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Abstract: Multi parameteric quadratic programming gives a full offline solution to
a time varying quadratic programming (QP) problem arising during constrained
predictive control. However, coding and implementation of this solution may be
more burdensome than simply solving the original QP. This paper proposes an
algorithm, which by accepting a small amount of suboptimality in the predicted
control trajectories, achieves a large decrease in both the online computation and
data storage requirements.
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1. INTRODUCTION

Obstacles to more widespread use of predictive
control (Mayne et al., 2000) are the computational
demand and the lack of transparency due to the use
of an online optimisation. Typical MPC algorithms
are based on the minimisation of a quadratic per-
formance index subject to linear constraints, that is
a quadratic programming (QP) problem. In many
cases (Rossiter et al., 2002), the control law must
have a simpler implementation: (i) coding limita-
tions may make a QP optimiser inpractical and
(ii) computational time restricts implementation on
fast systems.

A recent contribution (Bemporad et al., 2002),
denoted multi parametric quadratic programming
(MPQP), solves offline, all possible QP problems
that can arise on line and shows that the solution is
piecewise affine, that is, within computable regions

of the state space, the the input trajectory has
a known affine dependence on the current state.
Hence solving QP is equivalent to set membership
tests; if the state is inside region ‘k’, then use
the associated law. A major strength of MPQP is
visibility; implementation is akin to gain scheduling
in that the control law is modified according to the
current state. Unfortunately, MPQP may not be
efficient due to the potentially large number of re-
gions/laws to be stored and hence it could be harder
to implement than the original QP optimiser.

This paper proposes one means of reducing the
data storage requirements and implementation time
of MPQP by allowing a small degree of subop-
timality. Other authors are also considering this
problem (e.g.(Bemporad et al., 2001; Grieder et
al., 2003; Tondel et al., 2003)) but from a different
perspective. The paper gives a brief overview of
MPC and MPQP, shows how a suboptimal algo-



rithm can reduce complexity with little detriment
to performance.

2. BACKGROUND

2.1 Modelling and MPC

This paper makes use of state-space models,

xk+1 = Axk + Buk; yk = Cxk (1)

where x,u,y are the state, input and output re-
spectively. Associated to the model are constraints:

u ≤ uk ≤ u; x ≤ xk ≤ x (2)

Define the d.o.f. via a dummy variable c:

uk = −Kxk + ck; k = 0, ..., nc − 1
uk = −Kxk; k ≥ nc

(3)

where K is the optimal unconstrained feedback. Let
CT = [cT

0 , cT
1 , ..., cT

nc−1]. Then an MPC optimisa-
tion (Scokaert et al., 1998; Rossiter et al., 1998) of
performance subject to constraint satisfaction can
be written as:

min
C

J = CT SC s.t. McC+Mxx0−v ≤ 0 (4)

Details of matrices S, Mx, Mc and v are omitted
for brevity. The first component of C, that is c0 is
used to formulate the control law of (3).

2.2 Multi parametric quadratic programming

Consider the minimisation (4). The optimising C
depends upon x. Define regions Si, i = 0, 1, ...:

Si = {x : Mix − di ≤ 0} (5)

such that within each region the active set is the
same and hence the C optimising (4) has a known
affine dependence on x. The following algorithm
gives the optimal control:

Algorithm 2.1. Find i s.t. x ∈ Si, then

x ∈ Si ⇒ c = eT
1 (−K̂ix + ti) ⇒ u = −Kix + pi

(6)
where eT

1 = [I, 0, 0, ...], and Ki, ti, pi have obvious
definitions (Bemporad et al., 2002).

If the number of sets Si is small, then MPQP is very
efficient. However, if the number of sets is large then
the implied search and data storage requirements
can become unmanageable.

2.3 ONEDOF algorithms

ONEDOF algorithms (Rossiter et al., 2001) reduce
the computational burden of constraint handling
by: (i) allowing some suboptimality and (ii) mak-
ing good use of offline information. In ONEDOF
rather than minimising w.r.t. the control values uk,
one uses a mixture of input trajectories associated
to different control laws. For instance, with just
two laws, the optimisation reduces to a single set
membership test. The main weakness is possible
restrictions to the feasible region as sometimes non-
linear predictions are needed in transients to en-
large feasible regions.

