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Abstract: This study proposes an effective diagnostic method using data readily available 
from the process. The system is decomposed into its local diagnostic models based on the 
direct and local causalit ies of process variables and the statistical learning model for each 
local relation is developed using data available from the process. The decomposed local 
models and the underlying fault assumptions compose of an object-based diagnostic 
network to perform on-line fault diagnosis. The diagnostic performance of the proposed 
method has been successfully illustrated in CSTR process. Copyright © 2002 IFAC
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1. INTRODUCTION

As increasing the importance of early and accurate 
fault detection and diagnosis for modern industrial 
plants, various process monitoring techniques have 
been developed for the past decade. While
techniques based on first-principles models have
been around for more than two decades, their
contribution to industrial practice has not been
pervasive and data-driven approaches (process
history based methods) have been widely used for 
process monitoring due to the high cost and time 
required to develop sufficiently detailed physical
models.
Most of conventional data-driven monitoring
methods use the process data collected during both 
normal operating conditions and specific faults to 
develop the measures for diagnosing faults based on 
supervised classification. However, the process data 
during abnormal situations are hardly available in 
real world industries and then conventional data-
based fault diagnosis has a major disadvantage for 
their application to real processes (Lee, 2003)

2. PROBLEM DEFINITION

The fault diagnosis procedure consists of two
separate stages: residual generation and residual
evaluation. In other words, the automatic fault
diagnosis can be viewed as a sequential process
involving the symptom extraction and the actual

diagnostic task. As usual, the residual generation 
process is based on a comparison between the
measured and predicted system outputs. As a result, 
the difference of the so-called residual is expected to 
be near zero under normal operation, but on the 
occurrence of fault a deviation from zero should 
appear. In the meantime, the residual evaluation
module is dedicated to the analysis of the residual 
signal in order to determine whether a fault has 
occurred and to isolate the fault in a particular system 
device.
One of the most known approaches to residual
generation is a model-based concept. In the general 
case, this concept can be realized using different 
kinds of models: analytical, knowledge-based and 
data-based ones . Unfortunately, the analytical model-
based approach is usually restricted to simpler
systems described by linear models. When there are 
no mathematical models of the diagnosed system or 
the complexity of a system increases and the task of 
modelling is very hard to achieve, analytical models 
cannot be applied or cannot give satisfactory results
(Patan, 2000). In these cases data-based models can 
be considered.

3. CONVENTIONAL METHODS AND THEIR
LIMITATIONS

Technological plants are often complex dynamic 
systems described by nonlinear high-order
differential equations. For their quantitative



Fig.I. General scheme of model-based fault diagnosis

modelling for residual generation, simplifications are 
inevitable. This usually concerns both the reduction 
of dynamics order and linearization. Another
problem arises from unknown or time variant process 
parameters. Due to all these difficulties, conventional 
analytical models often turn out to be not accurate 
enough for an effective residual generation. In this 
case knowledge-based models are only alternatives. 
Replacing unknown parameters by qualitative
knowledge-based approach enhances the robustness 
of the model versus unknown or time-dependent
parameters. As one of the data-based approaches, the 
neural network replaces the analytical model that 
describes the process under normal operation. Fig . I
illustrates how the fault diagnostic system can be 
designed using neural network techniques
However, these approaches have some inherent
limitations on their ability to effectively identify and 
diagnose faults. As mentioned above, this approach 
requires data in every faulty situation and those data 
are not generally available at the real process. Hence 
methods that require information about faulty
situations cannot be used to diagnose faults that have 
not previously occurred. This is a major advantage of 
conventional data-based approaches. Even if you 
have a good simulation model for learning data, it is 
obvious and natural that analytical model-based
approaches are more favourable than data-based
model approaches. To take advantage of data-based
model approaches and overcome their limitations, a 
practical diagnostic method that uses data available 
from the real process only should be developed.

