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Abstract. Over the last two decades, the canonical variate analysis method for subspace
system identification has been widely applied. A number of these applications have
demonstrated near maximum likelihood accuracy of the adaptx CVA subspace algorithm
in large samples with unknown feedback. The critical step in the algorithm is the use of
an ARX model estimated by conditional maximum likelihood to remove the effects of
future inputs on future outputs. It is shown that the subspace estimates can be considered
as restrictions on the ML ARX estimates to a subspace of the parameters obtained by
projection methods. As a result, the errors between the models are orthogonal to the
subspace model, and the subspace parameter estimates are asymptotically ML. A critical
step in showing this orthogonality is use of the multistep form of the likelihood function.
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1. OVERVIEW

The purpose of this paper is to give an outline of
the large sample efficiency of adaptx for the case of
unknown feedback. A more detailed technical devel-
opment will appear elsewhere. Asymptotic efficiency
means the parameter estimation error approaches the
minimum variance bound for large sample size.

Over the past two decades, the computational methods,
statistical theory, and applications of canonical vari-
ate analysis (CVA) have been developed considerably.
The basic algorithm (Larimore, 1983) has been signifi-
cantly improved with model order selection (Larimore,
1990a; 1990b), confidence bands on spectral functions
such as frequency response and power spectrum (La-
rimore, 1993), monitoring and fault detection (Lari-
more, 1997a; Wang et al, 1997; Juricek et al, 2004;
Conner et al, 2004), and delay estimation (Larimore,
2003).

There were early empirical demonstrations of near op-
timal estimation approaching the Cramer-Rao lower
bound (Larimore et. al., 1984), with more detailed
simulations to follow (Deistler et al, 1995; Larimore,
1996a, 1996b; Peternell et al, 1996). In the case of no
inputs, this was followed by considerable effort on the
asymptotic theory, as the sample size becomes large,
showing the optimal properties of asymptotic normal-

ity and minimum variance (Bauer, 1998; 2004).

A much discussed aspect in the literature has been the
behavior of subspace system identification for the case
of colored inputs perhaps with feedback. The funda-
mental problem is the necessity to compute and re-
move the effects of future inputs on future outputs be-
fore the CVA is done to determine the system state.
But it appears that the CVA solution itself is required
to compute these effects on future outputs. In La-
rimore (1996a, 1996b), simulation results were pre-
sented that strongly suggest such efficiency for that
simulation model. The algorithm used in those sim-
ulations, and incorporated in the first release of the
ADAPTx™ software (Larimore, 1992) as well as all
subsequent releases, is as follows:

e Fit ARX. Using conditional maximum likelihood
(ML), fit ARX models recursively on order and
evaluate the AIC¢ statistic to determine the opti-
mal number ¢ of delayed inputs and outputs to use
in the CVA computation.

e Remove effects of future inputs q, on future outputs
f:- Compute the multistep predictor matrix € using
the ARX model, and compute the corrected future
filg = fi — Qqy.

e CVA. Do a CVA between the past p; and corrected
future f;|q; to determine the states ordered by their
associated canonical correlation.



o Select State Order k. Compute the estimated one-
step prediction error covariance matrix for each
state order from O to order ¢Dim(y;), compute the
associated AICc for each order, and select the min-
imum AICc.

o Estimate Model. Compute estimates of the state
space matrices and the one-step error covariance in
the state equations by regression.

o Alternate Model Forms. Solve the Riccati equation
and compute the innovations, overlapping parame-
terization, and ARMAX models.

It may seem surprising that the use of the ARX model
to remove the effects of future inputs from future out-
puts results in an optimal procedure with asymptotic
efficiency. Questions that come to mind are the well
known issues:

o High Order ARX. The ARX model can have far
more parameters to obtain a reasonable approxima-
tion to the process than the state space model espe-
cially for a process with moving average terms in
the noise requiring a high AR order.

o ARX Model Error. Such a high order ARX model
will have modeling error proportional to the number
of estimated parameters so the modeling error for
the ARX could be much larger than that potentially
achievable using a SS model.

e SS Model Error. Thus using the ARX model to re-
move the effect of future inputs on future outputs
could result in additional error in the future outputs,
and consequently increase the error in fitting the SS
model in subsequent steps.