The simplest algorithm makes use of a law u =
−Kfx with a large MAS and also the optimal
control law u = −Kx. One then takes a linear mix
of the predicted control trajectories arising from
each law and minimises the cost J over a scalar
mixing variable, subject to constraint satisfaction.
In summary the procedure reduces to:

Algorithm 2.2. (ONEDOF)

(1) Define the predicted future state and input
trajectories (subscripts o, f denote optimal
and feasible predictions) and α is the d.o.f. .

X = (1−α)Xo+αXf ; U = (1−α)Uo+αUf

(7)
(2) Substituting predictions (7) into the con-

straints of (2) gives the inequalities Mα −
d ≤ 0.

(3) Minimising J w.r.t. α is equivalent to:

min
α

α s.t.

{
Mα − d ≤ 0
0 ≤ α ≤ 1

(8)

(4) Compute the current control action from

uk = eT
1 [(1 − α)Uo + αUf ]. (9)

The minimisation (8) is trivial and hence efficient.
Moreover, examples (Rossiter et al., 2001) show
that, where feasible, suboptimality is often negli-
gible.

2.4 Summary

(1) MPQP suffers no loss in the size of the feasible
region or optimality but may be inefficient.

(2) ONEDOF is very efficient, but may have a
smaller feasible region and some suboptimal-
ity.



This paper combines the large feasible region of
MPQP with the efficiency of ONEDOF.

3. IMPROVING THE EFFICIENCY OF MPQP

We can use inferences from control strategies asso-
ciated to the MPQP feasibility boundary to gain a
significant reduction in complexity and surprisingly
little deterioration in performance.

3.1 MPQP and its region of attraction

The following lemmata are obvious and, due to
space restrictions, stated without proof.

Lemma 3.1. The MPQP control law is defined and
stabilising only in the region Smax where

Smax =
⋃
i

Si = {x : Mmaxx − dmax ≤ 0} (10)

Assume hereafter that Smax is in minimal form so
that redundant constraints are removed. For a given
pair K, nc, Smax is the maximal volume feasible
region.

Lemma 3.2. Each row of the linear inequalities de-
scribing Smax can be determined by forcing equality
of a subset of the inequalities in McC+Mxx−v ≤ 0.

Theorem 3.1. If x lies on the facet of Smax, then
one can identify the associated region Si and hence
the underlying optimal control law far more effi-
ciently than via a search over all the MPQP regions.

Proof: If x lies on a facet, then for some integer j:

eT
j [Mmaxx − dmax] = 0 (11)

Finding j requires an equivalent computation of
just one set membership test. One can now identify
the region Si in which x lies by doing a search over
only those regions contributing to the ith facet. In
general, the number of regions on a facet would be
far fewer than the total number of regions. ��
Hence an efficient procedure to find the optimal
control law (for x on a facet) is:

Algorithm 3.1. MPQP for boundary states

(1) Identify the active facet from (11).

(2) From those regions which contribute to the
jth facet, identify in which one x lies and
implement the appropriate control law from
(6).

Algorithm 3.1 is far more efficient that MPQP. First
the number of facets will in general be less that
the number of regions and moreover identifying the
active facet requires only the computation of one
inequality for each facet. Second, in general there
will be only a few active sets on each facet, so the
region search will be, relative to MPQP, simple.

3.2 Control law for states not on a facet

Here we extend algorithm 3.1 for interior points.
Assume that 0 ∈ Smax. The following lemma can
be used to establish the ‘nearest’ facet to a non-
boundary state.

Lemma 3.3. Assume that dT
max = [1, 1, ...] and the

rows of Mmax are mT
j . Define Pj as the minimal

volume polytopes containing the jth facet of Smax

and the origin. Compute the values γj = mT
j x and

compute j for which γj is a maximum. Then x lies
in polytope Pj .

Corollary 3.1. Given x ∈ Pj and γj = mT
j x find

the region Si such that x/γj ∈ Si. Then the control
move

u = −Kix + γjpi; (12)

is the first move of a predicted control law with
feasible and convergent predictions.

The control law implied by Corollary 3.1 requires
only information about the boundary and therefore
is far more efficient than MPQP: (i) only boundary
regions and associated laws need be stored; (ii) set
membership searchs are simplified to checking only
those on a known facet. However, the cost of this
simplification is suboptimality.

4. REDUCING SUBOPTIMALITY WITH
ONEDOF

This section proposes a novel implementation of the
ONEDOF algorithm to gain significant improve-
ments in performance on algorithm 3.1 and control
(12).



