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Abstract: Linear and nonlinear principal component analysis is used to characterize
the state space of a kinetic Monte Carlo simulation of thin film deposition. The
film’s surface is first characterized using spatial correlation functions. This high-
dimensional representation is reduced using a combination of linear and nonlinear
projection. When nonlinear projection is used, the dynamics of the training and
test data can be captured within 2% and 7%, respectively, using three dimensions.
In constrast, a three-dimensional linear reduction does not adequately describe the
relationship between the training and test data.
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1. INTRODUCTION

To manufacture faster computers, device size is
approaching the atomic scale, and to create new
materials, structure at the nanometer scale is be-
ing designed and exploited. In both cases, the
manufacturing dynamics are defined by the inter-
actions among many atoms. To optimize and con-
trol such processes, dynamic models are needed,
which may take the form of molecular dynamics or
Monte Carlo simulations (Nieminen, 2002; Star-
rost and Carter, 2002). The focus of this paper is
on the fabrication of ultra-thin films, using lattice
Monte Carlo simulations to describe the process-
ing dynamics. Time-varying processes histories
are sometimes beneficial in depositing very thin
films (Markov et al., 1991; Rosefeld et al., 1995),
but they are difficult to optimize due to the ex-
tremely high dimension of the dynamic models.

Model reduction provides a framework to reduce
the internal dimension of these models, while pre-

serving the map between inputs and outputs of
interest. Analytical approaches to reduction have
been developed for linear systems (Moore, 1981),
but when the system is nonlinear, a data-driven
approach is more often used. Snapshots of data are
obtained from experiment or simulation, and are
then reduced, yielding either a linear subspace via
principal component analysis (PCA) (Holmes et
al., 1996), or a nonlinear manifold using nonlinear
principal component analysis (NLPCA). The for-
mer method is computationally efficient, but when
the relationship among the states is nonlinear,
may not yield a small state dimension. Nonlinear
PCA provides an alternative to linear PCA, and
may be accomplished through the method of prin-
cipal curves, neural net training, or a combination
of both methods (Bolton et al., 2003; Dong and
McAvoy, 1996; Kramer, 1991). Recent application
of NLPCA to high-dimensional process dynamics
includes the reduction of a polymerization reac-
tion (McLain and Henson, 2000).



Recent research has focused on the reduction of
process models for thin film deposition. Straight-
forward application of existing methods is possible
for continuum models of reacting flow (Banks
et al., 2002), while the surface evolution may
require a non-continuum model. Principal com-
ponent analysis has been applied to the sur-
face height profile in lattice Monte Carlo simu-
lations (Gallivan et al., 2000; Raimondeau and
Vlachos, 2000), but does not provide a predictive
model in part due to the stochastic nature of the
simulations. An alternative approach to reduction
directly addresses this stochastic feature, by de-
scribing the evolution of a probability distribution
(Gallivan and Murray, 2004), but requires that
the set of “typical” surfaces be known. In this
work, a systematic reduction method is applied
to a Monte Carlo simulation of film growth, using
a combination of PCA and NLPCA to identify a
reduced set of state variables. This reduced state
space could then be used for system identification.
Section 2 describes the original high-dimensional
model. The reduction method is described in Sec-
tion 3, and the results of the Monte Carlo reduc-
tion are presented in Section 4. Sections 5 and 6
provide a discussion of the method and results, as
well as directions for future research.

2. MODEL AND SIMULATIONS

In this work, the physical model for the processing
dynamics is a lattice model. Atoms may only take
spatial positions on this rigid lattice and, in this
work, a cubic lattice is used. Atoms are allowed to
take positions in the lattice from the gas phase,
or to hop from one lattice site to an adjacent
one. The rates of these transitions and there
temperature dependence reflect the evolution of
germanium films, as described in a previous work
(Gallivan and Atwater, 2004).

The lattice model describes the evolution of a
probability distribution for the occupancy of the
entire lattice. However, due to its extremely high
dimension, individual stochastic realizations are
instead performed using the kinetic Monte Carlo
(KMC) method. While Monte Carlo simulations
typically describe equilibrium properties, kinetic
Monte Carlo simulations capture the correct evo-
lution in time (Bortz et al., 1975). Periodic bound-
ary conditions are used to eliminate edge effects,
since the actual growth surface is much larger than
the simulation domain. A KMC simulation of a
300x300 site surface is shown in Figure 1. Only a
portion of the full simulation domain is shown so
that the individual atoms can be resolved. Dark-
colored atoms are on the edge of an atomic-height
step, while light atoms have four side neighbors
and comprise atomically-smooth terraces.