While these issues are well founded concerns, it will
be shown that there is much additional structure to the
problem that effectively projects these additional er-
rors to zero.

The adaptx algorithm is discussed below in terms
of a number of statistical concepts and how they im-
pact the estimation problem. It has long been noted
in the literature (Larimore, 1990a) that the difficulty is
the presence of future inputs that introduce errors in
the prediction of the future outputs from the past, and
this introduces errors in the CVA step to determine the
state. The use of the ARX model avoids this problem
for a number of reasons that will become more evi-
dent in later sections. The basic concept is given in
Cox and Hinkley (1974, pp. 307, 321-4) concerning
nested models, projection, and sufficiency. The use of
the ARX model to remove future inputs from future
outputs has the following advantages:

e Linear Computation. Fitting of the ARX model per-
mits the approximate maximum likelihood identifi-
cation of a model using efficient and non-iterative
linear computations that are needed also to deter-
mine the number of lags € of the past to use in the
CVA calculation.

e Order-recursive Computation. A process can be ap-
proximated arbitrarily closely by an ARX process,
and recent methods permit the use of an efficient
(order &3 verses €* multiplications) order-recursive
computation that is highly accurate with no error ac-
cumulation (Larimore, 1990b, 2002).

o ML is Immune to Colored Inputs and Feedback. The

ARX procedure is asymptotically ML and as such
the estimates of the plant model from input and out-
put data do not depend on knowledge of the spec-
trum of the inputs or feedback system, i.e. there is
no bias in the estimates (Larimore, 1997b; Gustavs-
son et al, 1977)

e Nested Model. The ARX model class contains the
state space model that is fitted by regression so that
the subspace model is nested in the ARX model.
Specifically, the state space model parameters lie in
a subspace of the ARX model.

e Projection to Low Dimension. Because of the
nested model structure, fitting of the SS model by
regression projects the ARX model onto the low di-
mensional state subspace of the ARX space of de-
layed inputs and outputs.

e Decomposition of the ARX Model. The ARX model
decomposes into two pieces, the low-dimensional
SS model and the part of the ARX model orthogonal
to the SS model. This orthogonal piece projects to
zero, i.e. errors in this part of the ARX model go to
zero when projecting on the SS model.

e ARX Model is Sufficient for SS Model. From model
nesting, all of the information in the sample for in-
ference about the SS model is contained in the ARX
model parameter estimates.

e Multistep Likelihood Function. The equivalence of
the onestep and multistep likelihood functions plays
a key role in the technical details to demonstrate or-
thogonality.

While there have been a number of recent papers on
new subspace algorithms to handle colored inputs and
feedback, there has been very little discussion con-
cerning the asymptotic efficiency of these subspace
methods. An exception is Peternell et al (1996) who
discuss two algorithms, one imposing a block shift
structure on the model involving future inputs, and the
other using an iteration to refit the previous model for
removing the effects of inputs. By simulation, the first
method was shown not to be efficient, and the second
appeared to be. But the iterative method appears not
to have been pursued, presumably because a major ad-
vantage of CVA is the lack of any iteration.

A method was developed by Ljung and McKelvey
(1996) using ARX models to remove the effect of
future inputs on future outputs. However, the ARX
model is used in a completely different way to pre-
dict the future outputs that are then used in place of
the measurements. A major disadvantage is that such
a procedure will lead to biased estimates of the noise
covariance matrix. They mention the potential illcon-
ditioning in fitting high order ARX models. Illcon-
ditioning is avoided in the adaptx algorithm by us-
ing the order-recursive factorization algorithm (Lari-
more 1990b, 2002, 2003) that has been demonstrated
to be accurate to machine precision even in the case of
highly rank deficient data (Larimore, 2002).

