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Abstract: A question that often process control engineers face is for what class of
processes one should use model predictive control that requires solving numerically
a constrained optimization problem repeatedly on-line. The alternative is to use
analytical control, such as P, PI, PID and differential geometric control, which do
not require the on-line optimization. In other words, for what class of processes
can analytical control provide control quality close to the optimal control quality
that model predictive control (MPC) can provide? This work presents a measure
that allows one to quantify the degradation in closed-loop performance when one
implements analytical control instead of MPC. A special case of the measure is
used to derive a simple test that can be used to check if a given input-constrained
process can be controlled satisfactorily by analytical control. It is shown that
processes that exhibit directionality greatly benefit from MPC. In other words, for
input-constrained processes whose nonsingular characteristic (decoupling) matrix
is independent of manipulated inputs and can be made diagonal by row or column
rearrangements, control quality provided by analytical control can be adequate.
The measure is used to see if four input-constrained process examples can be
controlled satisfactorily by analytical control. Closed-loop responses are shown to
confirm the usefulness of the measure.
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1. INTRODUCTION

The degrading effect of constraints on control
quality was recognized very early in practice. To
minimize the degrading effect, a great number of
strategies such as anti-windup schemes and di-
rectionality compensators and optimization-based
control methodologies such as model predictive
control have been developed.
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For a given process design, after identifying dis-
turbances and selecting controlled outputs and
manipulated inputs, an effective control system is
chosen. The control system can be conventional,
model-based, analytical (such as P, PI and PID),
and/or numerical (model predictive). A question
that often process control engineers face is for
what class of processes one should use model pre-
dictive control that requires solving numerically a
constrained optimization problem repeatedly on-
line. The alternative is to use analytical control,
such as P, PI, PID and differential geometric



control, which do not require the on-line opti-
mization. In other words, control of what class
of processes can significantly benefit from model
predictive control?

In current industrial practice, this question is
addressed in several ways, which generally depend
on:

• The sector of the industry and the type of
manufacturing operations (e.g. petrochemi-
cal, chemical, or food);

• The acceptance of the technology in opera-
tions (typically rooted in the history of in-
troduction of the technology, experience with
previous implementations, employee process
control skills, and success in maintaining per-
formance over time); and

• How strongly the financial benefits from a
migration to MPC manifest themselves.

It is usually an obvious value preposition or a
leap of faith in the benefits of the technology that
would lead to the development and commissioning
of an MPC application and not a detailed analysis.

Few companies have an in-house engineering ca-
pability to carry out an operability analysis, which
allows for performance benchmarking and assess-
ment of the financial benefits of the MPC mi-
gration. This analysis involves the development
of a dynamic model of the process in question
and the comparative assessment of an MPC versus
an analytical implementation. In the best of the
cases, a high-fidelity nonlinear simulator of the en-
tire process is interfaced to the commercial MPC
controller of preference to conduct the evaluation.
The lack of a simple analysis tool with solid the-
oretical foundations to check whether an input-
constrained process can be controlled adequately
well by using analytical control is the best moti-
vation for this study.

This work presents a measure that allows one
to quantify the degradation in closed-loop per-
formance when one implements analytical control
instead of MPC. The measure quantifies the de-
viation of (a) the response of the process under
analytical control from (b) the response of the
same process under model predictive control. A
special case of the measure is used to derive a
simple test that can be used to check if a given
input-constrained process can be controlled

satisfactorily by analytical control. It is shown
that input-constrained processes that exhibit di-
rectionality greatly benefit from MPC. The mea-
sure is used to check if four process examples can
be controlled satisfactorily by analytical control.
Closed-loop responses are shown to confirm the
usefulness of the measure.

Section 2 describes the scope of the study and
some preliminaries. An index of the control qual-
ity loss is presented in Section 3. The application
of the index is illustrated by four examples in
Section 4.

2. SCOPE AND PRELIMINARIES

Consider nonlinear multivariable processes with a
model in the form

x(k + 1) = Φ[x(k), u(k)], x(0) = x0

y(k) = h[x(k)] (1)

with the input constraints

ulj ≤ uj(k) ≤ uhj , j = 1, · · · , m (2)

where x = [x1 · · ·xn]T , u = [u1 · · ·um]T , and y =
[y1 · · · ym]T denote the vectors of state variables,
manipulated inputs, and controlled outputs, re-
spectively; Φ(x, u) and h(x) are smooth vector
functions; and ulj , uhj , ∆ulj , and ∆uhj , j =
1, · · · , m, are constant scalar quantities.