4. THE PROPOSED DIAGNOSTIC METHOD

In order to overcome the aforementioned limitation 
of data-driven model based diagnostic method, an 
object-based diagnostic network has been developed
(Fig. II). The diagnostic network consists of a series 
of diagnostic data-based models with qualitative
knowledge base. The qualitative knowledge base is 
represented as a set of assumptions about underlying 
faults. These fault assumptions represent the
assumptions that the associated model is based upon
(Petti, 1992). Each diagnostic model is trained using 
normal operation data. The data-based models
generate residuals based on a comparison between 
the measured and predicted system outputs. If all the
assumptions of a model hold, the satisfaction of the 
model is guaranteed, i.e., the residual is close to zero. 
By examining the direction and extent to which each 
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Fig. II. Object-based diagnostic network

model is violated against its fault assumptions, the 
most likely failed assumption (fault) can be deduced. 
An assumption that is common to many violated 
models is strongly suspect, whereas satisfaction of
models provides evidence that the associated
assumptions are valid. How the models can be
formulated and how the fault assumptions can be
associated with the models is  explained in the next 
sub-sections.

4.1 Design of local diagnostic models

The formulation of diagnostic models is based on 
system decomposition by using local and direct 
causalities between process variables. The system
decomposition approach narrows the diagnostic
focus to a particular decomposed subsystem and 
performs diagnosis on this subsystem (Finch, 1988).
System decomposition has the advantages of
providing flexible diagnosis throughout operating
condition changes, reducing the size of the
knowledge base, and simplifying the understanding 
of complex process to process interactions.
The local subsystem models can be designed based 
on the information about local causalities between
process variables. An example of subsystem models 
for a simple gravity flow tank is shown in Fig. III.
The variables having a direct effect on L (target 
variable) are Fin and Fout. And Fout (target variable) is 
first affected by Rs and L. From these direct and local 
causalities, two models for L and Fout can be
designed as shown in Fig. III. Fin and Rs are
considered exogenous to a system because their
values are determined outside of the system and 
controlled externally.
The availability of local subsystem models highly 
depends on the measurability of the process variables. 
Notice that unmeasured variables cannot participate 
in formulating diagnostic models due to their
unavailability during training models. The outflow 
model contains an unmeasured variable Rs (the pipe 
resistance) and can not be learned from history data. 
However, the outflow model may be valid for
diagnostic task in which case the unmeasured
variable Rs can be considered as a constant.  

4.2 Fault assumptions

Associated with each diagnostic model is a set of 
assumptions which if satisfied, guarantee the
satisfaction of the model. The fault assumptions
represent the faults that the model can detect. Some 
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of the assumptions are explicit in the model, such as 
correct sensor readings, and some are implicit such 
as the fact that there are no tank leaks. Consider the 
tank in Fig. III once again. The model L has
following assumptions.
- Inflow sensor is OK (explicit).
- Outflow sensor is OK (explicit).
- No tank leaks (implicit).
If all the assumptions above hold, the satisfaction of 
the model L is guaranteed and the residual is close to 
zero.
Every explicit fault assumption is sensor fault and it 
is included in the fault assumption set naturally. On 
the other hand, implicit fault assumptions are
associated with each diagnostic model according to 
the following rules.
For each fault (Fk) there must exist a primary 
deviation variable (xFk), i.e., a variable included in 
the system which is first affected by the root cause.
Case 1: When xFk is measured,
- if there exists the diagnostic local model for xFk, xFk

is associated with model xFk.
- if there does not exist the diagnostic local model for
xFk, this fault is not detectable except that xFk is in
steady state condition.
Case 2: When xFk is unmeasured, any measured
variable which is first affected by xFk is considered as 
the primary deviation variable and then apply to case
1.
In the tank example, the tank level (L) is the primary 
deviation variable for tank leak (F2) and there exists 
the local model for the tank level (L). Therefore F2 is 
associated with the level model and can be
considered as the implicit fault assumption of the 
level model. Outflow (Fout) is considered as the
primary deviation variable for the outlet blockage 
(F3) because the pipe resistance Rs which is actually 
first affected by F3 is unmeasured. In this case, F3 is 
the implicit fault assumption of the outflow model.
In case of low inflow disturbance (F1), we do not 
have the local model for the primary deviation
variable Fin because Fin is an exogenous variable. If 
Fin is steady state, F1 can be detected by checking 
some tolerance limit.
The fault assumptions associated with their local 
diagnostic models have their qualitative information.
The qualitative information represents the direction 
to which the associated local model will be violated 
when a fault assumption is not satisfied. This
symptom acts as the basis to diagnosis faults. If a 
fault assumption is connected with its associated
local model positively (negatively), it implies that the

predicted output of the local model will deviate from 
its measured value in the positive (negative) direction
when the fault occurs

