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Abstract: The design of a process can significantly affect its ability to be
satisfactorily controlled, which motivates the need to design the process and its
associated control system simultaneously. However, since all physical systems have
constraints, it is necessary to include these within the model as well. A bilinear
formulation for rigorous saturation handling is able to correctly describe the
logical conditions which accompany saturation of the manipulated variable and
is suitable for incorporation within a simultaneous optimization framework. This
paper explores a number of issues. First, a bilinear formulation is used to examine
the effect of including anti-reset windup within an integrated design. Second, the
performance of a solver specifically tailored to solve optimization problems with
complementarity constraints is compared to other nonlinear solvers for the solution
of a simple nonlinear case study. Finally, its performance on a more complex
nonlinear CSTR case study is discussed.
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1. INTRODUCTION

It has long been recognized that the design of a
process can significantly affect its inherent ability
to be controlled using feedback. This has moti-
vated the need for techniques which allow the
control system to be designed in conjunction with
the process design. One means of achieving this is
through an optimization-based approach, which
allows the simultaneous consideration of both the
steady state economics as well as the dynamic
operation of the process under feedback control.

Applying such optimization techniques requires
a mathematical model of the process as well as
its associated control system for inclusion within
an optimization problem. However, all physical
systems are subject to constraints and, in order
to model processes correctly, these constraints
should be included within the model formulation

as well. These include, in particular, constraints
on manipulated inputs where a valve, for example,
cannot be more than 100% open. However, when
creating a model of a process for the purpose of
optimization based integrated control and design,
merely including these limits as upper or lower
bounds may be insufficient to correctly describe
the behavior of the actual system.

In particular, when dealing with a control system,
a disturbance of sufficiently large magnitude may
in reality cause the manipulated variable to satu-
rate, whereas the above constraint specification
would merely allow the modelled manipulated
variable to touch the bound and then move away
as illustrated in Figure 1. This is because input
saturation essentially corresponds to a set of logi-
cal conditions, and requires special formulation in
order to be included within a conventional opti-
mization framework. A bilinear or mixed-integer



formulation for rigorous saturation handling can
be used to correctly describe this phenomenon
(Young et al., 2004).
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Fig. 1. The effect of including rigorous saturation
handling in an integrated design and control
optimization framework.

Briefly, in the case of the bilinear formulation, the
inclusion of the following constraints in an inte-
grated control and design problem will correctly
account for the difference between the actuator,
ua, and the controller output generated by the
control law, uc, by means of the slack variables SL

and SU at time step k. The complementary terms
(1b) and (1c) ensure that a discrepancy occurs
only when the actuator is at either the lower or
upper bound, uL and uU respectively, and that
the rest of the time ua is equal to uc.

uc(k) = ua(k)− SL(k) + SU (k) (1a)
0 = SL(k)(ua(k)− uL) (1b)
0 = SU (k)(ua(k)− uU ) (1c)

uL ≤ ua(k) ≤ uU (1d)
0 ≤ SL(k) (1e)
0 ≤ SU (k) (1f)

Recent work shows that failure to handle the ac-
tuator constraints rigorously within an integrated
design and control optimization framework can
lead to a suboptimal design (Baker, 2000).

On a related note, depending on the implemen-
tation of the controller, saturation of the manipu-
lated variable can lead to the phenomenon of reset
windup. Reset windup occurs in controllers with
reset or integral action when the integral mode
continues to integrate the error when it does not
affect the output. In the case of input saturation,
this occurs because the manipulated variable is
unable to respond to changes in the controller
output signal because it is at a bound. However,
reset windup can also occur in processes with se-
lective control systems, which have a manipulated
variable that can be controlled by one of many
controllers at different times.

There exist a number of approaches for dealing
with reset windup. Simply limiting the controller
output signal does not eliminate reset windup
because there is still a discrepancy between the
calculated controller output and the controller
output as seen by the process. One approach is
to freeze the integral term if windup is detected,
and reactivate it once the cause for windup has
been removed. Alternatively, if the digital control
algorithm is implemented using the velocity form
of the controller, then if the calculated value of
the input change is added to the actual value of
the manipulated variable, no windup will occur
(Khandheria and Luyben, 1976).

In this paper we specifically focus on the effects
of including anti-reset windup measures within an
integrated control and design problem in processes
that experience input saturation.