Shi (2001) and Shi and MacGregor (2001) discuss
several algorithms and consider the use of the ARX
model to remove the effects of future inputs on future
outputs and show it gives unbiased estimates in the
presence of unknown feedback. There is no discussion
of the efficiency of the procedure.



2. ML ESTIMATION UNDER FEEDBACK

In this section, the maximum likelihood estimation of
input-output models under the effect of unknown feed-
back is discussed. ML estimation of models has the
considerable advantage of being immune to the pres-
ence of colored inputs or feedback.

An easy way to see the immunity of ML estimation
to feedback is based on simple conditional probabil-
ity relationships, as shown in Larimore (1997b). The
following notation will be used in the development,
YIN = (N, ., y1) and similarly for UlN . Also let
p: denote the inputs and outputs in the strict past of z.
The joint likelihood function of the outputs YlN and the

inputs U IN conditional on the initial state expressed by
the past p; at time ¢+ = 1 and as a function of the un-
known parameters 6 can be expressed

N N
p(¥YN, UV i3 0) = ([ [ pGilus, pis O] | pCalps; 03]

1=1 =1

ey
The probability densities above involve the conditional
random variable y,|(u;, p;) that is the usual output in-
novations process of the plant input-output model. The
conditional random variable u;|p, is the innovation of
the feedback system with a required delay of one time
step between y, and u,. The joint likelihood function
of (YIN U IN ) is expressed as the product of two terms
that are thus independently distributed. Each of these
terms is the product of probabilities of independently
distributed innovations processes.

The above factoring of the likelihood function into
two terms as in (1) always holds and is the conse-
quence of simple conditional probability rules. The
real usefulness comes, however, when the plant and
feedback pieces of the system can be parameterized
separately. Suppose that the parameter vector can
be written as § = (6,,0;) where the two subvectors
respectively parameterize the plant and feedback parts
of the systems. In this case, the maximum of the
likelihood function is the product of the maxima of
each of the two pieces. Thus under the hypothesis
that the process is in a plant-feedback form with the
only relationships between them appearing in the
plant inputs and outputs, then ML estimation of the
plant does not depend upon the presence or absence of
feedback. The actual computation of the ML estimates
for the ARX model and other details are discussed in
the next section.

3. PROJECTION IN ARX AND MARKOV MODELS

The fitting of ARX models using conditional ML and
the fitting of state space models using CVA involve the
use of regression. Projection is a very useful concept in
regression that greatly clarifies some fundamental or-
thogonality relationships among the identified param-
eters. The result of this is the elimination of the effect
of future inputs on future outputs even in the presence
of unknown feedback in the system.

Consider the multivariate ARX model

e e
Y0 = Y al)y(t =)+ Y ploul —s) +e() (2)

s=1 s=0

fort =¢+1,..., N, and where € is the AR and X
orders and the error e; is normally distributed with co-
variance matrix 2 and independently for different ¢.
The a(s) are the autoregressive (AR) coefficients and
the f(s) are the exogenous (X) input coefficients.

In fitting the ARX model using least squares (LS),
also called conditional maximum likelihood (ML), the
equations (2) are used fort = 2 +1,..., N, and are
transposed and stacked up to give

Y=Z0+E 3)

where YT = [yoi1. ..., yn ] with the first € observa-
tions of the output not used in the regression so it is
conditional on the first € observations. Also denote
@T = [(11 ..... Ay, ﬂo ..... ﬁg] and

The linear model (3) applies to much more general
processes than ARX models, that will be denoted by
©,4 when needed. The LS and conditional ML esti-
mates are given as

CEXVAVARYAD S
2=Y"Y-6"2"26

The model for y, is the right hand side of (2) without
the noise e;,, which is the conditional expectation of
¥, given the past p, and present input u,. This is the
systematic part of the model for Y. The ML estimates
© minimize the error E = Y — ¥ with

Y=26=26,+ - +2Z,0,.

where Z; is the i-th column of Z and 0, is the i-th
row of ©.

