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Abstract: In the present article, recent developments on modeling, monitoring, 
optimization and control of particulate polymerization processes are reviewed. A 
unified population balance approach is described to follow the time evolution of 
molecular and morphological polymer properties in batch and continuous 
polymerization reactors. Recent advances on the online monitoring of “polymer 
quality” are discussed in the context of available hardware and software sensors. 
The problem of real-time optimization of polymerization processes under parametric 
uncertainty is also examined along with its online implementation. Finally, new 
issues related with the modeling, numerical solution and control of multidimensional 
PBEs are conferred.  Copyright © 2004 IFAC 
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1. INTRODUCTION 
 
Process modeling, optimization and control can have 
a significant impact on polymer plant operability and 
economics. Polymer manufacturers face increasing 
pressures for production cost reductions and more 
stringent quality requirements. However, product 
quality in polymer manufacturing is a much more 
complex issue than in more conventional simple 
chemical systems. Thus, a major objective of 
polymerization reactor modeling is to understand 
how the reaction mechanism, the physical transport 
phenomena (e.g., mass and heat transfer), mixing, 
reactor type and operating conditions affect the 
“polymer quality”. The last term includes all the 
polymer molecular properties (e.g., molecular weight 
distribution (MWD), copolymer composition 
distribution (CCD), sequence length distribution 
(SLD), long and short chain branching distributions 
(SCB, LCB), stereoregularity, etc.) as well as the 
morphological properties of the product (e.g., 
particle size distribution, (PSD), pore size 
distribution, bulk density, etc.). One of the most 
difficult issues in polymer reactor optimization and 
control is to determine the quantitative relationships 
between the product physical, thermal, mechanical, 

rheological, chemical properties and the 
molecular/morphological polymer properties. Table 
1 summarizes both types of quality control measures.  
 
Since the end-use properties of the produced 
polymers are directly linked with the molecular 
characteristics of the polymer chains, control of the 
polymer chain microstructure is of profound interest 
to the polymer manufacturing industry. This 
presupposes a thorough knowledge of the 
polymerization kinetics and the availability of 
advanced mathematical models to quantify the 
effects of process operating conditions on the 
molecular and morphological polymer properties. A 
great number of modeling studies on the prediction 
of MWD, CCD, PSD, etc. for linear and branched 
polymers have been published. Most of the models 
follow the general framework of population balances 
but having as internal coordinates the chain length, 
the chain composition, etc. of the polymer molecules 
or the particle volume. 
 
Synthetic polymers are produced via a multitude of 
reaction mechanisms (e.g., free-radical, catalytic, 
ionic, etc.) and processes (e.g., bulk, solution, 
suspension, etc.). In general, polymerization



Table 1. Some Measures of Polymer Product Quality 
 

MOLECULAR AND MORPHOLOGICAL 
PROPERTIES END-USE PROPERTIES 

••  

••  
••  
••  
••  
••  
••  

••  

••  
••  

••  

Average Molecular Weights and Molecular 
Weight Distribution (MWD) 
Copolymer Composition Distribution (CCD) 
Sequence Length Distribution (SLD) 
Long-Chain Branching Distribution (LCBD) 
Stereoregularity (Tacticity) 
Particle Size Distribution (PSD) 
Particle Porosity and Surface Area, etc. 

Physical and thermal properties (e.g., density, 
clarity, melting point, temperature stability, 
swellability, plasticizer uptake, etc.) 
Chemical (e.g., corrosion resistance, etc.) 
Mechanical properties (e.g., strength, toughness, 
stress crack resistance, abrasion resistance, 
impact resistance, etc.) 
Rheological properties (e.g., flow properties, 
shear viscosity and elasticity, melt index, 
extensional viscosity, extrudate swell, etc.) 

 
processes can be broadly classified into 
homogeneous and heterogeneous ones. The first 
class comprises polymerizations which are carried 
our in a single phase. The latter involves the 
presence of several phases (i.e., solid, liquid and 
gas). In heterogeneous polymerization, the final 
product is obtained in the form of a distribution of 
polymer particles in the sub-micron or micron size 
range. Table 2 presents the main characteristics of 
typical particulate polymerization processes 
employed for the production of some well-known 
commodity polymers (Kiparissides, 1996). 
 
The analysis of particulate polymerization processes 
is a rather complex problem due to the highly 
coupled kinetics, thermodynamics, heat and mass 
transfer phenomena, taking place in a heterogeneous 
process. Furthermore, the physical properties (e.g., 
viscosity, density, transport coefficients, interfacial 
tension, etc.) of the various phases typically vary by 
several orders of magnitude in the course of 
polymerization. Thus, the framework of population 
balances is ideally suited to the description of the 
complex dynamics of a wide range of particulate 
polymerization processes. 
 
Efficient polymer reactor process control requires 
correct information on the state of the polymerization 
process. Therefore, the availability of on-line 
measurements is an essential requirement for the 
implementation of high-level process and polymer 
quality optimization schemes. On-line monitoring 
devices have to be able to measure continuously (or 
at least semi-continuously) and often condition the 

sampled material (and sometimes even chemically 
process it); they must have a satisfactory analysis 
and response time behaviour; and, finally, they have 
to supply correct results over long periods of time in 
environments that are often physically and 
chemically aggressive. In a review article 
(Kammona, et al., 1999), a comprehensive survey on 
recent advances on hardware and software sensors 
for on-line monitoring of polymer quality was 
presented.  
 
The operating objectives in batch and continuous 
polymerization processes must satisfy complex 
molecular and morphological property requirements 
for the final product and simultaneously achieve the 
greatest economic potential for the plant. Basically, 
two types of optimization problems are encountered 
in polymerization processes. The first deals with the 
selection of the best (optimal) time invariant controls 
so that, in the absence of process disturbances, the 
final product attains some desired molecular and 
morphological properties. The second, the time 
optimal control problem, deals with the calculation 
of the time-optimal control trajectories to ensure the 
satisfaction of the “polymer quality” requirements 
and the operational process constraints.  
These optimal control policies can be calculated 
offline and implemented as set-point changes of the 
regulatory process controllers. However, the 
operation of a polymerization process is heavily 
affected by disturbances (e.g., process-related 
sources or inherent model parameter uncertainties) 
that cause the process to drift away from the offline

 
Table 2. Typical Particulate Polymerization Processes 
 

 
Kinetic Mechanisms: FR – Free Radical, I- Ionic, ZN- Ziegler-Natta 
Polymers: PS – Polystyrene, PMMA – Poly(methyl methacrylate), PVA – Poly(vinyl acetate), PVC – 
Poly(vinyl cloride), HDPE – High density polyethylene, LLDPE – Linear low density polyethylene, PTFE – 
Poly(tetrafluorethylene), PP – Polypropylene, EP – Ethylene- Propylene copolymers  

Process: Suspension Emulsion Precipitation Liquid 
Slurry 

Gas-Solid  
Polymerization 

Particle Size (µm) 50-500 0.1-1.0 100-104 10-104 10-104 
Reactor Type Batch Batch, 

CSTR 
Batch, 
CSTR 

Batch, 
Loop 

Fluid Bed, 
Stirred Bed 

Kinetic Mechanism FR, I FR, I All ZN ZN 
Polymers PMMA 

PS, PVC 
PS, PMMA, 
PVA, PTFE 

PVC, 
PTFE 

HDPE, 
PP, EP 

HDPE, PP, 
LLDPE, EP 



 
calculated optimal trajectories. To alleviate the above 
problems, an online estimation-optimization 
approach needs to be implemented (Kiparissides, et 
al., 2002, Chatzidoukas, et al., 2003). The updating 
of the time optimal control policies is carried out in 
two steps: in the first step, a state/parameter 
estimator utilizes the available process measurements 
to obtain reliable estimates of the state variables and 
the time-varying model parameters. In the 
optimization step, the time optimal trajectories are 
periodically reevaluated based on the most recent 
information about the process. The calculation of the 
time optimal control policy is obtained via dynamic 
programming techniques (including sequential and 
simultaneous discretization methods). 
 