For a process in the form of (1),

• Relative order (degree) of an output yi with
respect to the vector of manipulated inputs is
denoted by ri, where ri is the smallest integer
for which yi(k+ ri) depends explicitly on the
present value of a manipulated input.

• Characteristic (decoupling) matrix

C(x, u)
�
=




∂
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hr1

1 (x, u)
...

∂

∂u
hrm

m (x, u)




where

h0
i (x)

�
= hi(x), i = 1, · · · , m

h�
i(x)

�
= h�−1

i [Φ(x, u)], � = 1, · · · , ri − 1,
i = 1, · · · , m

hri

i (x, u)
�
= hri−1

i [Φ(x, u)], i = 1, · · · , m

The decoupling (characteristic) matrix has been
used to check the degree of dynamic decoupling in
processes and specify the class of processes that
do not exhibit directionality (Soroush and Val-
luri, 1999). It has also been called instantaneous
process gain, because the strength of a process
response over a very short horizon strongly de-
pends on the decoupling matrix of the process.
For processes with a diagonal and independent-
of-manipulated-inputs decoupling matrix, com-
pletely decentralized control is more suitable. The
matrix has also been used as basis for input-
output pairing.

Let the time-varying static state feedback

u∗(k) = Ψ∗[x(k), k, ysp(k)] (3)

represent a general model predictive control law
for the process of (1) with the input constraints



of (2) [that is, the numerical solution to a con-
strained, moving horizon, optimization problem],
and the time-invariant static state feedback

w(k) = Ψ[x(k), ysp(k)] (4)

denote the same general model predictive control
law for the process of (1) without the input con-
straints of (2) [that is, the numerical solution to
an unconstrained, moving horizon, optimization
problem].

2.1 Directionality

Directionality is a controller performance degra-
dation that is associated with actuator saturation.
As defined in (Soroush and Valluri, 1999; Soroush
and Mehranbod, 2002), directionality occurs when
for a given command signal ŵ the output response
of process to sat(ŵ) is not “closest” (in the con-
trolled output space) to the output response of
the process to ŵ, where

sat�[w]
�
=




ul� , w� < ul�

w�, ul� ≤ w� ≤ uh�
,

uh�
, w� > uh�

� = 1, · · · , m

Definition 1 (Soroush and Valluri, 1999; Soroush
and Mehranbod, 2002): A process in the form
of (1) does not exhibit directionality over time
horizons N1, · · · , Nm ≥ 0, if and only if for every
sequence ŵ(k) ∈ �m, k = 0, 1, · · · , N, and for
every initial condition x̂0 ∈ �n, u(k) = sat{ŵ(k)}
minimizes

m∑
i=1

Ni∑
k=0

[ŷi(k) − ŷ∗
i (k)]2

subject to ul� ≤ u�(k) ≤ uh�
, � = 1, · · · , m,

where N = max(N1, · · · , Nm),

x̂∗(k + 1) = Φ[x̂∗(k), ŵ(k)], x̂∗(0) = x̂0

ŷ∗(k) = h[x̂∗(k)]

}

x̂(k + 1) = Φ[x̂(k), u(k)], x̂(0) = x̂0

ŷ(k) = h[x̂(k)]

}

According to this definition, directionality can
also occur in a SISO process that is not affine in
its manipulated input.

Remark 1: The class of processes whose nonsin-
gular characteristic (decoupling) matrix is inde-
pendent of u and can be made diagonal by row
or column rearrangements does not exhibit the
directionality over the very small time horizons
r1, · · · , rm.

Remark 2: For linear processes in the form:

x̂(k + 1) = Ax̂(k) + Bu(k), x̂(0) = x̂0

ŷ(k) = Cx̂(k)

}

(5)

where A, B and C are n×n, n×m and m×n ma-
trices respectively, the characteristic (decoupling)
matrix

C =




c1A
r1−1B
...

cmArm−1B




where ci is the ith row of the matrix C. Lin-
ear processes whose characteristic matrix can be
made diagonal by row or column rearrangements
do not exhibit the directionality over the horizons
r1, · · · , rm.

