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Abstract: The distributed behavior of a chemical system can be represented by a
system of partial differential equations. The general solution of this representation
gives rise to a high order system with infinite dynamics which cannot be used for
an application such as control. Given an exact model of the system, this work
discusses the use of accelerated empirical eigenfunctions as basis functions in a
nonlinear Galerkin method to arrive at a reduced-order solution. The technique
is applied to the hydro-dealkylation of toluene and the quality of the results are
compared to those obtained using standard Galerkin method.
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1. INTRODUCTION

A large number of chemical processes can be de-
scribed accurately by a system of partial differen-
tial equations (PDEs) in which the independent
variables are one or more spatial variables and
time. Examples include, the heat equation and
the kinematic wave equation. Solutions of these
systems are infinite series solutions that meet cer-
tain boundary conditions based on the problem to
be solved. To use these solutions in an application
such as control will require suitable discretizations
of the governing equations. Such discretizations
are computationally expensive and also cumber-
some to work with (Zheng, 2003).

One approach to obtain low order models is based
on the existence of an Inertial Manifold (IM). The
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existence of an IM for a class of nonlinear dissipa-
tive PDEs was confirmed by (Foias et al., 1989).
On an IM, all the trajectories of the long time
behavior decay exponentially to a global attractor.
The dissipative nature of the long time behavior
of the system means that the behavior can be
characterized by a small number of active degrees
of freedom. The fact that for many classes of dissi-
pative dynamical systems there exists an IM is sig-
nificant because properties such as stability can be
analyzed by a study of the inertial form (ordinary
differential equation on the IM). The interested
reader is referred to the work of (Shvartsman and
Kevrekidis, 1998). When an explicit form of the
IM cannot be derived, an approximate inertial
manifold (AIM) can be generated by successive
substitution (Zheng, 2003). The criteria for ex-
istence of an AIM were presented for nonlinear
parabolic evolution equations by (You, 1995).

Another approach to obtain low order models
is based on a statistical analysis of the spatio-



temporal data obtained from the system (Holmes
et al., 1996; Sirovich et al., 1990). A semi-
empirical method such as Proper Orthogonal De-
composition or the Karhunen-Loève expansion
(KL) is applied to the data which yields a set of
empirical eigenfunctions (EEFs). These EEFs are
combined with a standard PDE solution approach
such as the Galerkin method to transform the
original infinite-order system into one with finite-
order dynamics while retaining the long time
behavior. The method has been widely applied
in a variety of fields ranging from hydrodynam-
ics (Holmes et al., 1996) to reaction engineering
(Zheng and Hoo, 2002b).

While these methods have been successful with a
large number of problems, for certain systems the
solution may not be accurate. For instance, in a
study by (Sirovich et al., 1990) of the complex
Ginzburg-Landau equation, it was shown that
a standard KL-Galerkin solution was less accu-
rate (based on the Lyapunov dimension) when
Dirichlet boundary conditions were applied. Sim-
ilar observations were found by (Zheng, 2003)
when a standard KL-Galerkin method was used
to develop a reduced-order model of a nonlin-
ear tubular reactor system. This lack of accuracy
will impact important applications such as model-
based control and monitoring that require low
order models for implementation reasons. Thus,
the objective of developing accurate reduced-order
models for these types of applications provides the
motivation for considering an alternate approach.

In this work, an approach that retains some of
the modes that are excluded in the identification
of the EEFs is examined (Sirovich et al., 1990).
These new EEFs are called accelerated EEFs
(aEEFs) and when applied with the Galerkin
method they produce a nonlinear Galerkin solu-
tion. This approach differs from the AIM method
because the solution found from the latter as-
sumes pseudo-steady state of the fast modes. In
the determination of the aEEFs, the time deriva-
tive of the data is used. This difference provides
insights into how the system changes with time as
long as the data themselves are of high fidelity.

The paper is organized as follows: Section 2
develops the accelerated nonlinear KL-Galerkin
method. Section 3 demonstrates the approach on
a nonlinear tubular reactor system and compares
the results to the solution obtained using a stan-
dard (linear) KL-Galerkin method. The final sec-
tion contains concluding remarks.

2. METHODOLOGY

2.1 Standard Karhunen-Loève Expansion

The Karhunen-Loève expansion is a linear pro-
cedure that generates basis functions that cor-
respond to the dominant modes of the dynami-
cal system. These basis functions are the empir-
ical eigenfunctions (EEFs) (Holmes et al., 1996;
Sirovich et al., 1987) of the system. If the system
is dissipative, then the long time behavior can
be characterized by a small number of degrees
of freedom. Thus, only a small number of EEFs
are necessary to describe the system resulting in
a reduction in the order of the model without loss
of complexity (Newman, 1996). The procedure
employed to generate the EEFs uses data taken
from the system. The procedure is summarized as
follows (Sirovich et al., 1987):

1 Data are collected at different spatial points
at regularly spaced time intervals. These data
may be plant data or simulated data taken
from a mathematical description of the plant.
In either case, the data represent perturba-
tions about a nominal state. It is important
that the data contain information about the
dynamic behavior of the system and are of
high fidelity.

