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Abstract: Modern industrial enterprises have invested significant resources for col-
lecting and distributing data, with the expectation that it will enhance profitability
via better decision making. Due to the complexity of these problems, existing
approaches tend to make convenient, but invalid assumptions so that tractable
solution may be found. For example, for estimation in nonlinear dynamic systems,
extended Kalman filtering (EKF) relies on Gaussian approximation and local
linearization to find a closed-form solution. Moving horizon based least-squares
estimation (MHE) also relies on Gaussian approximation, but the use of nonlinear
models and constraints eliminates most of the computational benefits of this
approximation, but can provide more accurate estimates than EKF. Unfortunately,
in most practical nonlinear dynamic systems, the posterior distributions are often
far from Gaussian, and continually change their shape.
Our previous work has developed rigorous Bayesian methods for estimation
in nonlinear dynamic systems with constraints. These methods rely on recent
theoretical developments in Sequential Monte Carlo Sampling (SMC). It does not
rely on assumptions about the shape of the distributions, or nature of the models.
Furthermore, this approach is expected to be computationally more efficient due
to its recursive formulation that does not rely on nonlinear programming. These
claims have been supported via applications to relatively small scale CSTR case
studies. However, there are no illustrations or theoretical proofs to indicate how
SMC performs for high-dimensional systems.
This paper applies our previous work on Bayesian rectification by SMC to large
scale nonlinear dynamic systems and compares the computational efficiency and
accuracy with MHE and EKF. The model of the selected polymerization reactor
contains eight variables, exhibit significant linear and nonlinear dynamics under
different operating conditions, and requires satisfaction of process constraints.
Results indicate that the accuracy and computational benefits of SMC are
significant even for such high-dimensional systems.
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1. INTRODUCTION

Efficient operation of chemical and manufacturing
processes relies on cleaning or rectification of mea-
sured data and estimation of unknown quantities.
Data rectification and estimation form the foun-
dation for process operation tasks such as process
control, fault detection and diagnosis, real-time
estimation, process monitoring, and process scale-
up. Since most processes are nonlinear and subject
to constraints, significant efforts have already fo-
cused on methods for estimation of nonlinear dy-
namic systems (Kramer and Mah, 1994; Robert-
son et al., 1996).

In our previous work, we have developed rigor-
ous Bayesian methods for estimation in nonlin-
ear dynamic systems. This approach relies on
recent theoretical developments at the interface
of statistical physics and Bayesian statistics. Un-
like existing methods, this approach of sequential
Monte Carlo sampling (SMC) does not rely on
assumptions about the shape of the distributions,
or nature of the models. Instead, it allows the
distributions to adopt any shape according to
system dynamics or constraints. Furthermore, the
proposed approach is expected to be computa-
tionally efficient due to its recursive formulation.
Previous results have illustrated that SMC shows
significant improvement in estimation accuracy
over existing methods, and in computation time
over moving horizon based least-squares estima-
tion (MHE) for cases with or without constraints
(Chen et al., 2004; Chen et al., 2003b). However,
these illustrations were based on relatively low-
dimensional examples, and were not enough to
address skepticism about the feasibility and ad-
vantages of SMC based Bayesian estimation for
higher dimensional problems.

Such skepticism is well-founded for data-based
methods due to the “curse of dimensionality”,
and may also apply to sampling based meth-
ods. Traditionally, Bayesian methods have not
been feasible for high-dimensional systems since
these methods usually require integration in high-
dimensional space over a relatively fine grid, which
leads to formidable requirement of computation.
This experience leads to the perception and ex-
pectation that the computation load of sampling
based methods might also increase exponentially
thus making them impractical for most large scale
problems.