Remark 3: The characteristic matrix of a linear
process can be identified easily by subjecting the
process at steady state x = 0 to step changes in its
inputs. For example, the characteristic matrix en-
try Cij can be calculated by subjecting the process
at steady state x = 0 to a step change in uj only
and measuring the first nonzero value of yi. In this
case, Cij= [first nonzero value of yi]/[size of the
step change in uj ], i = 1, · · · , m, j = 1, · · · , m. In
practice, the characteristic-matrix identification
step may need to be repeated, if the process moves
significantly away from the nominal steady state.

3. CONTROL QUALITY LOSS IN
ANALYTICAL CONTROL

For linear processes, the general unconstrained
MPC law of (4) is a linear state feedback that
can be written in an analytical form. In the case
of nonlinear processes, one may be able to find an
analytical state feedback equivalent to the general
unconstrained MPC law of (4). Thus, the general
unconstrained MPC law of (4), in general, can
be viewed as an analytical time-invariant state
feedback. A question that one might ask is when
the analytical state feedback of (4) together with
clipping (the controller output) is adequate for
constrained processes of the form (1). In other
words, for what class of processes can this analyt-
ical control scheme provide a satisfactory control
quality [which is not much less than the quality
provided by the numerical state feedback of (3)]?
To address this question, let us define the follow-
ing index of control quality loss.

Definition 2: The index of control quality loss in
analytical control over time horizons N1, · · · , Nm,
is defined as:

IN = max
k

m∑
i=1

Ni∑
�=0

[
yi(k + �)
y∗

i (k + �)
− 1

]2

, k = 0, · · · ,∞

where N1 ≥ r1, · · · , Nm ≥ rm,

x∗(k + 1) = Φ[x∗(k), u∗(k)], x∗(0) = x0

y∗(k) = h[x∗(k)]

}



x(k + 1) = Φ[x(k), sat{w(k)}], x(0) = x0

y(k) = h[x(k)]

}

Special Case: The index of control quality loss in
analytical control over time horizons r1, · · · , rm,
takes the form:

Ir = max
k

m∑
i=1

ri∑
�=0

[
yi(k + �)
y∗

i (k + �)
− 1

]2

, k = 0, · · · ,∞

The definition of the directionality over short
horizons of r1, · · · , rm, can be used to identify the
class of processes that have a control-quality loss
index of 0.

Remark 4 (Soroush and Mehranbod, 2002): For
processes that do not exhibit the directionality
over the time horizons r1, · · · , rm, the index of
control quality loss, Ir = 0. The class of pro-
cesses whose nonsingular characteristic matrix is
independent of u and can be made diagonal by
row or column rearrangements does not exhibit
directionality over the time horizons r1, · · · , rm.

4. EXAMPLES

4.1 Example 1

Consider the two-input two-output, time-invariant,
linear process:

G(z) =




1
z − 0.5

1000(z − 1)
(z − 0.5)2

z − 1
(z − 0.5)2

2
z − 0.5




The steady state gain matrix (Kp) and the char-
acteristic matrix (C) of the process are:

Kp =

[
2 0
0 4

]
, C =

[
1 1000
1 2

]

The steady state gain matrix is diagonal, imply-
ing that the process is “statically”, completely
decoupled. The process, however, is dynamically,
strongly coupled, since its characteristic matrix is
not diagonal; this process exhibits the direction-
ality. Thus, or this process Ir �= 0, implying that
if MPC is not used, the loss of control quality will
be significant.

4.2 Example 2

Consider the two-input two-output, time-invariant,
linear process:

G(z) =




1
z − 0.5

1000
(z − 0.5)2

1
(z − 0.5)2

2
z − 0.5




The steady state gain matrix (Kp) and the char-
acteristic matrix (C) of the process are:

Kp =

[
2 4000
4 4

]
, C =

[
1 0
0 2

]

implying that the process is “statically”, highly
coupled but is dynamically, weakly coupled (char-
acteristic matrix is diagonal); the process does not
exhibit the directionality. Thus, for this process
Ir = 0, implying that if analytical control is used,
the loss of control quality will not be significant.

Examples 1 and 2 confirmed that control system
selection should be on the basis of dynamic rather
than steady-state characteristics of a process. In
particular, it is the nature of the characteristic
matrix not that of the steady state gain matrix
that determines when analytical control is ade-
quate.