A subspace projection interpretation clarifies the nest-
ing of parameter spaces. Primarily the univariate case
is discussed for conceptual simplicity (see Schaffe,
1959, pp. 43, for a detailed discussion), but it extends
to the multivariate case (Anderson, 1984, pp. 295).

In the case that Y is a vector so that O is a vector of
parameters, then © is the linear combination of the
columns of Z that gives the model ¥ for Y. Thus
the model ZO is an N — ¢ dimensional vector that
lies in the m-dimensional subspace generated by the
m columns of Z, denoted S(Z). Also the parameters
(:)i can be associated with the basis vectors Z;, respec-
tively, and are coordinates for the subspace. A change
of coordinates can be used to define a different parame-
terization of the subspace. In the multivariate case that
Y is a matrix, then the above interpretation applies to
each column Y; of Y using the corresponding column



©,; of O so that the model for the i-th components Y;
of the observations is

Yi=26.=20,+ -+ Z,O 4)

This has the following projection interpretation. The
estimated model ¥ = Z6 = ZzZTz)"'ZTy
involves the orthogonal projection operator
Z(ZTZ)'ZT. The error Y — Y is orthogonal
to the estimate ¥ since substituting the above for ¥
reduces IA/T(Y — 1?) to zero. So Y is the orthogonal
projection of columns of Y onto the subspace S(Z)
span by the columns of Z with the projections defined
by the linear combinations (4) specified by the
columns of ©.

Substituting ¥ = ZO + E into ¥ = Z6 =
Z(Z"72)"'Z"Y gives

Y=2z0+2Z"2)"'Z"E (3)

Thus, under the hypotheses that the true process lies
in a lower dimensional subspace, the first observation
is that except for the noise, the estimate ¥ is equal to
the true noiseless value Z© plus noise. The second
observation is that projecting the data on a lower di-
mensional subspace reduces the degrees of freedom of
the noise to the dimension of the subspace. This is a
major concept in obtaining asymptotic efficiency.

In the case of static regression where the regressors
Z are not random variables but fixed known values,
parameter estimates are unbiased since

EZ"2) ' zTy - 0]
= E(Z"2)'ZT(ZO+E)-0]=0

E[6 - 0]

and the parameter estimation error between any two
columns ©; and ©; of O is

Cov(6;,0,)=E(Z2"2)"' Z"E,E] 2(Z" )™
=Z"2)"72"6,;2(Z"2)" = 6,;(Z" Z)!

Suppose the space S(Z) decomposes into two sub-

spaces that are orthogonal so Z, = (Zi,..., Z,)
and Z, = (Z,41,..., Z,) with Z = (Z, Z;) and
the orthogonality condition Z!'Z, = 0. Then the

corresponding decomposition of the parameters © =
(©,; ©p) have diagonal covariance matrix with

Cov(6;,0)) = o;;diag((ZL Z)™" (Z] zp)™)

SO parameter estimates C:)a and (:)b are uncorrelated.
The converse is also true; if ®, and ©, are uncorre-
lated, then Z, and Z, are orthogonal.

Now given a subspace S(Z) of a larger space S(Z,),
the orthogonal compliment Z,4_g can always be con-
structed by orthonormalization, that in turn defines or-
thogonal parameter estimates O¢ and ©4_g5. The Zg
and Og are said to be nested respectively in Z4 and
0 4. Denoting the restricted model as Vs =2 S(:)s in
such a nested structure, the error IA/A - f’s is orthogo-
nal to the estimate Y as illustrated in Fig. 1 and the
parameter estimates @S and © A—s are uncorrelated.

—>— Vectors Y, Y
(arrow at midpoint)

———= } Subspaces S !
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Figure 1: Nested Subspaces and Orthogonality Rela-
tionships.