Fig. 1. Picture of a KMC simulation.
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Fig. 2. Step density oscillations during epitaxial
growth.

The model problem considered in this work is
the description of the surface height profile, or
surface morphology. As atoms adsorb onto the
surface from the surrounding gas, clusters first
nucleate on the surface, grow, and then coalesesce.
This oscillatory behavior is illustrated by Figure
2, in which the time to deposit one monolayer
(mL) of material is 1 s. When the temperature
is high, the hopping rate of atoms increases,
leading to fewer clusters, and a smoother surface.
The oscillatory behavior decays faster at lower
temperatures, because clusters nucleate on the
second layer prior to full coalescence of the first
layer. Periodic growth temperature can be used
to achieve a smoother surface than any constant
temperature in this range, as shown in Figure 2.
The temperature is lowered to 75 C during the
first 20% of each layer, and then raised to 150
C during the remaining 80%. As a result, many
smaller clusters nucleate during the beginning
of the layer, after which temperature is raised
to fill in the gaps between clusters (Markov et
al., 1991; Rosefeld et al., 1995). The goal of this
paper is to generate a reduced set of coordinates
that describes the dynamics of both constant and
time-varying growth temperature.

While each KMC simulation generates a surface
height profile, the location of individual clusters
on the surface changes from realization to realiza-
tion because the simulations are stochastic. Thus,
alternate measures are needed to characterize each
realization, and to compare simulations generated
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Fig. 3. Step-step correlation function (up-down)
for 0.5 mL at 150 C.

under the same or different process conditions.
One simple solution is to perform a Fourier trans-
form of each surface to identify key length scales
associated with cluster size and spacing. Alter-
natively, spatial correlation functions be used. In
fact, the height-height correlation function can
be computed directly from the Fourier transform
(Tong and Williams, 1994). In this work the spa-
tial correlation function for surface steps is used
instead, since the films are extremely thin and are
best characterized by the location and spacing of
atomic-height steps. Defining the surface height to
be h(z,y) for site (z,y), the presence of an “up”
step in the x and y directions is computed as

1
2
3
4

suz(®,y) =1 ifh(z+1,y) > h(z,y)
=0 otherwise
Suy(z,y)=1 ifh(z,y+1) > h(z,y)

=0 otherwise.

(1)
(2)
3)
(4)

“Down” steps are computed similarly, by revers-
ing the inequalities. The step-step correlation
function then is defined to be

1
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ssegi(r) = X (5)
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where k and [ may each take values of u or d to
denote the up and down directions, respectively.
Due to the discrete nature of the simulations,
xz, y, and r are positive integers. An example
of a step-step correlation function is shown in
Figure 3. The peak in the correlation function
represents the typical cluster size, since a cluster
is composed of an up-step followed by a down-
step. To characterize a surface during a KMC
simulation, all four step-step correlation functions
are computed, and thus represent the full state of
the system. In the case of the 300x300 (n, =
n, = 300) surfaces used here, the state dimension
is thus 1200. The underlying physical assumption

is that the evolution of two surfaces with the same
initial step-step correlation function is the same,
as measured by the step-step correlation function,
and is justified based on physical intuition only.

3. METHOD FOR STATE SPACE
REDUCTION

The method used here for reduction is analogous
to other data-driven methods for state-space re-
duction (Holmes et al., 1996; McLain and Hen-
son, 2000). Snapshots are collected from a high-
dimensional simulation, and are then projected
onto a space of reduced dimension. The four steps
are outlined and briefly described:

e Step 1: Collect snapshots.

The snapshots of the surface height pro-
file are collected at regular intervals. These
snapshots must represent the entire range of
surfaces to be considered (which is true for
any black-box system identification method).

e Step 2: Express in physically meaningful co-
ordinates.

Earlier attempts to reduce the state di-
mension of KMC simulations (Gallivan et
al., 2000; Raimondeau and Vlachos, 2000)
focused on the surface height profile. This
set of coordinates changes from realization
to realization because of the spatial random-
ness of the simulations, and does not yield
sufficiently predictive modes. Here, a spatial
correlation function is used instead, which is
sensitive to the distribution of features, but
not to their spatial locations. This provides a
set of physically meaningful (although high-
dimensional) coordinates to classify the state
of the system.

e Step 3: Perform linear projection.