The present paper deals with the modeling and 
optimization of particulate polymerization processes 
using a population balance approach. In particular, 
the paper addresses the following topics. In section 
two, a unified population balance approach is 
presented to follow the molecular weight (e.g., 
MWD, LCB, etc.) and morphological (e.g., PSD) 
changes in a particulate polymerization process. The 
solution of the general PBE is reviewed in relation to 
available numerical methods (e.g., M-I and M-II 
approaches, finite differences, collocation, finite 
elements, wavelets, etc.). Subsequently, the general 
population balance approach is applied to typical 
polymerization processes to predict the dynamic 
evolution of MWD, PSD, etc. in batch and 
continuous systems. In section three, the calculation 
of the time optimal control policies under structural 
and parametric uncertainty is reviewed along with 
their on-line implementation to polymerization 
processes. Finally, in section four, future directions 
related to the modeling, monitoring, optimization 
and control of particulate polymerization reactors are 
conferred.     
  
 

2. THE POPULATION BALANCE EQUATION 
 
The development of the general population balance 
equation (PBE) follows the works of Hulburt and 
Katz (1964) and Ramkrishna (1985). Let us consider 
a distribution of countable entities (e.g., polymer 
chains, monomer droplets, polymer particles, etc.) 

 where and represent 
ordinary spatial coordinates, is the time, and  
represents the ith property of the entity. For example, 

 could denote the degree of polymerization, or the 
comonomer composition or the volume of a polymer 
particle. Actually, the term  
represents the fraction of entities in the geometric 
volume element 
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In the above formulation, there are (3 + k) 
independent variables plus time involved that can be 
viewed as a (3 + k) dimensional space. Thus, for an 

ordinary small volume element in this space, Ω , the 
general population balance becomes (Himmelblau 
and Bischoff, 1968): 
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B  and  represent the corresponding rate of “birth” 
and “death” of entities per unit time, unit geometric 
volume and unit property change. The left-hand side 
of eq (2) can be modified by using the general form 
of Leibnitz’s rule for differentiating definite 
integrals. Thus, following the general developments 
of Himmelblau and Bischoff, the differential form of 
eq (2) can be obtained:  
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where ux = dx/dt, uy = dy/dt  and uz = dz/dt denote the 
usual geometric velocities in the  spatial 
coordinates, respectively. 

z and y ,x
dtidpu i =

i

 is the rate of 
change of the property p .  Very often, the average 
values of the properties in the entire reactor volume, 

, are only required. Accordingly, one can define 
the following geometrically averaged distribution 
function, 

V

n . 

 ∫=
V

ndV
V
1n   (5) 

By integrating eq (4) over the geometric volume, V , 
and using the Gauss’ divergence theorem, the 
following macroscopic population balance equation 
is obtained: 
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where  and q  are the inlet and outlet 
volumetric flow rates, respectively. 

inq out

 
 
2.1 Calculation of Molecular Weight Distribution 
 
Let us assume that the kinetic mechanism of the 
chemically initiated free-radical polymerization of a 
vinyl monomer comprises the following elementary 
reactions:  
Initiator decomposition: 

•→ R2I dk  
Chain initiation: 

1
k RMR I→+•  

Propagation: 

1x
k

x RMR p
+→+  



Chain transfer to monomer: 

1x
k

x RPMR fm + →+  

Chain transfer to solvent (CTA): 

1x
k

x RPSR fs +→+  

Termination by disproportionation: 

yx
k

yx PPRR td +→+  

Termination by combination: 

yx
k

yx PRR tc
+→+  

Chain transfer to polymer: 

xy
k

yx PRPR fp +→+  

Reaction with terminal double bond: 

yx
k

yx RPR db
+

=  →+  
 
The subscripts x and y denote the number of 
monomer units in a polymer chain. The above kinetic 
mechanism includes propagation and termination 
reactions by both disproportionation and 
combination, molecular weight control reactions via 
transfer to monomer and to chain transfer agent, 
long-chain branching formation by transfer to 
polymer and reaction with terminal double bonds. 
 
Based on the above kinetic mechanism, we can 
derive the following population balance equations 
for the “live”, R , and “dead”, , polymer 
chains of length . Assuming that the degree of 
polymerization, , can only take discrete values 

, the inlet and outlet terms in eq (6) are 
equal to zero (i.e., batch reactor) and the rate of 
change of property is equal to zero, one can easily 
derive the following macroscopic population 
balances for the entities 
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where  is the Kronecker’s delta function (i.e.,  

 if  and 
1,xδ

1 x1,x =δ 1= 01,x =δ  if ). 1x ≠
Note that the right-hand side terms in eqs (7-8) 
represent the net production rates of “live” and 

“dead” polymer chains. The actual number of rate 
equations for the “live” and “dead” polymer chains 
will depend on the total degree of polymerization, 
Nf, that may be of the order of hundreds or/and 
thousands monomer units. Consequently, the 
computational effort associated with the solution of 
the complete set of differential equations becomes 
prohibitively high for most cases of interest and 
makes the on-line application of such a model 
unrealistic. To deal with the above high-
dimensionality problem, several methods have been 
proposed to reduce the infinite system of differential 
equations into a low-order system of DAEs. These 
can be broadly classified into kinetic lumping 
methods, continuous variable approximations, z-
transforms, method of moments, discrete weighted 
Galerking, orthogonal collocation on finite elements 
and so forth.  
 
In the kinetic lumping methods (Crowley and Choi, 
1997a,b, 1998), the polymer chains population is 
divided into a specified number of “chain lump” 
domains and the resulting population balance 
equations are solved numerically. A uniform 
concentration is assumed for all polymer chains that 
are members of a “chain lump” domain. However, 
the calculation of MWD for branched polymers (e.g., 
systems involving transfer to polymer and terminal 
double bond reactors) suffers from significant 
inaccuracies. Continuous variable approximation and 
z-transform methods, besides their elegant 
mathematical formulation, lack the ability to handle 
complex polymerization systems efficiently. 
Polynomial expansion methods of the MWD require 
the calculation of high-order moments and may lead 
to slow convergence (Tobita and Ito, 1993). Pladis 
and Kiparissides (1998) proposed a polymer chain 
fractionation approach and used the method of 
moments to reconstruct the joint molecular weight – 
long-chain branching distribution for branched 
polymers. The total population of the polymer chains 
was divided into a number of classes with respect to 
the number of long-chain branches. However, in 
addition to the well-known problem of closure of the 
“higher-order” moments, the reconstruction of the 
overall MWD at high monomer conversions and high 
LCB content requires a very large number of classes 
to reduce the approximation errors for high 
molecular weight fractions. Monte-Carlo simulations 
(Tobita, 1993, 1995) are straightforward techniques 
that can generally handle complex kinetic 
mechanisms but usually require significant 
computational effort for the determination of the 
MWD. Discrete weighted Galerkin formulation 
(Deuflhard and Wulkow, 1989, Wulkow, 1992), 
even though are computationally demanding, provide 
a powerful tool for the prediction of the MWD in 
complex polymerization systems (Iedema et al., 
2000). However, the approximation of the infinite 
summation terms (e.g., resulting from termination by 
combination reactions) requires special treatment.   
 