Algorithm 4.1. ONEDOF:

(1) Find the feasible C implied by Corollary (3.1).
(γj times the C for x/γj .)

(2) Solve the minimisation

min
α

α s.t. αMcC + Mxx − d ≤ 0 (13)

(3) Implement the control law: u = −Kx+eT
1 αC.

This algorithm requires only a a trivial linear pro-
gram, that is, in just one variable and therefore
equivalent in complexity to a single set membership
test. Despite this simplicity, one can often gain
significantly by of way optimality compared to the
control law of (12).

5. EXAMPLES

This section will illustrate two things. First the
efficacy of control law (12) (denote as SCALING)
and algorithm ONEDOF in giving near optimal
performance and vast improvements in online ef-
ficiency.

5.1 Example 1

Take the discrete model and input and state limits

xk+1 =

[
1 0.05
0 1

]
+

[
0.0025
0.05

]
; yk = [1 0]xk

−1 ≤ uk ≤ 1; −0.5 ≤ [0 1]xk ≤ 0.5 (14)

Compute the optimal control law with Q =
CT C, R = 1 as K = [0.9653 1.3655].

For nc = 2 with state constraints and for nc = 6
without state constraints, table 1 (and figures 1-
3) gives the number of MPQP regions and facets.
Comparing worst case scenarios, algorithm 4.1 gives
a reduction in complexity over MPQP of a factor of
at least 5. Set membership search complexity is at
most 18 as opposed to 85 regions for nc = 2 and at
most 2 compared to 385 for nc = 6! In both cases
there are far fewer facets than regions; moreover
locating the active facet from Lemma (3.3) is trivial.

Closed-loop simulations were performed for initial
states near the feasibility boundary. The runtime
cost was computed, based on J , for each algorithm
and is summarised in table 2. Clearly ONEDOF has

MPQP ONEDOF/SCALING

Regions Facets Maximum number regions per facet

nc = 2 with state constraints

85 30 18

nc = 6 without state constraints

385 62 2

Table 1. Maximum search complexity

Initial state MPQP ONEDOF SCALING

nc = 2 with state constraints[
−1.02

0.465

]
17.91 18.08 19.87[

1.1

−0.13

]
28.57 28.53 30.16

nc = 6 without state constraints[
−3.8

2.47

]
200.98 202.29 206.30[

3.2

−1

]
184.49 184.49 186.15

Table 2. Run time costs for example 1

negligible suboptimality. Closed-loop simulations
are given in figure 4 ((a,b) for one initial point
and (c,d) for the other; the solid line for MPQP,
dotted line for algorithm 4.1 and dashed line for the
algorithm of eqn.(12)) and these show only small
differences in behaviour.

5.2 Example 2

This model represents a simplified boiler for elec-
tricity generation:

A =


 0.98 0 0.019

0.075 0.607 0.001
0 0 0.607


 ;

B =

[
0.005 −0.021
0.39 00.05

]

C =

[
[1.69 13.22 0
0.84 0 0

]
[
−1
−1

]
≤ u ≤

[
1
1

]
; Q = CT C, R = I (15)

A summary of the number of regions, facets and
maximum regions per facet is given in table 3 for
nc = 3. Simulations are performed for initial points
close to the boundary of Smax and the closed-loop
run time costs are given in table 4. Once again it
is evident that the ONEDOF algorithm has given
only a small deterioration in performance relative
to the huge increase in efficiency - search complexity
down from 677 regions to 5!



MPQP ONEDOF/SCALING

Regions Facets Maximum number regions per facet

677 126 5

Table 3. Search complexity.

Initial state MPQP ONEDOF SCALING
 0.5

0.5

0.5


 56.51 68.61 149.6


 0.6

−0.6

0.6


 32.22 32.66 37.07


 0.65

−0.65

−0.65


 32.50 32.61 36.68


 0.55

0.55

−0.55


 63.51 73.05 151.30

Table 4. Run time costs for example 2.

6. CONCLUSION

This paper has shown how the MPQP algorithm
can be combined with the ONEDOF algorithm to
obtain an algorithm with the same size of feasibility
region, near optimal performance and yet a com-
paratively small computational load and far smaller
data storage requirement. This algorithm has now
been tested (and shown to be effective) on a large
number of systems and the results are reported in
(Rossiter et al., 2004).
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