This paper demonstrates that Bayesian estima-
tion by SMC is feasible even for high-dimensional
systems via application to a polymerization re-
actor. The selected process model is nonlinear,
dynamic and involves eight state variables. Non-
negativity constraints are also imposed on some
variables. The estimation accuracy and computa-
tional efficiency of EKF, MHE and SMC are stud-
ied under a variety of conditions. These studies
show that SMC can be significantly faster than
MHE for similar estimation accuracy. Since the
posterior distributions for the selected operating
conditions may be approximated quite well as
Gaussian distributions, the accuracy of SMC and
MHE can be comparable. The case study indicates
that Bayesian estimation via SMC may not be
subject to the curse of dimensionality, and can re-
tain its theoretical rigor and practical benefits for
high-dimensional problems. The theoretical basis
for this observation is also discussed in this paper.

In the following sections, a review of Bayesian
estimation is first introduced. After that, the
algorithm for SMC is provided. Performance of
the proposed approach is compared with that of
existing approaches in the case study section.

2. BAYESIAN ESTIMATION FOR DYNAMIC
SYSTEMS

In general, the goal of estimation may be ex-
pressed as follows. Given measurements y1:k =
{y1, y2, . . . , yk}, process models, and the distri-
bution of the initial condition p(x0), determine
the current state, xk. Process models may be
expressed as follows,

xk = fk−1(xk−1, ωk−1) (1)

yk = hk(xk, νk) (2)

where xk ∈ <
nx is the state vector and fk : <

nx ×
<nω → <nx is the system equation. Measure-
ments, yk ∈ <

ny , are related to the state vector
through the measurement equation, hk : <

nx ×
<nν → <ny .

Bayesian estimation provides a rigorous way of
maximizing the use of all available information
and can handle all types of errors, models and
constraints. All variables are considered to be
stochastic, and previous belief can be combined
with the current measurements via Bayes rule.
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Fig. 1. Algorithm of recursive Bayesian estima-
tion.

The recursive formulation of Bayesian estimation
has been proposed decades ago and may be rep-
resented as follows (Ho and Lee, 1964),

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)

p(yk|y1:k−1)
, (3)

where p(xk|y1:k) is the posterior. p(xk|y1:k−1) may
be found by solving the following two equations.

p(xk|y1:k−1) =
∫

p(xk|xk−1) p(xk−1|y1:k−1) dxk−1 (4)

p(xk|xk−1) =
∫

δ(xk − fk−1(xk−1, ωk−1)) p(ωk−1) dωk−1(5)

Likelihood distribution may be found as follows.

p(yk|xk) =

∫

δ(yk − hk(xk, νk)) p(νk) dνk (6)

Further detail of the derivation of these equations
can be found in Chen et al. (2004).

The algorithm for recursive Bayesian estimation
may be visualized as in Figure 1. Information
in previous measurements up to time k − 1 is
captured by the prior, p(xk−1|y1:k−1). Prediction
of distribution of the current state is implemented
by utilizing Equations (4) and (5). Information in
current measurement is represented as the likeli-
hood function based on Equation (6). The poste-
rior can then be found by combining previous and
current information by Equation (3).

After the posterior is available, a point estimate
and its uncertainty may be obtained via,

E[L(xk)] =

∫

L(xk) p(xk|y1:k) dxk, (7)

where L(·) is a chosen loss or criterion function
(Jazwinski, 1970). Mean, mode or median of the
posterior are popular choices for the point esti-
mate.

In general, there is no closed-form solution for
Equations (4) to (6). Direct integration is com-
putationally expensive and may not be practi-
cal for high-dimensional systems. Most estimation
methods address these computational challenges
by making simplifying assumptions about the na-
ture of the model and/or posterior distributions at
the cost of accuracy and computational efficiency.
However, recent theoretical advances coupled with
fast computation are providing the foundation of
building a feasible Bayesian approach even for
large scale systems. This computationally efficient
algorithm is based on sequential Monte Carlo sam-
pling and will be discussed in Section 3.