Method of Moments. The method of moments is 
based on the statistical representation of the average 
molecular properties of the polymer (e.g., number 
average, Mn, and weight average, Mw, molecular 
weights) in terms of the leading moments of the 



number chain length distributions (NCLDs) of “live” 
and “dead” polymer chains, defined by the following 
equations: 
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A set of residual equations are then derived by 
substituting eqs (12-13) into eqs (7-8). The main 
requirement of the OCFE formulation forces the 
residual balances to vanish at the selected collocation 
points, si,j. The number of the finite element controls 
the density of the collocation points in the overall 
chain length domain. In general, a high density of 
collocation points is required in chain length regions 
where steep changes in the concentrations of “live” 
and “dead” polymer chains are foreseen. Extensive 
simulations showed that low-order interpolation 
polynomials predict the overall MWD more 
accurately, compared to high-order polynomials for 
the same total number of collocation points. This was 
attributed to the oscillatory behavior of the high-
order Langrange polynomials. 

where [ ]•R ,  and  denote the concentrations 
of “live” radicals, monomer and chain transfer agent, 
respectively. Usually, one needs to know the leading 
moments (i.e., λ

[ ]M [ ]S

0, λ1, λ2 and µ0, µ1, µ2 of the “live” 
and “dead” polymer distributions) to calculate the 
values of the number-average, Mn, and weight-
average, Mw, molecular weights.  
 
Orthogonal Collocation on Finite Elements. A key 
characteristic of the OCFE method is the treatment 
of the discrete polymer chain length domain as a 
continuous one. Hence, the concentrations of “live” 
and “dead” polymer chains are handled as 
continuous variables. Accordingly, the chain length 
domain is divided into a number of finite elements, 
NE, with element boundaries at the points: ζ0=1, ζ1, 
ζ2,…, ζNE-1, ζNE = Nf, where Nf is the final degree of 
polymerization. For each element, a number of n 
interior collocation points, [s1, s2,…, sn] are 
specified. The concentrations of the “live” and 
“dead” polymer chains are then approximated by 
continuous low-order polynomial functions within 
each finite element. In the present study, Lagrange 
interpolation polynomials were used to approximate 
the concentrations of the “live” and “dead” polymer 
chains: 
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The tilde denotes approximation variables. The 
functions,  and  are Lagrange 

interpolation polynomials of order n+1 and n, 
respectively, given by the expressions: 
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The Lagrange polynomials  and ( )sW R
j,i ( )sW P

j,i  are 
equal to zero at the collocation points si,j, for k≠i and 
equal to unity for k=i. To take into account the 
concentration of “live” polymer chains at chain 
length x=1, the left boundary point of the first 
element was included as an interpolation point. 
 

 
Fixed Pivot Method. The inherent limitations of the 
discretized PBE approach, resulting from the 
discretization of the chain length domain, can be 
avoided in the more general formulations (i.e., fixed 
and moving pivot techniques) of Kumar and 
Ramkrishna (1996a,b) and (1997). The last methods 
guarantee the correct calculation of any two 
moments of the distribution and are applicable to any 
type of discretization of the chain length domain. 
The fixed pivot technique is a very efficient method 
for the calculation of the number chain length 
distribution (NCLD). It assumes that the overall 
polymer chain population can be assigned to selected 
discrete chain lengths. Specific reaction steps (e.g., 
termination, propagation, etc.) leading to the 
formation of polymer chains other than the selected 
ones, are incorporated in the set of discrete equations 
in such a way that specified properties of the NCLD 
(i.e., total number, mass of polymer chains, etc., 
corresponding to any two moments of the NCLD) 
are exactly preserved. 
 
Simulation results. The outlined methods (Moments, 
OCFE and FPM) were applied to the free-radical 
batch polymerization of methyl-methacrylate 
(MMA). The values of the kinetic rate constants as 
well as the gel and glass effect models were taken 
from the original paper of Chiu, et al., (1983). The 
polymerization was carried out isothermally at 60oC. 
For the fixed pivot method, the chain length domain  
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Fig. 1. Time evolution of the MWD calculated by the 
FP method. 
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Fig. 2. Comparison of MWDs calculated by the FP 
and discrete Galerkin methods. 

was partitioned into 70 finite elements leading to a 
number of 2×NE+2 = 142 residual differential 
equations.  
 
Figure 1 depicts the time evolution of the molecular 
weight distribution of PMMA as calculated by the 
fixed pivot method. As can be seen, as the monomer 
conversion increases the MWD becomes broader. At 
very high monomer conversions (e.g., > 90%), a 
bimodal distribution is obtained. In Figure 2, a 
comparison of the MWDs calculated by the FP 
method and the discrete Galerkin h-p method 
(PREDICI simulation package) is shown at 90% 
monomer conversion. It is evident that the calculated 
distributions are in excellent agreement, verifying the 
ability of the FP method to accurately predict the 
MWD. 

 
 

2.2 Calculation of Particle Size Distribution 
 

To follow the dynamic evolution of the PSD in a 
particulate process, a population balance approach is 
commonly employed. The distribution of the 
particulates (e.g., solid particles, liquid droplets, etc.) 
is considered to be continuous over the volume 
variable and is commonly described by a number 
density function. Thus, the term n(V,t)dV represents 
the number of particles per unit volume in the 
differential volume size range (V to V+dV). For a 
dynamic particulate system undergoing simultaneous 
particle nucleation, growth and aggregation, the rate 
of change of the number density function with respect 
to time and volume is given by the following 

nonlinear integro-differential population balance 
equation: 
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where qin  and  qout are the inlet and outlet volumetric 
flow rates, respectively. nin(V,t) is the inflow number 
density function,  the total volume of the reactor, 
G

V
V is a particle volume growth rate function and 

β(V,U) is a particle aggregation rate kernel for 
particles of volumes V and U. Vmin and Vmax denote 
the corresponding minimum and maximum size of 
particles present in the system. Finally, Sv(V,t) is the 
particle nucleation rate. In general, eq 16 will satisfy 
the following initial condition:  
 n(V,0) = n0(V)  ,   at   t = 0  (17) 
The numerical solution of the dynamic PBE for a 
particulate system, especially for a reactive one, is a 
notably difficult problem due to both numerical 
complexities and model uncertainties regarding the 
particle nucleation, growth, aggregation and 
breakage mechanisms that are often poorly 
understood. Usually, the numerical solution of the 
PBE requires the discretization of the particle 
volume domain into a number of discrete elements 
that results in a system of stiff, nonlinear differential 
or algebraic/differential equations that is solved 
numerically. In the open literature, several numerical 
methods have been developed for solving the steady-
state or dynamic PBE. These include the full discrete 
method (Hidy, 1965), the method of classes 
(Marchal, et al., 1988; Chatzi and Kiparissides, 
1992), the discretized PBE (Batterham, et al., 1981; 
Hounslow, et al., 1988), the fixed and moving pivot 
discretized PBE methods (Kumar and Ramkrishna, 
1996a,b), the high order discretized PBE methods 
(Landgrebe and Pratsinis, 1990; Bleck, 1970; 
Gelbard and Seinfeld, 1980), the orthogonal 
collocation on finite elements (Gelbard and Seinfeld, 
1979), the Galerkin method (Nicmanis and 
Hounslow, 1998), and the wavelet-Galerkin method 
(Chen, et al.,1996). In the reviews of Ramkrishna 
(1985), Dafniotis (1996), and Kumar and 
Ramkrishna (1996a,b), the various numerical 
methods available for solving the PBE are described 
in detail. Moreover, in three publications by 
Kostoglou and Karabelas (1994, 1995), and 
Nicmanis and Hounslow (1996), comparative studies 
on the different numerical methods are presented. 
Based on the conclusions of these studies, the 
discretized PBE method of Litster, et al., (1995) the 
pivot methods of Kumar and Ramkrishna (1996a,b), 
the Galerkin and the orthogonal collocation on finite 
element methods were found to be the most accurate 
and stable numerical techniques.  
 
In Table 3, selective publications on the numerical 
solution of the general PBE are reported. 
 