4.3 Training local models

For residual generation, each local diagnostic model 
designed at previous step has to be trained. Learning 
data can be collected directly from the process if 
possible or from a simulation model that is as
realistic as possible. Because a simulation model is 
assumed to be unavailable, data available from
normal operating condition only should be used for 
the training. In the proposed method, each local
model can be learned from the data set representing 
the local relations between the input variables and the
output variable. The required data sets can be easily 
obtained during normal operation. Sometimes, the 
training data may be usually bounded on a small 
region under steady state condition and the fault 
assumptions may not be valid for the outside of the
training data region. Therefore, the available data 
which can be obtained in the presence of intentional 
step changes or external disturbances that occur
frequently in the process can be used for the training 
in order to guarantee the fault assumptions in as large 
region as possible. In this case, it must be noted that 
the data set obtained in the presence of a particular 
fault should not be used to train the local model(s) 
with same fault assumption.
In the proposed method, the statistical learning
techniques, specially focusing on regression are used 
for training local models. The value of each target 
variable can be estimated by using statistical learning
model (learning machine) for each local model.
Various statistical methods for regression such as 
splines, neural networks and Support Vector
Machine can be a tool for building learning machine. 
The current prevailing view in the statistical and 
neural network community is that there is no single 
best method for all regression problems  (Friedman, 
1994) and the comparative work of various learning 
techniques is not the point of this  research. You can 
find a comparative study for various regression
methods in (Cherkassky, 1998). In our work, Support 
Vector Regression method was selected as a learning 
technique because it leads to a more tractable
formulation of the optimization problem and the
notion of model complexity can be separated from 
dimensionality. In addition, SVM can handle
nonlinearity of the model in the easy manner by 
selecting appropriate kernel function. Other
advantages of SVM can be found in many references 
(Cherkassky, 1998; Vapnik, 1995).

4.4 Residual generation and evaluation

After finishing the training via an appropriate
statistical learning technique, the trained local
models are ready for on-line residual generation. The
residuals, between predicted values from local
models and measured values are monitored and the 
CUSUM (cumulative summation) control chart is 
used to detect the changes from normal operating 
state of a process. The CUSUM test first introduced 
by Page (Page, 1954) has been shown to be efficient 



in detecting changes in the mean of a process . As the 
name implies, the CUSUM chart cumulates
deviations of the sample readings (

ix ) from the

target or desired value (µ ). Once these cumulative 

summations reach either a high or low limit, an out-
of-control signal is given. The parameters in the
CUSUM chart are defined as follows:
k : the threshold for cumulative summation, which 
can be defined as the minimum difference between 
sample average and target that will cause the
cumulative summation to begin.
SHi and SLi: the cumulative summation terms which 
are calculated as follows.
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h: the control limit
Since the residuals are not uniform in magnitude, 
they are transformed into a metric between ?1 and 1 
which indicates the degree to which the model
equation is satisfied: 0 for perfectly satisfied, 1 for 
severely violated high, and ?1 for severely violated 
low. These values constitute the satisfaction vector, 
sf, which is calculated using the CUSUM results, SHi