2 A set of data points at any given time is
called a snapshot of the system at that time.
The data are arranged as an ensemble of
snapshots. It is assumed that the ensemble
has a single average.

3 The spatial correlation matrix of the snap-
shots is calculated. Under the assumption
of ergodicity (Newman, 1996), the spatial
correlation matrix defines an eigenfunction
/ eigenvector problem whose eigenfunctions
are the empirical eigenfunctions of the sys-
tem.

It has been shown that the EEFs are optimal in
the sense of the energy captured from the data.
The first few EEFs capture most of the energy
of the system where the largest EEFs correspond
to the slowly evolving modes of the system. If for
some systems the eigenspectrum is not separated,
then a large number of EEFs may be necessary
to capture greater than 90% of the energy in the
system. One such system has been discussed by
(Zheng and Hoo, 2002b).

2.2 Accelerated Karhunen-Loève Expansion

The basic concept of generating accelerated EEFs
is to use the information from the time derivative
of the data to capture the nonlinearity of the
system. The following description is adapted from



the work of (Sirovich et al., 1990) and (Zheng,
2003). Consider the PDE given by,

∂x
∂t

= ẋ(z, t)=Ax(z, t)=f(x)

A=α
∂2

∂z2
−ν

∂

∂z

(1)

where α, ν > 0, z ∈ Ω ⊂ R, t ≥ 0, and x ∈ Rn. By
the Karhunen-Loève theorem, for the differential
system given in (1),

ẋ(z, t) =
∞∑

k=1

〈ψk, ẋ〉ψk =
∞∑

k=1

bk(t)ψk(z) (2)

where the set {ψ} is a complete orthonormal basis
set in the function space and 〈·, ·〉 denotes an
inner product under which {ψ} is orthonormal.
The coefficients {bk} are the projections of ẋ onto
the functions {ψ}.
Let PN be the projection operator onto the first
N elements of {ψ} and ψ̄N ≡ {ψ1, .., ψN}. Such
an operator will give a finite truncation, ẋN , of
ẋ. Let QC be the complement of PN such that
QC ≡ (1−PN ). Applying the projection operators
to the system in (1) and using (2) gives,

PN ẋ= ẋN =〈ψ̄N , ẋ〉=
∞∑

k=1

〈ψ̄N , ψk〉bk(t)

QC ẋ= ẋC =〈ψ̄C , ẋ〉=
∞∑

k=1

〈ψ̄C , ψk〉bk(t)

ẋ = ẋN + ẋC

(3)

and ψ̄C ≡ {ψN+1, .., ψ∞}. With respect to the
right hand side of (1),

ẋN =PNf(x)=F(xN +xC)

ẋC =QCf(x)=R(xN +xC).
(4)

The slow modes of the system are represented by
xN and the fast modes by xC . The slow modes
evolve slowly in time and hence dominate the
long time behavior of the system. In the standard
Galerkin procedure, xC = 0 such that ẋN =
F(xN ) and R(xN ) = 0.

Suppose the set {ψ} is selected such that R is min-
imized, i.e. ‖R‖. Then, R(xN + xC) = 0 implying
that the fast modes can be made a function of the
slow ones. This approach is similar to the AIM
method, however in the AIM approach, the fast
modes are necessarily functions of the slow modes
because of the pseudo-steady state assumption of
the fast modes.

The minimization of R implies a minimization of
‖ẋC‖2(< ε) or a maximization of ‖ẋN‖2. These
quantities are time dependent. Thus, the ensemble
time average given by

Ė = (〈ẋN , ẋN 〉) (5)

is maximized.

Let {ẋ(z, tn)} ≡ {ẋ(n)}, be an ensemble (M
members) of uniform samples of the states in (1).
The spatial correlation function of this process is
given by,

L(z, ζ) = lim
M→∞

1
M

M∑
n=1

ẋ
(n)
i ẋ

(n)
j .

By Mercer’s theorem,

L(z, ζ) =
∞∑

k=1

λkψk(z)ψk(ζ) (6)

where {λk} are the eigenvalues and {ψk} are the
accelerated eigenfunctions of L(z, ζ). The infinite
series in (6) converges absolutely and uniformly
on Ω×Ω. It then follows that (Ash and Gardner,
1975) ∫

Ω

L(z, ζ)ψj(ζ)dζ = λjψj(z).