Table 3. Numerical Methods for the Solution of the PBE 

Methods Author Test Cases Comments 
Hiddy (1965)  Aggregation • Full discrete method. 
Batterham et al. (1981)  Aggregation • Geometric discretization of the form Vi+1=2Vi. 
Marchal et al. (1988)  Aggregation / Growth • Method of classes. 
Hounslow et al. (1988)  Aggregation / Growth / Nucleation • Fixed discretization of the form Vi+1=2Vi.  

≥

 
Common problems related to the numerical solution 
of the PBE include the inaccurate calculation of the 
PSD for highly aggregating processes, numerical 
instabilities for growth-dominated processes, 
increased stiffness of the system of DAEs for 
processes involving rapid particle nucleation, and 
domain errors for high-order aggregation kernels 
(Kumar and Ramkrishna, 1996a,b ; Dafniotis, 1996). 
In two recent publications (Alexopoulos, et al., 2004; 
Alexopoulos and Kiparissides, 2004), a 
comprehensive investigation on the solution of the 
dynamic population balance equation, in the 
presence of particle growth, aggregation and 
nucleation, is presented and the numerical difficulties 
and limitations of two very commonly employed 
methods (i.e., the orthogonal collocation on finite 
elements and the discretized PBE approach) are 
critically examined. 
 
The Discretized Population Balance Equation. In the 
discretized PBE approach, it is assumed that the 
number density function, n(V,t), remains constant in 
the discrete volume interval (Vi to Vi+1).  
 
Accordingly, a particle number distribution, Ni(t), 
corresponding to the “i” element is defined:  

 (∫
+

−== +

1i

i

V

V
i1iii VV)t(ndV)t,V(n)t(N )    (18) 

where in (t) is the average value of n(V,t) in the 
element “i”.  
 
Following the original developments of Litster, et 
al., (1995) the total volume domain (Vmin to Vmax) is 
divided into a number of elements using the 
fractional geometric discretization rule, Vi+1 = 21/q

 Vi , 

where q is an integer, positive number. As the value 
of q increases the total number of volume elements 
increases (i.e., a finer grid is generated) and so does 
the computational effort for the calculation of the 
PSD. Accordingly, the discretized PBE for a batch 
particulate system undergoing simultaneous growth, 
aggregation and nucleation becomes:  
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where S 2/)1q(q)q( += . “ne” is the total number of 
elements, βi,j = β(Vi,Vj) is the equivalent discrete 
kernel for particle aggregation and r is equal to the 
ratio Di+1/Di.  

 
Finite Element Techniques. The continuous form of 
the PBE (eq 16) can be solved using the finite 
element method (FEM). Recently, Nicmanis and 
Hounslow, (1998), employed a collocation and 
Galerkin FEM to determine the steady state PSD for a 
continuous particulate process undergoing combined 
particle growth and aggregation.  
 
In the OCFE, the particle volume domain is first 
divided into “ne” elements based on an appropriately 
selected volume discretization rule. Then, “nc” 

Litster et al. (1995)  Aggregation /  Growth (Batch) 
 Aggregation / Growth / Nucleation (CSTR) 

• Discretization based on the rule Vi+1=2Vi.1/q, q 2  

Kumar and Ramkrishna (1996a,b; 1997)  Aggregation / Growth / Nucleation • Arbitrary discretization. 

M-I 

Vanni (2000)  Aggregation /Breakage • Comparison of DPBE methods based on a very coarse 
discretization 

Bleck  (1970)  Aggregation • Use of two different types of discretization. (i.e . Vi+1=21/2 Vi and 
Vi+1=21/3 Vi). 

Gelbard et al (1980)  Aggregation • Generalization for the multi-component PBE case (Gelbard and 
Seinfeld, 1980). 

Satry and Gaschignard (1981)  Aggregation • Different set of equations for every moment of the distribution. 
M-II 

Landgrebe and Pratsinis (1990)  Aggregation • Comparison of the numerical results only with respect to the 
moments of the distribution. 

Sigh and Ramkrishna (1975)  Aggregation • Employment of problem-specific polynomials as basis functions. 

WR 
Sampson and Ramkrishna (1985)  Aggregation 

• Employment of root-shifted problem-specific polynomials as 
basis functions.Improved accuracy based on the correct choice of 
the collocation points 

Gelbard and Seinfeld  (1978)  Aggregation / Growth / Nucleation • Comparison of two collocation methods (i.e., spline collocation 
and orthogonal collocation on finite elements). 

Pillinis (1990)  Aggregation / Growth • Galerkin on finite elements method. Simulations of multi-
component particulate systems. 

Erasmus et al. (1994)  Aggregation / Growth • Galerkin on finite elements method with b-splines. 

Nicmanis and Hounslow (1996 and 1998)  Aggregation / Growth /Nucleation / 
 Breakage (CSTR) 

• Steady state formulation of the PBE. Collocation and Galerkin 
techniques with quadratic basis functions. 

Mahoney and Ramkrishna (2002)  Aggregation / Growth / Nucleation 
• Galerkin on finite elements with linear basis functions. Special 

treatment of moving discontinuities that arise in problems with 
particle growth. 

Rigopoulos and Jones (2003)  Aggregation / Growth /Nucleation / 
 Breakage (Batch, CSTR) • Galerkin on finite elements with linear basis functions. 

FE 

Sandu and Borden (2003)  Aggregation / Growth 
• General framework for the solution of PBE with finite element 

techniques. Several formulations are considered with respect to 
the choice of basis functions, co-ordinates etc. 

 
 



internal collocation points are specified within each 
element. Accordingly, the unknown number density 
function is approximated at the internal and 
boundary collocation points of each element, “e”, in 
terms of Lagrange basis functions, φj,:  

  (20) )V()t(n)t,V(n j

1nc

0j

e
j ϕ= ∑

+

=

where  denotes the value of n(V, t) at the “j” 
internal or boundary collocation point. The above 
approximation, results in a total number of 
(ne(nc+1)+1) unknown values of the number density 
function, .  

e
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Following the general developments of Finlayson 
(1980), eq 16, for a batch process, can be recast into a 
system of (ne•nc) residual equations, corresponding 
to all the internal points of the “ne” volume elements.  
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According to the standard finite element formulation, 
the global volume domain of each element “e” is 
linearly transformed into a local domain [-1,1]. The 
index “g” denotes the element containing the ( ) 

discrete point. fJ  is the Jacobean of the volume 
transformation and wk

G are the weights of the Gauss-
Legendre quadrature integration rule. More details 
regarding the derivation of eq 21 can be found in 
Alexopoulos, et al., (2004).  
 
At the boundary points between the various 
elements, the number density function and its first 
derivative are forced to be continuous. Thus, the 
following (ne-1) continuity conditions between all 
the adjacent pair of elements (e and e+1) are written: 
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Since the total number of unknown nodal values of 
nj

e (i.e., ne (nc + 1) + 1 ), is more than the total 
number of residual equations and continuity 
conditions (i.e., ne (nc + 1) – 1 ), two additional 
equations are needed to produce a closed system of 
DAEs. These equations correspond to the values of 
nj

e at the minimum Vmin (e = 1, j = 0) and maximum 
Vmax (e = ne, j = nc+1) value of the volume 
integration domain. At V = Vmax, a residual equation 
similar to eq 21 can be written. On the other hand, at 
V = Vmin the zero boundary condition, n(Vmin,t) = 0, 
can be employed.  
 
 

2.3 Application of PBE to Particulate 
Polymerizations 

 
The Suspension Polymerization Process. In 
suspension polymerization, the monomer is initially 
dispersed in the continuous aqueous phase by the 
combined action of surface active agents (e.g., 
inorganic or/and water-soluble polymers) and 
agitation. All the reactants (i.e., monomer, 
initiator(s), etc.) reside in the organic or “oil” phase. 
The polymerization occurs in the monomer droplets 
that are progressively transformed into sticky, 
viscous monomer-polymer particles and finally into 
rigid, spherical polymer particles of size 50-500 µm. 
The polymer solids content in the fully converted 
suspension is typically 30-50% w/w. Large quantities 
of polymers, including poly(vinyl chloride) and 
polystyrene, are produced by the suspension 
polymerization process.   
 