4.3 Example 3: SISO Nonlinear Chemical Reactor

Consider an isothermal continuous stirred-tank
reactor in which a non-elementary chemical re-
action A → B takes place. The rate of production
of B is given by:

RB[CA] = 0.036C3
A − 0.78C2

A + 4.4CA − 1.0

where CA denotes the concentration of the reac-
tant. The reactor dynamics are described by

dCB

dt
= 0.036C3

A−0.78C2
A+4.4CA−1.0−0.625CB

(6)
with CB(0) = 0 and 0 ≤ CA ≤ 10, where CB

denotes the concentration of the product. Exact
time-discretization (with a sampling period of 0.1
hour) of the reactor model leads to

CB(k+1) = 0.9394CB(k)+0.0969RB[CA(k)] (7)

The control objective is to maintain the concen-
tration of the product, CB, at a desired level
(CBsp = 8.0 kmol.m−3) by manipulating the re-
actant concentration, CA. Here, the characteristic
matrix

C = 0.108u2 − 1.56u + 4.4

Because C depends on u, the process has the
directionality and can, therefore, benefit greatly
from model predictive control.

For this process, we use the two model predictive
controllers (Grantz et al., 1998):

η(k + 1) = 0.9η(k) + 0.0394CB(k) + 0.0969RB[u(k)]

min
u(k)

{RB[u(k)] − 1.0320[e(k) + η(k)] − 0.4066CB(k)}2

subject to 0 ≤ u(k) ≤ 10
(8)



and

η(k + 1) = 0.9η(k) + 0.0394CB(k) + 0.09694RB[u(k)]

min
w(k)

{RB [w(k)] − 1.0320[e(k) + η(k)] − 0.4066CB(k)}2

u(k) = sat(w(k))
(9)

with η(0) = CB(0) and e = 8 − CB . Numerical
simulations are carried out for the following three
cases:

• Case C1: the process of (7) without the input
constraints, under the controller of (8) or (9).

• Case C2: the process of (7) with the input
constraints, under the controller of (8).

• Case C3: the process of (7) with the input
constraints, under the controller of (9).

In the absence of the input constraints, the con-
trollers of (8) and (9) induce the first-order linear
input-output response

CB(k + 1) − 0.9CB(k) = 0.8 (10)

As shown in Figure 1, the closed-loop responses
are considerably different for the three cases.
The response in case C1 has, of course, the
lowest possible integral of squared error [ISE]
(ISE=3.47×102). The advantage of constrained
MPC (case C2 with an ISE = 3.90 × 102) over
unconstrained MPC with clipping (case C3 with
an ISE = 1.45 × 103) is quite obvious.

4.4 Example 4: Multivariable Linear Example

Consider the two-input two-output, time-invariant,
linear process:

x1(k + 1) = 0.99x1(k) + 0.40u1(k) − 3.00u2(k)
x2(k + 1) = 0.99x2(k) − 0.01u1(k) + 0.40u2(k)

y1(k) = x1(k)
y2(k) = x2(k)




(11)
with x1(0) = 0, x2(0) = 0, |u1(k)| ≤ 1, and
|u2(k)| ≤ 1.

For this linear example,

C =

[
0.40 −3.00

−0.01 0.40

]

which is not diagonal, and thus the process cannot
be regulated effectively by analytical control.

The performance of a model predictive con-
troller is compared with that of two completely-
decentralized proportional-integral (PI) controllers
with conditional integration (to prevent integral
windup) with the set point values ysp1 = 8 and
ysp2 = 3. Figure 2 depicts the closed-loop process
input and output responses under the two PI
controllers (dashed line) and the model predictive
controller (dotted line). In the absence of the

Fig. 1. Controlled output and manipulated input
of Example 3.

input constraints, the closed-loop responses (solid
line) under the decentralized PI controllers and
the model predictive controller are the same. In
the presence of the input constraints, however,
while the PI controllers show poor responses in
y1, the model predictive controller provides a sig-
nificantly better closed-loop performance. In this
example, it happens that in the presence of the
constraints the y2 response is better when the
PI controllers are used. With the model predic-
tive controller, a y2 response closer to the uncon-
strained one can be obtained by placing a higher
weight on y2.
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