieved by C on any

model in D must be as high as possible.

The robust controller C is often selected as one
that stablizes all models in D and achieves the
best worst-case performance over D, i.e. C is
computed as

C = arg min
C∈C

sup
G∈D

J(G, C). (15)

The uncertainty model set D plays a central
role in this design strategy. In the robust con-
trol theory developed through the eighties and
nineties, this set is god-given in that it is based
on so-called “prior assumptions” about the model
and its uncertainty. Many different descriptions
of model uncertainty have been considered; most
often they are expressed as frequency domain sets,
containing both structured and unstructured com-
ponents: see e.g. (Zhou et al., 1995; Skogestad and
Postlethwaite, 1996; Morari and Zafiriou, 1989).
The following are representative examples of com-
monly used uncertainty sets; for simplicity, we
consider scalar transfer functions only.

Additive uncertainty set:

DA = {G∆(z) | G∆(z) = G(z) + ∆(z),

with |∆(ejω)| < W (ejω) ∀ω},
where G(z) is a “nominal model” and W (ejω) is
a frequency weighting function.

Youla-Kucera uncertainty set:

DY K = {G∆(z) | G∆(z) =
Nx + Dc∆
Dx −Nc∆

,

with |∆(ejω)| < W (ejω) ∀ω},

5 We refer to modern robust control design as the theory
developed in the eighties, that is based on model uncer-
tainty sets; in contrast, the classical robust design theory

relies on robustness margins expressed in Bode, Nyquist or
Nichols plots.



where Nx, Dx, Nc, Dc,∆ are stable, rational, pro-
per transfer functions, Ĝ = Nx

Dx
is a “nominal

model”, and C = Nc

Dc
is any stabilizing controller

of G0. This uncertainty set, dual of the Youla-
Kucera set of all stabilizing controllers of a given
system, was introduced for the description of
model sets in (Hansen et al., 1989).

The new approach, initiated around 1990, was to
consider the estimation of uncertainty sets from
data. Unfortunately, the available PE identifica-
tion theory had rather little to offer to the existing
robust control theory, for two reasons: (1) there
were no adequate expressions for the estimation of
the total error on an identified transfer function,
or some upper bound on this error; the main dif-
ficulty was the estimation of the bias error, which
could only be characterized by implicit integral
expressions; (2) the available uncertainty descrip-
tions were not given as frequency domain sets. As
a result, a wide range of new identification tech-
niques were developed. New model assumptions,
noise assumptions and identification criteria were
introduced whose main merit was to deliver com-
putable error bounds on the estimated models.
The survey paper (Ninness and Goodwin, 1995)
is probably still one of the best presentations of
these alternative methods. Some of these methods
have been shown to lead to very conservative
upper bounds on the uncertainty set. But clearly,
this work has led to important advances in the
characterization of bounds on transfer function
error estimates.

One uncertainty set that was available in PE
identification theory was the set (8) defined via
the ellipsoidal set (7) in parameter space. For open
loop identification, this set can be described as
follows.

Prediction Error uncertainty set:

DPE = {G(z, θ) | G(z, θ) =
N(z, θ)
D(z, θ)

with (θ − θ̂N )T R(θ − θ̂N ) < 1}
Here N and D are polynomials parametrized by
θ, and R is proportional to the inverse of the
estimated covariance matrix of θ̂N . The difficulty
with this PE uncertainty set is that it could be
computed easily only in the case where the system
is in the model set, and it did not connect with the
robust control theory and design tools that were
available in the early nineties. Thus, all through
the nineties, a lot of research was produced by the
identification community to

(1) extend the use of uncertainty sets in or-
der to also include the bias error; this was
achieved by either embedding the bias er-
ror in a stochastic framework (Goodwin et
al., 1992; Hakvoort and Van den Hof, 1997),
or by estimating the bias error through a

validation step that uses a full order model
(Ljung, 2000; Gevers et al., 2003).

(2) develop a robust control stability and perfor-
mance theory for PE uncertainty sets char-
acterized by ellipsoids in parameter space
(Bombois et al., 2001).

Many important advances have thus been made in
the characterization of bounds on transfer func-
tion error estimates, but this subject will un-
doubtedly remain an object of intense debate and
activity for years to come.

7. TOWARDS CONTROL-ORIENTED
UNCERTAINTY SETS?

In the second half of the nineties, one began
to seriously study the interplay between model
uncertainty sets and robust control objectives, in
order to address the question of building control-
oriented uncertainty sets. The motivation for this
is based on the following two observations.

• It follows from the properties that define a ro-
bust controller (see the previous section) that
satisfaction of these two properties hinges as
much on the choice of the controller C as it
does on the uncertainty set D.

• The shape of a data-based uncertainty set
depends very much on the experimental con-
ditions under which it is estimated.

Combining these two observations leads to the
idea of constructing control-oriented uncertainty
sets by proper choice of experimental conditions.

To illustrate the connection between experiment
conditions and model-based control properties,
we consider a very simple gedankenexample, pre-
sented in (Gevers et al., 1998), where we focus at-
tention only on robust stability. Consider a “true
system” G0 described by the following simple
ARX model:

(1−1.4z−1+0.45z−2)yt = z−1(1+0.25z−1)ut+et,

where e is a unit variance white noise. With a
constant gain feedback law ut = rt − Cyt, the
closed loop system is stable for C < Cmax = 2.2.
Consider now that we estimate the parameters of
this ARX model by PE identification, using the
exact structure. We can thus estimate an ellipsoid
in parameter space, to which the true parameters
belong with probability 95%, say. We can then
compute the proportional output feedback con-
troller with the highest gain, Ĉmax, that stabilizes
all models Ĝ whose parameters lie in that 95%
uncertainty set. We call this controller the “opti-
mal robust controller”. In order to show the effect
of the experimental setup of the identification on
the optimal robust controller, we have compared,
by Monte Carlo simulations, two experimental
conditions:



(1) open loop identification with a unit variance
white noise as input signal u;

(2) closed loop identification with a controller
ut = rt−yt in the loop during data collection,
and a white noise reference signal r with vari-
ance 18.38; this choice yields the same output
variance as in the open loop experiment.