One of the most important issues in the operation of 
a suspension polymerization reactor is the control of 
the final particle size distribution (Yuan, et al., 
1991). The initial monomer droplet size distribution 
as well as the final polymer particle size distribution 
in general depend on the type and concentration of 
the surface active agents, the quality of agitation and 
the physical properties (e.g., density, viscosity and 
interfacial tension) of the continuous and dispersed 
phases. The transient droplet / particle size 
distribution is controlled by two dynamic processes, 
namely, the drop breakage and drop coalescence 
rates. The former mainly occurs in regions of high 
shear stresses (i.e., near the agitator blades). The 
latter is either increased or decreased with the 
intensity of the turbulent flow field and can be 
assumed to be negligible for dilute dispersions at 
sufficiently high concentrations of surface active 
agents (Chatzi, et al., 1989). 
 
The dynamic behavior of a liquid-liquid dispersion in 
a stirred vessel and, therefore, the drop-size 
distribution are determined by the droplet breakage 
and coalescence rates. In general, the drop-size 
distribution in a batch system can be predicted by the 
solution of the following population balance 
equation: 

( )

∫

∫

∫

β−−

−−−β+

+=
∂

∂

max

min

min

max

V

V

2V

V

V

V

dU)t,U(n)U,V()t,V(n)V(g)t,V(n

)23(dU)t,U(n)t,UV(n)U,UV(

dU)t,U(n)U(g)U(u)V,U(k
t

)t,V(n

The left-hand side term in eq 23 represents the rate 
of change of the number density function, n(V,t). 
The first term on the right-hand side of eq 23 
represents the generation of droplets in the size range 
(V , V+dV) due to drop breakage. k(U,V) is a 
daughter drop probability function, accounting for 
the probability that a drop of volume V to be formed 
by the  breakage of a drop of volume U. u(U) is the 
number of droplets formed by the breakage of a drop 
of volume U and g(U) is the breakage rate of a 
droplet of volume U. The second term represents the  
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Fig. 3. Dynamic evolution of the volume probability 
density function with respect to polymerization 
time for the VCM suspension polymerization 
(Polymerization temperature: 56.5 oC, impeller 
speed: 330 rpm, dispersed phase volume fraction: 
40%). 
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Fig. 4. Predicted and experimental PSDs for the 

VCM suspension polymerization  
 

generation of drops in the size range (V , V+dV) due 
to the coalescence of two smaller droplets. β(V, U) is 
the coalescence rate between two drops of volume V 
and U. Finally, the third and fourth terms represent 
the disappearance rates of drops of volume V due to 
breakage and coalescence, respectively.   
 
The predicting capabilities of the present model were 
demonstrated by a direct comparison of model 
predictions with experimental data on the 
drop/particle size distribution for a VCM suspension 
polymerization system. The experiments were 
carried out in a 30 lt batch reactor, using 40 % v/v 
VCM in water. The polymerization temperature was 
set equal to 56.5 oC while the agitation speed 
remained constant at 330 rpm. Detailed experimental 
measurements on polymerization rate, monomer 
conversion and PSD were provided by ATOFINA.  
 
Figure 3 illustrates the dynamic evolution of the 
calculated PSD at different monomer conversions. 
More specifically, the volume probability density 
function (defined as dv

3n/Vtot) is plotted with respect 
to the particle diameter. One can easily distinguish 
the three stages that the suspension polymerization 
undergoes (Maggioris, et al., 2000). During the 
initial low-viscosity period (e.g., up to 5% monomer 
conversion), drop breakage is the dominant 
mechanism and the distribution shifts to smaller 

sizes. Afterwards, during the sticky stage of the 
polymerization (e.g., 5-75 % monomer conversion), 
the drop breakage rate decreases while the drop 
coalescence becomes the dominant mechanism. In 
Figure 4, the predicted final PSD (continuous line) is 
compared with the experimental one (discrete line). 
As can be seen, the simulation results are in very 
good agreement with the experimental 
measurements. 
 
Emulsion Polymerization. In emulsion polymerization, 
an aqueous dispersion of monomer(s) is converted by 
free-radical polymerization into a stable dispersion of 
polymer particles of 0.1-1 µm in diameter. A typical 
emulsion recipe comprises the dispersing medium (e.g., 
water), monomer(s), a water soluble initiator and an 
emulsifying agent (e.g., sodium and potassium salts of 
saturated long-chain acids). The excess of surfactant 
forms micelles (ca. 5-10 nm in diameter). A very small 
part of the monomer can be found in solution, some is 
solubilized by the micelles but most stays in the 
monomer droplets (ca. l0µm in diameter). Usually, the 
concentrations of micelles and monomer droplets are 
1018 micelles/cm3 and 1010-1011 droplets/cm3, 
respectively. Polymerization occurs either in the interior 
of the micelles (micellar nucleation) or in the 
continuous phase (homogeneous nucleation) when the 
monomer is at least slightly soluble. Typical emulsion 
processes include copolymerization of styrene and 
butadiene (SBR rubber) and polymerization of 
chloroprene (neoprene rubber). Also vinyl acetate and 
several acrylic monomers are polymerized in emulsion 
in the manufacture of latex paints. 
 
The mathematical modeling of emulsion 
polymerization reactors has been the subject of a 
great number of publications (Saldivar and Ray, 
1997a,b; Richards, et al., 1989; Storti, et al., 1989; 
Napper and Gilbert, 1989; Dougherty, 1986). 
Nevertheless, the development of a comprehensive 
mathematical model, capable of predicting the 
molecular (e.g., molecular weight distribution, 
copolymer composition, etc.) and morphological 
(e.g., particle size distribution) properties of the latex 
is not a trivial task, for there is a number of physical 
and chemical phenomena, which cannot be 
experimentally assessed and, thus, be easily 
modelled. 
 
In a recent study by Kammona, et al., (2003), a 
detailed experimental and theoretical study on the 
Styrene / 2-Ethylhexyl Acrylate emulsion 
copolymerization was reported. Kinetic experiments 
were carried out in a laboratory batch reactor to 
assess the effect of key process variables (e.g., 
concentrations of initiator and nonionic surfactant, 
temperature and initial monomer molar ratio) on the 
polymerization rate, monomer conversion, 
copolymer composition and particle size distribution 
(PSD). To predict the evolution of molecular and 
morphological properties, a comprehensive 
mathematical model was developed in terms of a 
detailed emulsion copolymerization kinetic 
mechanism, the dynamic molar species balances in 
the aqueous and polymer phases and a population 
balance equation (PBE) describing the time 
evolution of PSD in the reactor. A generalized model  



 

0 100 200 300
0

20

40

60

80

100

 [S] = 0.0176 mol/L simulation
 [S] = 0.0176 mol/L experimental
 [S] = 0.0097 mol/L simulation
 [S] = 0.0097 mol/L experimental

 

 

%
 C

on
ve

rs
io

n

Time (min)

 
 
 

Fig. 5. Comparison of model predictions and 
experimental measurements on overall monomer 
conversion. Effect of surfactant concentration on 
the overall monomer conversion. 
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Fig. 6. Comparison of model predictions and 

experimental measurements on average particle 
size. Effect of surfactant concentration on the 
average particle size. 
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Fig. 7. Predicted and experimental PSDs ( f

10  = 
0.81, [APS]= 0.0095 mol/L and [NP-30] = 0.0097 
mol/L). 