The above result also implies that the set {ψ} can
be obtained from the data (ẋ).

Since the operator PN serves to produce a finite
truncation, then ẋN can be associated with the
coefficients bN = {bk(t)}N

k=1. Similarly, ẋC is
associated with bC and {b} = {bN + bC}.
The following dynamical system can be formu-
lated,

dẋ
dt

=
∑ dbk

dt
ψk =

d

dt
f(x)

PN
dẋ
dt

=
dbN

dt
=SN (bN ,bC)

QC
dẋ
dt

=
dbC

dt
=SC(bN ,bC).

(7)

The maximization of (5) implies

(‖ḃC‖) < ε.

Therefore, the above dynamical system in (7)
becomes

dbN

dt
= SN (bN ,bC)

0 = SC(bN ,bC).
(8)

It is noted that the deliberate requirement by (5)
led to the system in (8). The algebraic part of the
above system can be solved readily for bC as a
function of bN .

3. HDA PROCESS

The hydro-dealkylation (HDA) of toluene to pro-
duce benzene has been studied extensively in the
open literature. The following description is taken
from (Zheng, 2003). The known reactions are,

R1 : C7H8 + H2 → C6H6 + CH4

R2 : 2C6H6  C12H10 + H2

(9)

The process flowsheet has two feed streams: a pure
liquid toluene stream at ambient conditions, and



a gaseous hydrogen stream consisting of 95 mole
percent hydrogen and 5 mole percent methane, at
100oF and 560 psia. The objective of the design
is to produce benzene at a rate of 256 lbmole/hr
and at a purity of 99.7%.

The reactor operating pressure is 500 psia, and
to realize a satisfactory reaction rate, the inlet
reactor temperature should be above 1150oF, but
the reactor temperature itself should not exceed
1300oF to prevent hydrocracking. Further, the
hydrogen-toluene feed ratio at the reactor inlet
should be at five to one or larger to reduce coking
and to reduce product loses by R2. Also, the
reactor effluent stream must be quenched rapidly
to at least 1150oF to prevent coking in the heat
exchanger that follows the reactor.

The process in the tubular reactor can be de-
scribed by the following system of nonlinear, di-
mensionless PDEs,

∂ξ1

∂τ
= −ν

[
∂ξ1

∂τ1
+

ξ1

θ

∂θ

∂τ1

]
− ξ1ξ

0.5
2 θ1.5eγ1

θ−1
θ

∂ξ2

∂τ
= −ν

[
∂ξ2

∂τ1
+

ξ2

θ

∂θ

∂τ1

]
− ξ1ξ

0.5
2 θ1.5eγ1

θ−1
θ +

κ2(ξ3θ)2eγ2
θ−1

θ − κ3ξ2ξ5θ
2eγ3

θ−1
θ

∂ξ3

∂τ
= −ν
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∂x3

∂τ1
+

ξ3

θ

∂θ
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]
+ ξ1ξ

0.5
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θ −

2κ2(ξ3θ)2eγ2
θ−1
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2eγ3

θ−1
θ
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= −ν

[
∂ξ4

∂τ1
+

ξ4

θ

∂θ
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]
+ ξ1ξ

0.5
2 θ1.5eγ1

θ−1
θ

∂ξ5

∂τ
= −ν

[
∂ξ5

∂τ1
+

ξ5

θ

∂θ

∂τ1

]
+ κ2(ξ3θ)2eγ2

θ−1
θ −

κ3ξ2ξ5θ
2eγ3

θ−1
θ

∂θ

∂τ
=

1
ζ

[
Hr1

∂ξ1

∂τ
−Hr2

∂ξ5

∂τ
+ Q(θF − θ)−

ν

(
ζ

∂θ

∂τ1
−Hr1

∂ξ1

∂τ1
+ Hr2

∂ξ5

∂τ1

)
− FBmζB

]

z = 0

{
ξj = ξj(t = 0) j = 1, . . . , 5

θ = θ(t = 0)

z = 1





∂ξj

∂z
= 0 j = 1, . . . , 5

∂θ

∂z
= 0 .

where ξj , j = 1 . . . 5 represents the concentra-
tions of toluene, hydrogen, benzene, methane, and
diphenyl, respectively; θ represents the temper-
ature; and τ = t/tcr is the dimensionless time.
The initial feed compositions of toluene, hydro-

gen, and methane are {0.0807, 0.4035, 0.5158},
respectively. See Table 1 for other values.