2.1 Bayesian view of existing methods

Existing methods may be described as special
cases of Bayesian estimation. EKF assumes Gaus-
sian prior and additive Gaussian noise and relies
on local linearization to have closed-form solu-
tion (Jazwinski, 1970). MHE also relies on the
assumption of Gaussian prior and additive Gaus-
sian noise to have the least-squares formulation
(Robertson et al., 1996). MHE may be more accu-
rate results than EKF by keeping the nonlinearity
and being able to handle constraints. However, a
closed-form solution is not available anymore. In-
stead, MHE needs to solve a constrained nonlinear
programming problem over each moving window
and lacks a recursive formulation. This makes
MHE a computationally demanding algorithm.
In the presence of constraints, MHE implicitly
uses truncated Gaussian prior. Modifications via
approximating truncated Gaussian distributions
with combination of Gaussian or other fixed-shape
distributions have also been suggested (Robertson
and Lee, 2002). However, a general algorithm to
decide the optimal number of Gaussian distribu-
tions for approximation is not easy to find. Fur-
ther discussion of EKF and MHE with SMC can
be found in Chen et al. (2004).

3. BAYESIAN ESTIMATION BY
SEQUENTIAL MONTE CARLO SAMPLING

Monte Carlo sampling based Bayesian approach
has been an active area of research for a few years
(Gordon et al., 1993; Doucet et al., 2000; Andrieu
et al., 2003). Existing methods may be catego-
rized into two groups, sequential Monte Carlo
sampling (SMC) and Markov chain Monte Carlo
sampling (MCMC). Both SMC and MCMC use
Monte Carlo sampling for its convenience in com-
puting the properties of distributions from avail-
able samples. MCMC employs iterative algorithm
for generating samples, while SMC draws samples
from an importance function and adjusts samples’



importance with weight. In this paper, SMC is
favored for its computational efficiency.

The algorithm for SMC may be represented in
pseudo-code as follows (Chen et al., 2003b):

• FOR times k = 1, 2, 3, . . .
· FOR samples i = 1, 2, 3, . . . , N

- Draw sample, xk(i) from an impor-
tance function, π(xk|xk−1(i), yk)

- Enforce constraints by acceptance
and rejection algorithm

- Assign a weight to xk(i), q
∗
k
(i)

· END FOR
· Normalize q∗

k
(i) to find qk(i)

· Implement resampling when necessary
· Find E[φk(xk)] ≈

∑N

l=1
φk(xk(l))qk(l)

• END FOR

where

q∗k(i) = qk−1(i)
p(yk|xk(i)) p(xk(i)|xk−1(i))

π(xk(i)|xk−1(i), yk)
(8)

A convenient choice of importance function is to
use samples of prior as the importance function
(Gordon et al., 1993),

π(xk(i)|xk−1(i), yk) = p(xk(i)|xk−1(i)) (9)

This choice simplifies Equation (8) to

q∗k(i) = qk−1(i) p(yk|xk(i)) (10)

More sophisticated choice of importance functions
is expected to improve the robustness of SMC
(Doucet et al., 2000).

Various issues of applying SMC have been found
and practical solutions are available. SMC may
develop degeneracy after several time steps when
most samples have insignificant importance to
the distribution. Degeneracy can be easily im-
proved by performing resampling Chen et al.

(2004). SMC may also encounter slow initial con-
vergence when poor initial guess is used. Slow
initial convergence can be significantly improved
via empirically estimating the initial state (Chen
et al., 2004).

3.1 SMC of High-Dimensional Problems

The computational challenges faced by direct
computation of Bayesian integrals (Equations (4)
to (6)) are formidable for low-dimensional prob-
lems, and could become intractable for high-
dimensional cases. As discussed earlier, this com-
putational challenge has motivated the applica-
tion of Monte Carlo sampling for Bayesian es-
timation. However, the feasibility of SMC for
high-dimensional problems is not obvious since

the number of samples to maintain equal den-
sity or coverage in the solution space increases
exponentially with increasing dimensionality. Fur-
thermore, since more samples are required to fill
the solution space, it is possible that SMC faces
more frequent and serious encounters with vari-
ous practical challenges like, degeneracy or/and
slow initial convergence. It is not clear whether
Monte Carlo sampling based approaches suffer
more from the curse of dimensionality than other
competing approaches like EKF and MHE. Recent
theoretical research has been addressing these and
other related issues. The key relevant findings are
summarized in this subsection based on the survey
of Crisan and Doucet (2002).