 
(Lazaridis, et al., 1999) was employed for the 
calculation of the total interaction potential of 
sterically stabilized particles, in order to describe 
particle stability during the polymerization process. 
The predictive capabilities of the proposed model 
were thoroughly assessed by a direct comparison of 
theoretical predictions with experimental data on 
monomer conversion, average particle size and PSD. 
 
In Figures 5 and 6, model predictions are compared 
with experimental measurements on overall monomer 
conversion and average particle diameter, 
respectively, for an initial styrene mol fraction of f10 = 
0.81 at two different concentrations of the nonionic 
surfactant (NP-30) (e.g., 0.0097, 0.0176 mol/L). As 

can be seen, model predictions are in very good 
agreement with experimental measurements. As 
expected, an increase in emulsifier concentration 
results in an increase of the number of generated 
particles which leads to a decrease of the average 
particle size (see Figure 6) and to a respective 
increase of the polymerization rate (see Figure 5). In 
Figure 7, the predicted final PSD is compared with 
the experimentally measured one. As can be seen, 
model predictions are in very good agreement with 
the experimentally measured PSD. The small inserted 
graph shows the time evolution of the average 
diameter. 
 
 
3. REAL-TIME OPTIMIZATION AND CONTROL 

 
Process optimization and control can have a 
significant strategic impact on polymer plant 
operability and economics. The main goals in 
operating a polymer reactor (e.g., high yield, better 
product quality and safe operation) are very difficult, 
if not impossible, to achieve without efficient and 
reliable polymer characterization techniques. 
Although the weakest link in polymer reactor control 
is undoubtedly the on-line instrumentation, lack of 
understanding of the process dynamics, the highly 
sensitive and nonlinear behavior of polymer reactors 
and the lack of well structured control strategies all 
contribute to the impairment of competitiveness. 
Thus, the main problems to be addressed in the 
development of an optimization/control policy for a 
polymer process are: 
••  

••

Better understanding of process dynamics (via 
mechanistic/data-based modelling and 
experimentation). 
  

••

Ability to measure and characterize a whole range 
of polymer quality variables (via on-line sensors 
and nonlinear estimation algorithms). 
  Development of nonlinear model-based predictive 
controllers with emphasis on achieving superior 
performance and constraint handling. 

The key to building a reliable model is to 
mathematically describe the chemical and physical 
phenomena involved in a process and to derive the 
necessary material, energy and momentum balances. 
These mathematical descriptions involve nonlinear 
algebraic and differential equations. Needless to say 
that the rigour and accuracy of a simulation model are 
strongly affected by the prediction of the 
thermophysical properties of the polymerization 
system. 

Hardware and Software Sensors. In Table 4, selective 
references on the online monitoring of “polymer 
quality” are reported. In several occasions, the 
measurements become available with delay and poor 
signal to noise ratio. On the other hand, mathematical 
models based on fundamental material, energy and 
population balances are capable of calculating the 
process states accurately. However, the predictions 
from mathematical models frequently diverge from 
the real process output variables due to the presence 
of time varying model parameters and unknown 
process disturbances or/and the inherent model-plant 
mismatch. The first problem to be addressed 



Table 4. On-line Hardware Sensors for the 
Monitoring of Polymer Quality 

in a real-time optimization or/and control application 
is the design of an efficient nonlinear state estimator 
to establish an information feedback from the process 
to the model that enables the correction of modelling 
errors. Apart from the nonlinear control applications, 
estimators can play a key role in process monitoring 
for an early detection of undesired reactor conditions 
(e.g., violation of safety regulations, environmental 
standards, operating constraints and product quality 
specifications). 
 
Soroush (1998) categorized the design methods for 
nonlinear estimators into three classes. The first class 
includes methods that are based on the extension of 
the Luenberger observer and Kalman filter estimation 
using a linearized process model. The second class 
refers to methods that incorporate the estimation 
problem within an optimization framework, utilizing 
the full nonlinear process model. The estimated 
values for the state variables result from the 
minimization of the difference beween the measured 
and predicted responses over a specified time horizon. 
The third class is based on model linearization 
through coordinate transformation derived from 
results in nonlinear control theory. 
 
MacGregor, et al., (1986) illustrated the successful 
application of an Extended Kalman Filter (EKF) to 
batch and continuous styrene emulsion 
polymerization reactors for the online tracking of 
conversion and latex particle size. De Valliere and 
Bonvin, (1989), Gagnon and MacGregor, (1991) and 
Kozub and MacGregor (1992) demonstrated through 
simulation examples the need to augment the state 
vector with additional stochastic states to account for 
the non-stationary variations and eliminate the bias 
from the state estimates. Ellis, et al., (1994) 
formulated a multi-rate sampled data EKF 
incorporating infrequently online GPC measurements 
of the “dead” polymer concentrations along with 
temperature and conversion that successfully traced 
the evolution of the molecular weight distribution in a 
methyl methacrylate polymerization batch reactor. 
Muhta, et al., (1997) proposed an algorithm that can 
handle several measurements with different time 
delays. Dimitratos, et al., (1989) and (1991) 
developed several different nonlinear EKFs and 
experimentally applied them to a semi-batch vinyl 
acetate/butyl acrylate copolymerization reactor with 

excellent state and parameter tracking performance. 
Crowley and Choi (1998) and Ahn, et al., (1999) 
implemented EKF algorithms for the optimal control 
of the molecular weight distribution. 

Measured Property Sensing Technique 

Monomer Conversion 
Zeaiter et al.(2002), Mikes et 
al.(2002), Rudschuck et al.(1999), 
Van Den Brink et al. (2001), 
Sasic et al.(2002) 

Densimetry, Gas Chromatography, 
Calorimetry/Reactor Energy Balances, 
Ultrasound, Raman Spectroscopy,  
Near Infrared Spectroscopy, Mid-range 
Infrared Spectroscopy, UV reflection  
spectroscopy, Refractive Index 
Measurements 

Copolymer Composition 
Stavropoulos et al.(2001), Chatzi 
et al. (1997), Asua et al.(1995), 
Gugliotta et al.(1995) 

Gas Chromatography, Near Infrared  
Spectroscopy, Mid-range Infrared  
Spectroscopy, Calorimetry/ Reactor  
Energy Balances 

Molecular Weight and MWD 
Vega et al. (2001), Vicente et 
al.(2001), Cherfi et al. (2002) 

Viscometry, Gel Permeation  
Chromatography, Calorimetry,  
Near-Infrared Spectroscopy 

Particle Size Distribution 
Thomas and Dimonie (1990), 
Gossen et al. (1993), Brandolin 
and Garcia-Rubio (1991), 
DosRamos and Silebi (1991)  

Dynamic Light Scattering, Turbidimetry,
Near-Infrared Spectroscopy, Packed  
Column Chromatography, Capillary  
Hydrodynamic Chromatography 

 
Jang and coworkers (1987) implemented an 
optimization-based estimator to obtain estimates of 
the unknown initial state vector. Such an approach 
was shown to outperform the EKF with increased 
robustness with respect to measurement noise. Later, 
Jang, et al., (1987) used similar ideas to identify 
unmeasured disturbances and to estimate the states 
and the model parameters for control purposes of a 
simple CSTR. Muske, et al., (1995) studied the 
convergence properties and the performance of the 
receding horizon state estimation technique. Vos, et 
al., (1997) suggested a receding horizon parameter 
estimation technique for process monitoring that uses 
past information for the model parameter behavior in 
order to enhance the robustness of the procedure. 
Nonlinear state observers based on coordinate 
transformations (Soroush, 1997 ; Fevotte, et al., 
1998a,b) is another alternative for reconstructuring 
the state vector of dynamic systems from process 
measurements but suffers in practical implementation 
when complex process models are involved. 
 
In Table 5, recent publications on monitoring, 
estimation, optimization and control of particulate 
polymerization processes are reported. 
 