Each of these two experiments was run 100 times,
each time with 1000 input-output data. For each
run, the 95% confidence ellipsoid was computed
in parameter space, and the gain Ĉi

max of the i-th
run was computed as the largest gain that would
stabilize all models in the corresponding model
set. On the basis of 100 runs, we then computed
the average Ĉmax and its variance for each of the
two experimental conditions. The following results
were obtained for open loop (O.L.), respectively
closed loop (C.L.), identification:

O.L. : Ĉmax = 1.36, σ2
Cmax = 0.12

C.L. : Ĉmax = 2.04, σ2
Cmax = 0.02

Remember that, for the true system G0, we have
Cmax = 2.2. This example clearly shows that
the experimental conditions used in the feedback
experiment are more control-oriented than those
in the open loop experiment, since they lead to a
much less conservative estimate of the limit gain
for the robust controller. This example serves to il-
lustrate the effect of the identification experiment
on the set of admissible controllers, via the model
uncertainty set. In a more realistic setup, the
interplay between the design of the identification
experiment, the corresponding model uncertainty
set, and the set of admissible controllers, is a lot
harder to understand and analyze.

In order to relate the identification design with
the properties of a robust controller, one has
resorted to splitting up the problem into its two
components:

• understanding the effect of experimental con-
ditions on model quality, or more precisely on
the properties of the uncertainty set;

• understanding the interplay between the un-
certainty set and the properties of the ensu-
ing robust controller.

While the first problem is reasonably easy and has
already yielded many results, the second problem
is much harder and there is, as of today, no
consensus on the best way to address it. We now
elaborate on these two subproblems.

In PE identification, there has been a continuing
activity aimed at characterizing the bias, vari-
ance, and total mean square error on the esti-
mation of parametric transfer functions, dating
back to the mid-eighties. The variance formulas
of (Ljung, 1985) were based on an assumption
of model order going to infinity; more accurate
approximations have recently been obtained for

the variance formulas of finite order transfer func-
tion estimates (Ninness and Hjalmarsson, 2003).
The bias formulas of (Wahlberg and Ljung, 1986)
have given way to explicit expressions based on
a stochastic embedding of the bias error, or on
its estimation based on validation with full order
models, as mentioned in the previous section.

All these formulas for the estimation of the bias,
the variance or the total mean square error of
identified transfer functions explicitly contain the
effect of the experimental conditions (e.g. number
of data, input spectrum, noise spectrum, feed-
back configuration, etc) on the error measure.
This yields the possibility of optimizing over some
relevant experimental design variable in order to
minimize a particular measure of this error. In the
1970’s, optimal input design for system identifica-
tion was an active area of research, with different
quality measures of the identified model being
used for this optimal design (Zarrop, 1979; Good-
win and Payne, 1977). Thus, given a clear view as
to what constitutes a control-oriented uncertainty
set, one could certainly extend these optimal ex-
periment design ideas to the construction of such
sets.

So, what constitutes a control-oriented uncer-
tainty set? There is no clear consensus yet on a
good definition. One possible view is to say that
a model uncertainty set D is “control-oriented”
if the corresponding set of admissible controllers,
C, is large. Such track has been pursued in e.g.
(Douma et al., 2003) where different uncertainty
structures are compared, and in (Gevers et al.,
2003) where the worst-case ν-gap has been pro-
posed as a control-oriented measure of size of D,
because it is related to the size of the correspond-
ing set C of stabilizing controllers. In (Hildebrand
and Gevers, 2003) the corresponding optimal in-
put design problem for the minimization of this
worst-case ν-gap measure has been solved.

However, one could also define a control-oriented
uncertainty set in a very different way as follows.
Consider an uncertainty set D with center Ĝ con-
taining the true G0, and a controller C = C(Ĝ,D)
with nominal stability margin b(Ĝ, C) and nomi-
nal performance J(Ĝ, C). Then D could be called
control oriented if C stabilizes all models in D,
if the worst case stability margin supG∈D b(G, C)
of C with all models in D is close to the nominal
margin b(Ĝ, C), and if the worst case performance
supG∈D J(G, C) is close to the nominal perfor-
mance J(Ĝ, C).

Thus, much work remains to be done on the
definition of control-oriented uncertainty sets, and
on the computation of the corresponding quality
measures. This is certainly one area where one
can expect a lot of research activity in the coming
years.



8. CONCLUSIONS

We have attempted to explain the major issues
related to the problem of identification for control,
to present the successive solutions that have been
brought to the overall problem, and to display the
major remaining open problems. Most certainly,
the major impact so far in terms of transfer of
technology to the industrial world has been the
iterative schemes of model and controller updates,
which have provided a methodological background
for iterative data-based controller performance
enhancement. As for the synergy of robust control
concepts and identification design concepts, we
believe that most challenges are still ahead of us.
The main reason is that a full understanding of the
interplay between identification design and robust
control analysis and synthesis cannot bypass the
role of the uncertainty set, and that the analysis
of this problem is difficult and involves techniques
from several different subdisciplines.
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