In the case of estimating an ARX time series with Z
random rather than a static regression, the above prop-
erties also hold asymptotically for large sample under
appropriate assumptions (Liitkepohl, 1993).

Now, consider any finite dimensional multivariable
Markov process with vector input u, and output y, of
the form

X1 = Qx; + Gut + wy (6)
yi = Hx; + Aus + Bw; + v, @)

where x; is a k-order Markov state and w; and v; are
white noise processes that are independent with co-
variance matrices Q and R respectively. An alterna-
tive representation is the innovations form where the
noise terms w, and Bw, + v; are replaced, respectively,
with Kv, and the output innovation v,, where K is the
Kalman gain obtained from solving the Riccati equa-
tion. The state expressed as x; = J,°p;° in terms of the
infinite past p;° is

x = Y (©— KH)™'[(G - KA + Kyl (8)
i=1

that results from recursively substituting (6) for x, in
(6). Eq. (8) is equivalent to (6) provided that J°(®) is
parameterized as in (6) and (7). By truncating, the ap-
proximation x; = Jy p; is obtained. The approximation
error decreases as (@ — K H)? that is exponential in
the length € of the past p; so it can be ignored asymp-
totically. Since (7) with x; = Jip; is in the ARX form
(2) with additional restrictions on the parameters, the
Markov model (6) and (7) is nested within the ARX
model class, asymptotically.

In the adaptx subspace algorithm, the fitting of the
Markov model is done in two steps. First, a reduced-
rank regression is done to estimate J; of fixed rank
inx, = J, p; and with no parametric constraints on
Ji so it is not parameterized as in (8). The reduced-
rank regression is performed using a canonical variate
analysis between past and future as developed in La-
rimore (1997a) for the case of no inputs. The case of
inputs with feedback is developed in the next section.
In the second step, the constraints are then introduced
by regression using (6) and (7) with the state given by
x; = Jip,. In particular, let X* denote X with the
time index f replaced by ¢ + 1, and project (X* Y) on



S(X U) to obtain (® G; H A). Implicit in this re-
gression are additional constraints among the parame-
ters that lead to the various state space canonical forms
(Candy et al, 1979).

This can be viewed as a succession of restrictions on
ML models starting with the ARX, then the reduced
rank regression using CVA, and finally the state space
regression using (6) and (7). The latter two involve
nonlinear parameterizations, and the projection
methods developed above are generalized in the next
section to such nonlinear parameterizations.

4. SUBSPACE DETERMINATION BY CVA

In this section, the CVA procedure for the determina-
tion of the state space subspace is developed. The main
difficulty in the case of feedback is to remove the ef-
fects of future inputs on future outputs. This is done
using the estimated ARX model and a multistep form
of the likelihood function.

The future f; = (y,T ..... yITM)T of the process is re-
lated to the past p, through the state x, and the future
inputs g; = (urT ,,,,, utT+ é,)T in the form

fi= TTxt + QT‘I[ + e ©)]

where x, lies in some fixed subspace of p;, T =
(H; H®;...; H®*™") and the i, j-th block of Q is
H®'~'G. The presence of the future inputs g; creates
a major problem in determining the state space sub-
space from the observed past and future. If the term
QT g, could be removed from the above equation, then
the state space subspace could be estimated accurately.
The method used in the adaptx algorithm is to fit an
ARX model and compute an estimate ¥ of ¥ based
on the estimated ARX parameters. Note that an ARX
process can be expressed in state space form with state
Xx; = p; so that the above expressions for Q and ¥ in
terms of the state space model can be used as well for
the ARX model. Then the ARX state space parameters
(®,G, H, A) and ¥ and Q are themselves functions of
the ARX model parameters © 4.