 
3.1 Optimization under Parametric Uncertainty 
 
The real-time optimization of a polymerization 
process, compared to its off-line counterpart, has as a 
distinctive merit the inherent capability of exploiting 
the information springing continually from the 
process. As a result, it can more easily cope with the 
process variability and redefine in context the optimal 
operating conditions.  In a recent paper by 
Kiparissides, et al., (2002), an on-line, multi-level 
estimation/optimization procedure was described to 
control the MWD in batch polymerization reactors. 
The proposed estimation/optimization scheme 
combined a state/parameter estimator with an on-line 
optimizer that calculated periodically the time optimal 
control policies based on the most recent information 
about the process. The state/parameter estimator 
included an extended Kalman filter (EKF) for 
estimating the state variables and the time-varying 
kinetic rate constants. Subsequently, the time optimal 
trajectories that drive the process to the desired final 
property specifications were determined using a 
dynamic programming approach. 
 
Figure 8 shows the schematic of the information 
flowsheet for the on-line optimizing controller. The 
measured output variables, Ymeas, are compared to the 
model predictions, Ym. The anticipated error 
incorporates the unmeasured process disturbances, d, 
the measurement noise and the process-model 
mismatch. The state/parameter estimation block uses 
the error term to retrieve the entire state vector of the 
system, Yest, as well as the values for the stochastic 
time varying model parameters. Subsequently, the 
updated values for the state variables and the model 
 

 



Table 5. Selective Publications on Monitoring, 
Estimation, Optimization and Control of Molecular 

and Morphological Polymer Properties 
 

parameters, Yest, enter the optimizer block. A set of 
target values associated with the molecular weight 
properties, Yq,sp, and a performance index that 
specifies the overall process control objectives in a 
hierarchical order conclude the input stream to the 
optimization block. The optimizer computes a series 
of optimal set-point changes for the controlled 
variables that would ensure the satisfaction of the 
overall control objectives in an optimal sense. The 
time optimal sequence of set-point changes, Yopt,sp, 
are then passed to the regulatory controller that 
forces the process to follow the optimal trajectory as 
close as possible. The execution of the optimization 
task is performed periodically, depending on the rate 
of change of the model parameters, the frequency of 
the process disturbances and the dynamic behavior of 
the process in tracking the optimal control trajectory. 
 
 Optimizing Control of a Batch Polymerization 
Reactor. The control scheme outlined in Figure 8 
was applied to a simulated model of a free-radical 
methyl-methacrylate (MMA) batch polymerization 
reactor. The polymerization temperature was 
controlled by a cascade control system consisting of 
a primary PID and two secondary PI controllers. The 
polymerization exhibits a strong acceleration in 
reaction rate due to gel-effect (e.g., the termination 
rate constant decreases with conversion). Usually, 
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Fig. 8. Schematic representation of the control loop  

the gel-effect contribution on the termination rate 
constant can be expressed in terms of an intrinsic 
chemical rate constant, kt0, and a diffusion-controlled 
gel-effect function gt, accounting for the observed 
decrease of kt with monomer conversion. Because of 
the uncertainty in determining the value of gt, a 
correction term, gt,corr, was employed to account for 
the imprecise knowledge of gt.  

Author Test Case Comments 
Catalgil-Giz, et al. (2002) S : MMA / St Monitoring : MWD / CCD 
Cerrillo & MacGregor, (2002) E : St Control : PSD 
Chang & Hung, (2002) S : MMA Optimization : MWD 
Chatzidoukas, et al. (2003) C: Olefin Optimization : MWD / CCD 
Christofides, (2001) E Control : PSD 
Congalidis, et al. (1989) S : MMA / VAc Control: MWD 
Crowley, et al. (2000) E : St Control : PSD 
Crowley & Choi (1997a) S : MMA Optimization / Control : MWD 
Crowley & Choi (1998) S : MMA Optimization / Control : MWD 
Crowley & Choi (1999) So : St /MMA Optimization / Control : MWD / CCD 

Dimitratos, et al. (1994) E : Acrylics / Vinyl 
monomer/ St 

Control : MWD / CCD / PSD 

Doyle III, et al. (2003) E : St Control : PSD 
Ellis, et al. (1988) S : MMA Estimation : MWD 

Embirucu, et al. (1996) E / S / C Modelling / Estimation / Optimization / 
Control : MMW / CCD 

Fevotte, et al. (1998b) E : MMA / VAc Modelling / Estimation : PSD 
Immanuel, et al. (2002) E : VAc Estimation : PSD 
Immanuel & Doyle (2002) E : VAc / BuA Optimization / Control : PSD 
Kiparissides, et al. (2002) S : MMA Optimization / Control : MWD 
Ohmura, et al. (1998) E : VAc Control : PSD 
Park, et al. (2002) So : MMA /MA Modelling / Estimation : MWD / CCD 
Pringle & MacGregor, (1998) So : St Optimization / MWD 
Saldivar & Ray (1997a) E : MMA / VAc Control : MWD / CCD 
Santos, et al. (2000) E : MMA / VAc Modelling / Estimation : CCD 
Sayer, et al. (2000) E : MMA / BuA Control : MWD / CCD 
Sayer, et al. (2001) E : MMA / BuA Optimization : MWD / CCD 
Semino & Ray (1995) E Control : PSD 
Stavropoulos, et al. (2001) E : St / 2-EHA Modelling : CCD 
Valappil and Georgakis (2002) E : St Control : MWD / CCD  
Vicente, et al. (2001) E : St / BuA Control : MWD / CCD 
Yabuki & MacGregor (1997) E : St Control : MWD 
Yoo, et al. (1999) So : St Control : MWD 
 
Process. C : Catalytic, E : Emulsion, S : Suspension, So : Solution 
 

  (24) corr,tt0tt ggkk =

An EKF was employed to provide estimates for the 
process state variables and the time varying 
parameter gt,corr that was assumed to follow a random 
walk model: 

  (25) ss
corr,t wg =

where ws is a zero mean, white Gaussian noise. 
 
At the optimization level, the time optimal sequence 
of temperature set-point changes was calculated by 
minimizing the following performance index: 
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where Xf, tf, Mn,f, Mw,f, and WCLDi,f are the 
monomer conversion, batch time, number and weight 
average molecular weights and the values of the 
WCLD (evaluated at NC collocation points), 
respectively. Xd, td, Mn,d, Mw,d, and WCLDi,d are the 
corresponding desired values of the variables. The 
weighting factors, w1-w5 in eq 26 specify the relative 
importance of the corresponding competing terms. 
 
The polymerization temperature was selected as the 
control variable because of its apparent effect on the 
reaction kinetics and consequently, on the final 
molecular weight properties and monomer 
conversion. The minimization of the performance 
index in eq 26 subject to the polymerization model 
equations was carried out using a simultaneous 
discretization approach. An OCFE technique was 
employed to discretize the set of model differential 
equations. 
 
The time optimal polymerization temperature that 
minimized the objective function (eq 26) was 
calculated for a desired polymer grade (Mn,d=4.0⋅105 
kg/kmol, Mw,d=2.0⋅106 kg/kmol, Xd=0.85). The state 
variables and the time varying gel-effect parameter, 

, were estimated every two minutes. A new 
optimal temperature trajectory was evaluated every 
20 minutes using the most recent value of the 
termination rate constant. In the simulated process-
model mismatch case, the value of  term in eq 
24 was assumed to increase linearly with time (i.e., 
g

s
corr,tg

corr,tg

t,corr=1+ct). 
 