and SLi.
For the jth diagnostic model,
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The value of sfj is given a positive value for a 
positive residual and a negative value for a negative 
residual. The curve is a general sigmoidal function 
with the steepness determined by the constant n.
A matrix of sensitivity values, S which describes the
relationship between each local model and fault 
assumption is assigned to weight the sf values as 
evidence. The ijth element of S, represents the
sensitivity of the jth model to the ith assumption. 
Unless experience suggests otherwise, these values 
are usually given −1, 0, or 1; 0 for the local models 
independent of an assumption, ?1 for the local models 
with negative effect by an assumption, and 1 for 
positive effect. In some cases, the effect of a fault 
assumption is uncertain if negative or positive. For
these cases, additional sensitivity matrix S’ is created, 
whose values are given 1 or 0; 1 for the local model 
dependent of an assumption, 0 for the local model 
independent of an assumption.
In addition, a matrix of non-sensitivity values, NS
which also describes the relationship between each 
local model and fault assumption is assigned to give 
some penalty to non-sensitivity symptoms. These 
values are given 1 or 0; 1 for the local model
independent of an assumption, 0 for the others

Conclusion about the satisfaction of each assumption 
(fault) is made by combining the evidence from the 
local model, sf with consideration to the sensitivity 
matrix S, S’, and the compensation matrix NS. This is 
done through the calculation of a vector of failure 
likelihoods, FL such that
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where N is the number of local model. It is evident 
that this method of combination allows the sf values 
of those local models which are most sensitive to ith 
fault assumption to be weighted the most heavily in 
the calculation of FLi. The failure likelihood is
interpreted as indicating a likely condition of ith fault 
assumption failing high as the value of FLi

approaches 1, while an FLi tending toward ?1
indicates a likely failure low.

5. ILLUSTRATIVE EXAMPLE

The example process is simple but displays the most 
common characteristics of industrial processes. This 
process is simulated by the model of Sorsa (Sorsa, 
1991). The sampling interval is 5 s and faults are 
introduced at 100 s. Some selected faults of the 
CSTR process is described in Table 1.

5.1 Design of local diagnostic models

Based on the knowledge of the CSTR process, we 
obtained a direct causal relation between variables.
The resulting local causality relation of the CSTR 
process is illustrated in Fig V. The whole system 
could be decomposed into several subsystems from
these direct and local causalities. For example, the 
variables having a direct effect on TR are FR, T, and 
FW. From this causality, a local model for recycle 
flow rate (TR) can be designed such as TR = f(FW, FR,
T).

5.2 Fault assumptions

Each fault should be associated with corresponding
local models before on-line diagnostic task. Explicit 
fault assumptions such as sensor faults are  naturally
associated with the local models that contain the
corresponding sensor variables . For example, FSBL
(flow sensor biased low) represents a failure for the 
recycle flow (FR) sensor. If the sensor for FR is not 
normal, the local model for FR deviates from its 
normal structure. In addition, the local models  for T
and TR that are directly affected by the real value of 
recycle flow make wrong estimates because they
have incorrect information about the recycle flow 
rate.

Table 1 Selected faults of the CSTR process
NO. name description
1 FSBL flow sensor biased low
2 FVBL flow control valve biased low
3 LEAK reactor leaking
4 LSBL level sensor biased low
5 LVBH level control valve biased high
6 TSBH temperature sensor biased high
7 TVBH temperature control valve biased high
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Fig. V. The direct causalities of the CSTR process

On the other hand, implicit fault assumptions are
associated with their corresponding local model
according to the adding rule explained in section 4.2.
For example, LVBH (level control valve biased high) 
represents a fault for valve VL (Fig IV.). This fault 
affects the valve output first. Because the valve
output is not measured, the output flow rate (FP) that 
is first affected by the valve output (VL) becomes the 
primary deviation variable for the fault LVBH and 
the local model for FP is associated with the fault , 
LVBH. In this manner, all faults in Table 1 are
associated with decomposed local models and the 
object-based diagnostic network for the CSTR
process is constructed as shown in Fig VI. The solid 
and dotted lines indicate the direction in which the 
associated model will deviate when the fault occurs. 
For example, FSBL is connected with the local 
model for FR positively (solid  line). It implies that
the predicted output of the model FR will deviate 
from its measured value in the positive direction
when the fault FSBL occurs.

5.3 Training local models

Each diagnostic local model has been trained via 
support vector regression technique. Learning data 
for training the local models designed at the previous 
steps were collected under the condition where some
external disturbances occurred or the set points of the 
controllers were changed. These kinds of data can be 
easily obtained in the process industries.