A linear principal component analysis is
first performed on the matrix of snapshots
to identify a reduced dimensional linear sub-
space. One could theoretically skip this step
and perform the nonlinear projection on the
full snapshot matrix, but in practice it is
advantageous to perform a linear projection
first. The singular value decomposition used
for PCA can easily handle large data matri-
ces, while the nonlinear optimization used in
Step 4 is more computationally demanding.

The linear modes determined by PCA are
ordered in terms of the energy associated
with each mode. However, it is not clear in
this example that the highest energy mode
is also the most important in predicting
the evolution of the state. Consequently, the
PCA modes are rescaled by their singular
values, so that the projection coefficients for
each mode have a typical value of order 1.
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Fig. 4. Neural net with 3 inputs and outputs, 4
nodes in the mapping and demapping layers,
and 2 nodes in the bottleneck layer. This net
is used to reduce data from 3 dimensions to
2 dimensions.

These rescaled coefficients are then used as
inputs for the nonlinear projection.
e Step 4: Perform nonlinear projection.

The NLPCA method of Kramer (Kramer,
1991) is used to perform the nonlinear pro-
jection. This method relies on a neural net
to describe the principal components, as il-
lustrated in Figure 4. The net is trained to
approximate the identity map for the data
matrix, despite a hidden bottleneck layer
with a reduced number of nodes. Once the
net is successfully trained, the outputs of
the bottleneck layer are the reduced set of
coordinates.

4. RESULTS

The reduction approach presented in Section 3 is
now applied to the model of Section 2. In the pre-
vious study of germanium film growth (Gallivan
and Atwater, 2004), it was noted that the surfaces
accessed during constant temperature growth also
represented the typical surfaces seen under time-
varying temperature. The benefit of the time-
varying input was simply to access the smoother
states after 10 s of growth, which could only be
accessed under constant temperature at earlier
times. Thus, constant temperature simulations
were run at temperatures of T = 75, 87, 100, 125,
and 150 C for 10 s of growth. They were sampled
at intervals of 0.1 s, yielding 500 snapshots.

After performing the KMC simulations and col-
lecting the snapshots, the step-step correlation
function of equation (5) was computed for each
snapshot. All computations associated with the
reduction were performed using Matlab. The data
was collected into a 1200x 500 training matrix and
its singular value decomposition was computed to
obtain the linear principal component analysis.
The corresponding singular values are shown in
Figure 2. The singular values quickly decay by
two orders of magnitude, and then level off. Thus,
the first six linear modes are used to represent
the surface structure, while the remainder are
neglected and assumed to be noise. This issue will
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Fig. 5. Singular values of the training matrix.

be revisited in Section 5. The error associated with
this truncation is quantified as

_ Xk ?;1(11(1' 7) = 90,9))?

it j= o1 y(i, )2 7 ©)

where ng is the number of snapshots, n; is the
number of elements in the data vector, y(i,j) is
the (i, j) element of a data matrix, and §(4, j) is a
reconstruction of y(4,7). This is the same metric
used to assess the energy captured in PCA.

The first six linear modes retained here capture
0.9993 of the energy of the constant temperature
data matrix, and also 0.9992 of the energy for
the periodic input pictured in Figure 2. In the
remainder of the paper, the former matrix will be
referred to as the training matrix, and the latter
as the test matrix. It should also be noted that the
first three modes capture 0.9990 of the energy of
the training matrix and the test matrix. However,
it is not clear that the energy metric is the most
appropriate one, since small energy features in
the step-step correlation function could be critical
in determinig its future evolution. Thus, before
performing NLPCA, each of the six PCA modes
is multiplied by its corresponding singular value,
so that the projection coefficients for all six modes
will be (typically) of order 1.

The nonlinear principal component analysis is
performed using Matlab’s Neural Net toolbox.
The training matrix is used to compute a weight
and a bias for a sigmoid function associated
with each node, using a scaled conjugate gradient
method and a maximum of 5000 iterations. Ran-
dom initial guesses were used for the weights and
biases. In all cases, 10 mapping and 10 demapping
nodes were used for the first and third layers of the
neural net, while the number of bottleneck nodes
was varied. The number of inputs and outputs is
six, corresponding to the number of linear princi-
pal components retained. The goal of the training
is to obtain the identify map. If the identity can
be well-approximated using a reduced number of
bottleneck nodes, then the outputs of the bot-
tleneck nodes may be taken as a reduced set of
coordinates for the training matrix. Furthermore,
if the error is also small for the test matrix, then



Table 1. Reconstruction error associated
with linear and nonlinear PCA.