Figure 9 depicts the time optimal temperature 
profiles at different time instances, calculated 
through successive state/parameter estimation and 
optimization steps. Notice that the updated time 
optimal temperature profiles differ from the 
polymerization temperature profile calculated at the 



beginning of the batch both in shape and duration 
due to the process-model mismatch caused by the 
variation in the termination rate constant. In Figure 
10 the average molecular weights corresponding to 
the uncorrected and updated temperature profiles are 
plotted with respect to batch time. Finally, Figure 11 
shows the time evolution of the WCLD. It can be 
seen that the final WCLD coincides with the desired 
one. The results of Figures 10 and 11 indicate that 
the updated temperature trajectories result in a 
definite improvement of the final product properties 
and successfully compensate for the effect of the 
time varying termination rate constant, kt. 
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Fig. 9. Updated time optimal temperature trajectories 

for a positive disturbance scenario in kt 
(gt,corr=1+8.0×10-3 t). 
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Fig. 10. Uncorrected and updated number and weight 

average molecular weight profiles. 
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Fig. 11. Time evolution of WCLD. 
 

 
 
 

4. FUTURE DIRECTIONS 
 

New Issues on Population Balance Models. In the 
general form of PBE (eq. 4), it is recognized that the 
distribution function n(x,y,z,p1,…,pk,t) has some 
“external” and some “internal” coordinates. The 
external coordinates (x,y,z) express the change in the 
population in a particular volume element due to the 
particle velocity, . The summation term expresses 
the change in the population due to the particle 
properties, p

u

i. This term always includes the particle 
size as an internal coordinate but the summation sign 
recognizes the fact that there may be more than one 
property of interest. As discussed in the recent paper 
of Verkoeijen, et al. (2002), the internal particle 
parameter that determines changes in the population 
should be the particle volume. As a result, the basic 
PBE should be expressed in terms of the mass 
distribution, or the volume distribution if the density 
is constant, so the mass in the system is 
automatically conserved.  
 
Traditionally, one-dimensional PBEs have been 
employed to describe the evolution of a population. 
However, in many cases this assumption does not 
hold true. Thus, to follow the molecular and 
compositional developments in a copolymerization 
reactor one needs, for example, to introduce tri-
variate distributions for the “live” and “dead” 
polymer chains. Accordingly, the notation P(n,m,b,t) 
denotes the concentration of “dead” polymer chains 
having n units of monomer M1, m units of monomer 
M2, and b long chain branches (LCB) per molecule. 
The general rate functions for such a polymerization 
system are given in Achilias and Kiparissides (1992). 
It should be pointed out that the calculation of the tri-
variate molecular weight – copolymer composition – 
long chain branching distribution is an extremely 
difficult problem. Moreover, in many particulate 
polymerization processes, 2-D or 3-D population 
balances are required to describe the evolution of the 
PSD in the reactor. Thus, in addition to the standard 
particle volume property one needs to include the 
particle age or catalyst activity to follow the 
evolution of PSD in a gas-solid Ziegler-Natta olefin 
polymerization reactor. On the other hand, in 
emulsion polymerization, it is often necessary to 
introduce a bivariate distribution n(V,i,t) to describe 
the time-evolution of PSD with respect to the particle 
volume, V, and the number of radicals, i, in the 
particle. The numerical solution of the resulting 2-D 
or 3-D dynamic PBE in batch and continuous 
polymerization reactors is a very demanding 
numerical problem. In the review article of 
Ramkrishna and Mahoney (2002), present challenges 
and requirements regarding the formulation and 
numerical solution of multi-dimensional PBEs are 
discussed. Needless to say that the identification of 
the functional forms of particle nucleation, growth, 
“death” and “birth” rate terms appearing in a multi-
dimensional PBE is by no means a trivial task. 
 
In most publications on the modeling of particulate 
polymerization processes, it is assumed that the 
multiphase reaction system can be approximated by a 
pseudo-homogeneous medium, (i.e., the population 
does not vary with respect to the external (spatial) 



coordinates. However, this is rarely the case in 
industrial polymerization processes. For example, in 
industrial semi-batch emulsion polymerization, the 
mixing of the monomer feed stream with the reactor 
content and, thus, the transfer of monomer to the 
particulate polymer phase may vary with respect to 
the spatial coordinates. Moreover, particulate 
polymerization processes are characterized by a 
particle volume increase during polymerization that 
strongly influences the rheological properties and, 
thus, mixing of the dispersion. Consequently, a range 
of different problems can arise during the course of a 
particulate polymerization, including the appearance 
of a secondary particle size distribution, catastrophic 
particle agglomeration, particle settling, hot spots, 
etc. In gas-solid polyolefin fluidized bed reactors, the 
distribution of solids along the bed-height can be far 
from uniform. Thus, particle segregation in the bed 
should be accounted for in any relevant PSD 
modeling study. In a recent publication by 
Alexopoulos, et al. (2002), a computational fluid 
dynamic (CFD) approach is described for calculating 
the spatial distribution of energy dissipation rate in a 
batch suspension polymerization reactor. A two-
compartment model is derived to calculate the time 
evolution of the monomer droplet size distribution by 
taking into account the large spatial variations of the 
turbulent kinetic energy in the reactor. 
 
Such complex multiphase polymerization processes 
face challenges both on issues of model formulation 
as well as computation. In fact, the mutual coupling 
of the particulate and continuous fluid phases in 
regard to the transport of momentum, mass and 
energy as well as the quantification of particle 
nucleation, growth and aggregation mechanisms in 
terms of spatial coordinates increase significantly the 
modeling and computational efforts for calculating 
the time evolution of PSD.  
 
New Issues on Optimization and Control. Despite the 
rich literature on the dynamics of population balance 
systems, there are limited industrial applications on 
the dynamic optimization and control of particulate 
polymerization processes. There are several valid 
reasons for the lack in closed-loop “quality” control 
applications for particulate polymerization processes. 
More specifically, 
1. Particulate polymerization processes are highly 

nonlinear, containing a large number of time-
varying kinetic and transport parameters. 

2. Modeling of particulate polymerization systems 
typically leads to nonlinear integro-differential 
equations. Their infinite-dimensional nature does 
not allow their direct use for the design of 
nonlinear controllers that can be easily 
implemented in real-time. 

3. On-line measurement of MWD, CCD, LCB, 
PSD, etc. is very difficult and the available 
secondary measurements are often insufficient 
for the accurate inference of the entire molecular 
weight or/and particle size distribution. 

4. Formulation of a meaningful objective function 
in terms of distributed molecular and 
morphological properties (e.g., MWD, PSD, etc.) 
is not easy, especially when the end-use 
properties of the product need to be controlled. 

Furthermore, the controlled variables react in 
opposite directions to changes in the manipulated 
variables. 

However, recent advances in online measurements 
(Kammona, et al. 1999) and in control theory 
(Christofides, 2001 ; Chiu and Christofides, 1999 ; 
Crowley, et al. 2000 ; Valappil and Georgakis 2002 
and 2003) have made possible the nonlinear 
optimization and control of molecular weight and 
particle size distributions in particulate 
polymerization processes. Key to the successful 
application of optimal control to a particulate 
polymerization processes is the availability of 
appropriate mathematical models that need to range 
from detailed fundamental mechanistic forms to 
database forms such as those provided by statistical 
(Yabuki, et al. 2002) and neural network approaches. 
 
Needless to say that the diverse requirements 
imposed by various particulate polymerization 
processes require equally diverse control strategies to 
address the specific process goals. In particular, for 
semi-batch processes different control strategies, 
including batch-to-batch, on-line model-based 
control and mid-course correction, have been 
proposed by Lee, et al. (2002), Pringle and 
MacGregor (1998), Yabuki and MacGregor (1997) 
and Doyle, et al. (2003) to control the MWD and 
PSD developments in a polymerization reactor. On 
the other hand, for continuous particulate 
polymerization processes, on-line “polymer quality” 
soft-sensing, optimal grade changeover and 
scheduling are some of the issues to be addressed for 
maximizing productivity, improving product quality 
while keeping safety regulations (Chatzidoukas, et 
al. 2003 ; BenAmor, et al. 2004).  
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