Table 1. Table of parameter Values

Parameter Nominal Values

Fbm 0.0

θF =
TF

T0
1.0

tcr =
C0

k1(T0)P
3/2
0

2.077

k1(T0) 1.0

κ2 =
k2(T0)P 2

0

k1(T0)P 1.5
0

0.995

κ3 =
k3(T0)P 2

0

k1(T0)P 1.5
0

5.34

HR1 =
HR1

ĉp0T0
-1.51

HR2 =
HR2

ĉp0T0
-0.473

Q =
u(s/v)tcr

ĉp0T0C0
0.0

γ1 =
Ea

RT0
29.26

γ2 =
Ea

RT0
29.68

γ3 =
Ea

RT0
33.49

3.1 Results

The system of PDEs describing the HDA process
is solved using the method of finite differences
(FD) with 101 spatial points. This solution is con-
sidered the true solution. Simulated data (snap-
shots) are taken from the FD solution to deter-
mine the EEFs and the aEEFs where it is assumed
that there are five temperature sensors located
along the tubular reactor (z=0, 1/3, 1/2, 2/3, 1),
but all composition measurements are available
only at the exit (z=1) of the reactor. The data
are collected over a range of 0 < FBm < 0.003
and a ±2% change in the reactor pressure. Figure
1 shows the first two EEFs found for each of the
methods (linear KL:4,5 and aKL:◦, •) for the
temperature data. Table 2 shows the associated
eigenvalues of the temperature and benzene data.
The first three eigenvalues capture >95% of the
energy in the data.

In order to find the best reduced-order models,
two and three EEF (mode) models for both tem-
perature and benzene are examined, in the lin-
ear KL-Galerkin case. These models are tested in
the presence of 3% increase in reactor pressure
and 0.15% increase in benzene injection flowrate
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Fig. 1. Eigenfunctions of the temperature data.

Table 2. The first 3 eigenvalues.

Eigenvalues Temperature Benzene

KL aKL KL aKL
1 0.9814 0.9922 0.9827 0.7220
2 0.0125 0.0066 0.0056 0.2108
3 0.0043 0.0008 0.0006 0.0290
Cum 0.9882 0.9996 0.9889 0.9618

(FBm). Using the Integral of the Time Averaged
Error (ITAE) as a measure of fit to the data, it
is found that the two-EEF models (second order)
give the smallest error.
Since the development of the aKL models consid-
ers the fast modes only as functions of the slow
modes, the order of the model is equal to the
number of slow modes used. The ITAE measure
in the aKL case indicates that for temperature,
a second order model, with the third and fourth
modes expressed as functions of the first two, is
the best. Similarly for benzene, a first order model
with one slow and two fast modes gave the lowest
ITAE.
The ITAEs for the best models are given in Table
3.

Table 3. ITAE for the best models.

Temperature Benzene

KL aKL KL aKL
Nominal 0.0066 0.0049 0.0093 0.0024
3%inc Pres 0.7182 0.5116 0.3693 0.1553
0.15% FBm 0.8629 0.7001 1.0311 0.9315

Figure 2 compares the results of the reduced-
order models used in the KL-Galerkin (4) and
aKL-Galerkin (◦) methods to that of the FD
(¦) solution at the nominal conditions. Figures
3 and 4 show the model fit of temperature and
benzene for a 3% increase in the reactor pressure
and a 0.15% increase in FBm, respectively. The
aKL models fit the dynamics better than the
KL models in both the temperature and benzene
responses. Higher order KL models (not shown)
did not improve the overall fit.
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Fig. 2. Model fit at the nominal conditions.

4. SUMMARY

This work has introduced and demonstrated a
nonlinear Galerkin method based on the work of
(Sirovich et al., 1990) who introduced the con-
cept of empirical eigenfunctions (EEFs). However,
whereas the usual concept of the EEFs in the
Galerkin method results in a linear solution, the
use of accelerated EEFs (aEEFs) captures some
of the fast modes that are ignored in the develop-
ment of the linear solution. For highly non-linear
systems, it is argued that the fast modes contain
some of the nonlinear behavior and therefore their
use in the development of a reduced-order model
may produce a better representation.

In some ways the formulation presented in this
work is similar to the Approximate Inertial Mani-
fold (AIM) solution. The AIM solution is obtained
by sequential substitution, assuming a pseudo-
steady state for the fast modes. In the present
work, such an assumption does not hold. The
aKL-Galerkin method was then demonstrated on
a highly non-linear tubular reactor system. The
fit of the temperature and benzene models were
compared to the finite difference solution. It was
found that the aKL-Galerkin solution tracked
the finite difference solution better than the KL-
Galerkin solution. This may be crucial in control
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Fig. 3. Model fit: +3% in the reactor pressure.

applications where very tight control has to be
maintained.
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Expansion. Ind. & Eng. Chem. Res. 41, 1545–
1556.

Zheng, D. (2003). System Identification and
Model-based Control for a Class of Distributed
Parameter Systems. Doctor of philosophy.
Texas Tech University. Lubbock, TX.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