Data: training test
Projection:  linear nonlinear  linear  nonlinear
Dimension
2 0.48 0.17 0.76 0.44
3 0.29 0.02 0.64 0.07
4 0.05 0.01 0.10 0.03
6 0 0.00 0 0.02

the net can be viewed as predictive and may be
used to interpolate the reduced coordinates for
intermediate data points not used in the training.

The error, as defined by equation (6), is shown
in Table 1. The error for the two-dimensional
NLPCA is high, but is greatly reduced when a
third bottleneck node is added. Adding additional
nodes improves the reconstruction, and should
theoretically bring the error to zero when the
number of bottleneck nodes equals the number
of inputs (6 in this case). The error for the
linear reconstruction is associated with a second
PCA performed on the rescaled coefficients of the
original PCA. Since each mode should contribute
equally, it should not be expected that a reduced
number would provide a good approximation.

Figure 6(a) shows the 3-dimensional NLPCA co-
ordinates for the training and test data. Consis-
tent with the small error, these coordinates reflect
the physical relationship among the data points.
The various temperatures are ordered from top to
bottom, and the oscillatory behavior of Figure 2
is reflected in a circular arrangement of the data.
As the oscillations decay, the surfaces spiral out
from the center. Note that some of these cycles
obscurred by the two-dimensional rendering of the
data. This nonlinear projection also captures the
test data, in which the system moves back and
forth between the training data at the minumum
and maximum temperatures.

The linear projection shown in Figure 6(b) cor-
responds to the errors reported in Table 1. The
constant temperature training data is not clearly
organized as with NLPCA, and the error is sub-
stantial (64%) for the test data. For comparison, a
third plot is shown as Figure 6(c), representing the
linear reconstruction of the data on the original
three principal components, prior to the rescaling.
The reconstruction does not clearly show a phys-
ically meaningful relationship among the snap-
shots. Perhaps more significantly, the test data
does not interpolate among the training data, but
instead is extrapolating out into a region not used
for identification.

5. DISCUSSION AND FUTURE WORK

Nonlinear projection captures the behavior ob-
served in the KMC simulations, using a smaller

Fig. 6. 3-D projections (a) nonlinear, (b) linear
with scaled coefficients, (c¢) linear with un-
scaled coefficients. The constant temperature
snapshots used in the training matrix are
marked by symbols—75 C (x), 87 C (square),
100 C (o), 125 C (A), and 150 C (). The
evolution under the test data (periodic tem-
perature) is represented by the dashed line.

set of coordinates than is needed for linear PCA.
This reduction of the state space may lead to im-
proved understanding of the dominant dynamics
of thin film morphology evolution, and also could
be used for system identification. For example, the
reduced state space could be discretized, with each
point representing an important group of surfaces
with similar properties. The transitions between
groups could then be computed using KMC simu-
lation data (Gallivan and Murray, 2004). Other
identification methods could also be applied to
this low-order system.



This reduction method is largely automated, al-
though some user input is required to select the
number of modes in the linear projection. Open
issues include the role of noise, and the importance
of small energy modes which may be obscurred
by noise. To reduce the noise, ensembles of KMC
simulations could be collected. However, the noise
can never be completely eliminated, so one will
generally need to truncate modes from the PCA
that have nonzero singular values. This issue re-
mains a subject for future study.

6. CONCLUSIONS

A set of reduced-order coordinates was computed
for a kinetic Monte Carlo simulation of thin film
deposition. The film surface was characterized
with a spatial correlation function describing the
relationship between atomic-height surface steps.
Principal component analysis was used to com-
pute linear subspaces of reduced dimension for
the correlation function, while nonlinear principal
component analysis was accomplished using neu-
ral nets. A dimension of three provided a good
approximation of the original dynamics when the
nonlinear principal component analysis was used
(2% error in training data, 7% in test data), while
the dynamics were not adequately captured by a
3-dimensional linear projection. This preliminary
study indicates that low-order behavior exists in
the stochastic, high-dimensional Monte Carlo sim-
ulations, but it may not always be best captured
using linear principal component analysis.
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