Theoretical studies indicate that the convergence
of SMC in terms of mean-squares error toward
zero is almost sure when the importance weights,
{qk(i)}, are upper bounded, and when a standard
resampling scheme is applied. Under these slightly
restrictive conditions, the convergence rate is in-
versely proportional to the number of samples,
and is independent of the dimensionality of the
problem. Even though more studies are needed
to explore the existence of a general convergence
property, the number of samples required for SMC
in high-dimensional systems may not have to be
exponentially increasing. Thus the computation
load of SMCmay not have to be increased dramat-
ically to obtain accurate estimates. Furthermore,
the convergence of SMC may be independent or
weakly dependent on the dimensionality.

Another benefit of SMC is that it can be readily
implemented in parallel. This is because each sam-
ple can be computed independently for most of
the computation algorithm. Parts of the algorithm
that can not be incorporated into the parallel
computation include the occasional implementa-
tion of resampling, and the inference from the
posterior. Thus, a parallel implementation can re-
tain the computational efficiency even when large
number of samples become necessary.

Recent theoretical development shows that the
convergence of SMC may be independent of the
dimension of the problem, and is inversely propor-
tional to the number of samples. In addition, the
recursive formulation also reduces the complexity
of the problem compared to a moving horizon
formulation. The computational efficiency of SMC
may actually be practical for high-dimensional
cases, and our results confirm the expectation.

4. CASE STUDY

Start-up of a polymerization process in a con-
tinuous stirred tank reactor (CSTR) is studied
(Tatiraju et al., 1999). Monomer styrene, initia-
tor, and solvent are continuously fed into the
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Fig. 2. Performance comparison of Polymerization
case study. Top three plots illustrate MSE
results, while the bottom one shows CPU
load for each method. Not all results are
presented for clarity.

reactor with constant flow rates and compositions.
The system has eight state variables, including
concentrations of initiator, solvent, and monomer
in the CSTR, temperatures in the CSTR and in
the cooling device, and first three moments of the
molecular weight distribution. Finite difference is
used to simulate the true states. Nonlinear process
model and simulation conditions and parameters
can be found in Chen et al. (2003a).

All system states are assumed to be measur-
able and both states and measurements are con-
taminated with independent and identically dis-
tributed Gaussian noise. Estimation performance
compares three estimation methods, EKF, MHE
and SMC, on the accuracy and efficiency of es-
timation with noisy measurements. Non-negative
constraints on all state variables are enforced.
Results provided in Figure 2 and Table 1 are
based on 100 realizations of simulation by Octave
on a personal computer with Pentium 2.0 GHz
and 512MB RAM. 50 measurements are rectified
in each realization. Accuracy is compared based
on mean-squares error (MSE). For comparison
purpose, point estimate is chosen for SMC. Mean
is chosen simply for computational convenience.
MHE is based on the codes by James Rawlings’
group at University of Wisconsin. No systematic
way of finding the proper window size of MHE
exists, and usually the number of state variables
is used as the horizon width. CPU time required
is also studied (in units of CPU seconds per time
step) with SMC by uncompiled code, while MHE
is based on compiled code.

The proposed approach, SMC, exhibits signifi-
cant efficiency in data rectification of a high-
dimensional problem. SMC easily outperforms
EKF in MSE since no linearization is required.
SMC and MHE has competitive performance on

5 10 15 20 25 30 35 40 45 50
2.9

2.95

3

3.05

3.1

3.15

3.2

Time step

C
m

Estimation performance of Momomer Concentration

True
Noisy Measurements
EKF
MHE,width=10
SMC,N=500

Fig. 3. Estimation results of polymerization case.
Estimates provided by SMC are bounded
with 95% error bar.