In Larimore (1997a), the determination of the state
space subspace by CVA was developed from basic
principles and the maximum likelihood method with
a rank constraint. This leads to a CVA between the
past p; and f, — Q7 q;, the future outputs with the ef-
fects of future inputs removed. To justify the CVA for
a correlated time series, a multistep ahead form of the
likelihood function was derived. The log likelihood

function of the outputs YOIX—I conditional on the inputs

UIN and the past pyy at time € + 1 is of the form

lng(Yé:l_l |P€+1 ’ Q: o, 2)

1 N
=3 Z log p((f; — QT (©)g))|p,. ©,%))(10)

t=0+1

To be exact, a maximized 1ikelihpod function should
be satisfied by the ML estimates O for the SS model.
But of course these estimates are not available for com-
puting Q(Oy) at the point of trying to determine the

state space subspace, so the corrected future cannot be
computed.

Now consider removing the effect of future inputs
from future outputs using the ARX parameter esti-
mates © 4. The first point is that the multistep likeli-
hood function (10) is asymptotically equivalent to the
one-step prediction likelihood (see Bauer, 2004). Thus
parameter estimates from the two are asymptotically
equivalent and can be used interchangeably. The es-
timates of the ARX parameters © 4 do not involve the
estimates of the covariance matrix X4 so ®4 can be
estimated separately.

Consider the model (9) of the multistep output f; with
Y (0©) and Q(0®) nonlinear in the parameters © that ap-
pear in the multistep likelihood function (10). The no-
tation F = (fot1, ..., fn-e)T is used where each col-
umn of F is one component of the future vector f,.
Then for an estimate @, the model for F is

F = X¥(6)+0Q(60) = WII(O) (11)

with TI(®) = (¥(0) Q(0)). As in the linear regression
case, F lies in the subspace span by the columns of
W = (X Q).

Suppose the ®4 and Og are two nested models with
Og C O4. As in the linear regression case, consider
the refinement of the ML parameter estimate ©4 by
restriction to the model (:)S that is assumed to be true.
The orthogonality condition

F(O5)[F(©4) - F(65)] =0

holds asymptotically for large sample in the nonlinear
case. This is proven using results from Magnus and
Neudecker (1988) where it is shown that the first dif-
ferential of the likelihood function leads to the above
orthogonality condition in the case of univariate non-
linear regression, and is easily extended to multivari-
ate nonlinear regression. Thus as in the linear regres-
sion case, the error F ((:) 4) — FA((:)S) in the estimate is
orthogonal to the estimate F(®g) asymptotically for
large sample. For any two columns fI,- = H,-(C:)) and
flj = Hj(@)) and where o;; applies to e; of (9), it can
be shown that asymptotically

oIl or;
o, WTW)™! = Cov(IT,, I1))) = ﬁCov(@, @)a—é
(12)

In the last section, the parameter space © 4 is reparam-
eterized by O and the difference © 4_g that are uncor-
related. Let I1(®y) or I[1(®4_s) denote IT as a function
with © restricted to the respective subspaces ©g and
®4-s, and let W and W4 _g be the corresponding sub-
spaces of W. Using (12), it can be shown that asymp-
totically Wy and Wy_g are orthogonal if and only if
S) 4 and 6 A—s are uncorrelated.

If Q(Oy) was known, then a canonical variate analysis
between f; — Q(O5)" g, and the past p, would estimate
the state space subspace. If the ARX estimate O is
used instead of C:)s, then from (9)



[i—Q04)7 g =¥Os) x, — [QO4) — Q6N g
+[¥(O5) — ¥ (O] x; + [QOs) — QO g, + v,

where the first term is the projection on the ML
estimated state X; and the second is error between the
ML ARX and SS estimates in removing future input
effects, with the first term orthogonal to the second.
Remaining terms are due to ML estimation errors that
are minimum and the error ;. From the above, it
can be shown that the CVA using f; — Q6 )" g,, the
future corrected with the ARX rather than the SS ML
parameter estimates, and the past p, to determine the
state space subspace introduces no bias or added vari-
ance asymptotically. This reduces the case of inputs
and feedback to the no inputs case, that achieves the
ML lower bound asymptotically (Bauer, 2004).
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