External disturbance data
Cooling water temperature high
Feed composition change low
Feed flow rate change high
Feed temperature change low

Controller set point change data
Level controller set point high
Temperature controller set point high
Flow controller set point high

Model FR

FR = fFR(FP, CR)

Model L
L = fL(F0, FP)

Model T
T = fT(T0, F0,FR,

CA,TR,L)

Model FP
FP = fF P(CL, FR)

Model FW

FW = fF W(CT)

Model TR

TR = fTR(FW, FR,
T)

Local Diagnostic Model Fault assumption
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LEAK
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Fig. VI. The object-based diagnostic network for the 
CSTR process

The input matrix of each local model includes a part 
of its past observations to handle the time-
dependency of the variables. The past values for all 
input variables always do not contribute to predict 
the output of a local model. For some input variables, 
both their past values and current values affect the 
current output of a local model. But in other cases,
only the current values of the input mainly affect the 
output of a model. Whether or not the past values of 
the variables should be included in the input matrix is 
determined on the basis of the knowledge of the
system and the comparison of the prediction
performance of a local model via cross validation.
Polynomial kernel was considered when applying 
Support Vector Machine regression technique. The
determination of appropriate kernel parameters (e.g., 
polynomial degree of the polynomial kernel) was
performed by cross validation. Table 2 summarizes
the input-output structure of each local model and 
model parameters selected. Table 2 summarizes the 
input-output structure of each local model and model 
parameters selected by cross validation.

5.4 On-line residual generation and evaluation

This study used 2σ of the residual distribution as the
threshold for cumulative summation (k) and 6σ of the 
CUSUM distribution as the control limit (h).

Table 2 The input-output structure of diagnostic local 
models and selected parameters

Local
Model

Inputs Output Kernel function in 
SVM

FR FR(t-1), FP(t -1)
CR(t), FP(t)

FR(t) Polynomial (n=1)

L L(t -1)
F0(t), FP(t)

L(t) Polynomial (n=1)

T T(t -1)
T0(t), F0(t), CA(t)
L(t), TR(t), FR(t)

L(t) Polynomial (n=1)

FP FP(t-1)
CL(t), FR(t)

FP(t) Polynomial (n=1)

FW CT(t) FW(t) Polynomial (n=1)
TR TR(t-1), FW(t-1)

T(t -1), FR(t-1)
FW(t), T(t)

TR(t) Polynomial (n=2)



Fig. VII. The measured/predicted values and
residuals  for FSBL

Fig. VII and VIII show the results for FSBS (flow 
sensor biased low). The flow sensor for recycle flow 
is biased low (-0.7 kg/s). This fault affects the
measure ment FR directly and the biased
measurements break the internal relationships of the 
corresponding local models. The diagnostic network 
for the CSTR process (Fig. VI) shows that the fault 
FSBL is associated with the local models  for FR, TR

and T. The local model for FR detected an abnormal 
behaviour at 100s and the local model for TR gave a
high signal at 105s and the local model for T gave a
low signal at 110s (Fig. VII). Fig. VIII shows the
fault likelihoods of considered faults for 10 sampling 
period. The fault likelihood of FSBL was largest after 
105 sec and could be successfully diagnosed.
The diagnosis results of selected faults are
summarized in Table 3.

5. CONCLUSION
 
This study proposes an object-based diagnostic
network which can diagnosis process faults
effectively without faulty data and an illustrative
example showed the proficiency of the proposed 
method. The proposed diagnostic method is very 
practical in that data readily available from the
process are used only and the modelling effort 
required for the development of diagnostic system is 
very cheap in comparison to analytical modelling. 
 

Table 1 Selected faults of the CSTR process
Fault Isolation Time (s) Mismatch rate
FSBL 105 0.0026
FVBL 100 0
LEAK 110 0.2128
LSBL 105 0.2868
LVBH 100 0
TSBH 105 0.0026
TVBH 100 0

Fig. VIII. The failure likelihoods for FSBL
 

This approach provides a natural way of integrating
qualitative information of the process into statistical 
learning structure  
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