MSE since the posterior exhibits Gaussian like
features. However, SMC requires less than 7%
of computation than MHE even when SMC is
based on uncompiled code. This result indicates
that methods based on Gaussian approximation
need not be computationally more efficient than
methods based on other distributions.

Bayesian estimation can readily provide uncer-
tainty information. Figure 3 shows SMC estimate
with 95% error bar. Estimating the error bounds
or any moment of the posterior is straightforward
and can be implemented by choosing proper loss
function, L(·), in Equation (7).

5. CONCLUSION AND DISCUSSIONS

This paper extends our previous work on Bayesian
estimation by sequential Monte Carlo sampling
(SMC) to high-dimensional systems. The for-
mulation is general and has shown significantly
better performance for a variety of systems in-
cluding, linear and nonlinear, Gaussian and non-
Gaussian, constrained and non-constrained sys-
tems. To date, most applications were to relatively
small scale problems (Chen et al., 2004; Chen
et al., 2003b). Application to high-dimensional
systems is essential to identify and address any
new challenges, and to support claims about the
practicality of the proposed approach.

CPU results indicate that SMC may not suffer
severely from the curse of dimensionality as com-
monly expected. Rectification performance on an
eight state variables nonlinear dynamic systems
shows that SMC requires less than 7% of computa-
tion load than MHE while providing competitive
estimation accuracy. The accuracy of SMC can
be much better than MHE and EKF for systems
with highly non-Gaussian posterior distributions.
In this example, estimates of MHE and SMC have



Table 1. Mean-Squares Error and CPU time for Polymerization Case Study. Not
All Results Are Presented for Clarity.

MSECs MSEλ0 MSECm CPU Parameter

EKF 7.3× 10−6 ± 6.7× 10−6 2.0× 10−1 ± 2.7× 10−3 1.8× 10−4 ± 5.5× 10−5 0.003 N/A

MHE 6.9× 10−6 ± 6.6× 10−6 1.3× 10−5 ± 9.8× 10−6 5.7× 10−6 ± 6.6× 10−6 0.85 m = 10

6.9× 10−6 ± 6.6× 10−6 1.2× 10−5 ± 9.6× 10−6 5.7× 10−6 ± 6.6× 10−6 1.39 m = 20

SMC 7.0× 10−6 ± 6.6× 10−6 9.6× 10−6 ± 1.0× 10−5 5.7× 10−6 ± 6.5× 10−6 0.03 N = 500

7.0× 10−6 ± 6.6× 10−6 9.5× 10−6 ± 1.0× 10−5 5.7× 10−6 ± 6.3× 10−6 0.07 N = 1000

6.9× 10−6 ± 6.6× 10−6 9.4× 10−6 ± 1.0× 10−5 5.7× 10−6 ± 6.7× 10−6 0.23 N = 2000

comparable accuracy which results from the Gaus-
sian like priors of the system under the operat-
ing condition studied. SMC has shown significant
improvement over MHE in situations when non-
Gaussian priors exist with or without constraints
(Chen et al., 2004; Chen et al., 2003b). Other oper-
ating conditions with non-Gaussian distributions
are currently being explored.

The results in this paper compare point estimates
of SMC with other methods. Since details about
the posterior distribution at each time point are
available in SMC, choice of the loss function can
have a significant effect on the accuracy of the
point estimate. The use of the mean value, as
in current work may not be appropriate, par-
ticularly for multi-modal distributions. Such a
point estimate may not utilize all the benefits of
Bayesian estimation, and its use for performance
comparison with other methods that rely on Gaus-
sian approximation may be biased against SMC.
Research on appropriate loss functions for non-
Gaussian distributions is on-going for a better
and fairer portrayal of the benefits of SMC-based
Bayesian estimation.
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