As mentioned earlier, previous work had con-
sidered two formulations for modelling input
saturation within an optimization framework;
namely the bilinear and mixed-integer formula-
tions. When the bilinear problem was solved using
a standard nonlinear solver it would occasionally
find a suboptimal solution, or sometimes not find
a solution at all depending on the initial starting
guess.

The inclusion of the complementarity constraints
of the bilinear formulation within the optimization
framework leads to a problem within the class
of mathematical programs with equilibrium con-
straints (MPECs). The general form of the MPEC
with complementarity constraints is:

min
x,y,z

f (x, y, z)

s.t. g (x, y, z) ≥ 0 (2)
c (x, y, z) = 0
0 ≤ F (x, y, z) ⊥ y ≥ 0

where x ∈ <n, y ∈ <m, z ∈ <l, f : <n+m+l →
< is the objective function, and the constraints
are g : <n+m+l → <p, c : <n+m+l → <q

and F : <n+m+l → <m. The last constraint
can be interpreted as an “either/or” condition
which can be rewritten as the following set of
complementarity constraints:

Fi (x, y, z) yi = 0
Fi (x, y, z) , yi ≥ 0

}
∀ i = 1, ..., m (3)

Using simple examples, it was shown that these
problems may be nonconvex or have feasible solu-
tion sets that may be discontinuous or non-closed
(Luo et al., 1997), which might explain some of the
symptoms described previously. Unfortunately,
this class of problems has only recently come
under scrutiny and solvers for MPECs are con-



sequently not widely available. Examples of algo-
rithms and software developed to specifically solve
MPECs are the Penalty Interior Point Algorithm
(Luo et al., 1997), and IPOPT, which is a general
interior point based NLP solver that has recently
been modified to solve MPECs (Raghunathan and
Biegler, 2003). There is also work which provides
encouraging results indicating that certain general
NLP solvers are able to perform well in com-
parison to specialized algorithms when solving
MPECs (Fletcher and Leyffer, 2002).

The approach IPOPT uses in its MPEC solving
mode differs from the approach a conventional
NLP solver would take in that it handles the com-
plementarity constraints differently from the man-
ner in which it deals with conventional equality
and inequality constraints. In particular, the al-
gorithm relaxes the complementarity constraints
by adding a nonnegative slack variable which is
then also included in the log barrier function and
the entire problem solved using an interior point
method (Raghunathan and Biegler, 2003).

In this study, the IPOPT algorithm is applied
to the optimization-based integrated design and
control of three mixing tanks in series as well as a
stirred tank reactor, both with rigorous input sat-
uration handling provided by including the bilin-
ear formulation for saturation handling. There is
also a brief comparison of the performance of the
IPOPT solver against general nonlinear solvers for
a problem of this type.

2. CASE STUDY I

The system under consideration is a set of three
mixing tanks in series depicted in Figure 2
(Marlin, 2000). The controlled variable is the per-
centage of component A exiting the final tank,
while the manipulated variable is the percentage
valve opening for the flow of stream A. The dis-
turbance entering the system is a change in the
concentration of A in stream B. The aim of the
control system is to maintain the concentration of
A in the final tank as close to the set point as
possible in the face of disturbances and set point
changes and to this end, the objective used in this
case is the integral absolute error.

The transfer functions relating the concentration
of A exiting the final tank to the valve position
and to the disturbance are respectively:

Gp (s) =
0.039

(5.0s + 1)3

Gd (s) =
1.0

(5.0s + 1)3
.

ACA

B

xA3

xA0

xA1

xA2

Fig. 2. Schematic of 3 mixing tanks in series.

The disturbance being rejected in this case study
is a pulse of 4% in the concentration of A in
feed stream B of duration t = 5 min to t =
100 min. The size of the disturbance increase is
such that the actuator has to saturate in order
to reject the disturbance. The set point for the
outlet concentration of A, and therefore the initial
percentage valve opening, as well as the controller
reset time are fixed.

Under investigation is the effect that the inclusion
of anti-reset windup has on the objective function
and on the design of the controller.

The process was modelled in AMPL by means of a
finite impulse response model with the saturation
logic handled by including the set of equations (1).

In the first example the controller parameters are
fixed, and since there are no other design degrees
of freedom, the optimization problem reduces es-
sentially to a simulation. This will demonstrate
that the bilinear formulation is able to model
mathematically the logical conditions associated
with input saturation. It will also demonstrate
the effect of including anti-reset windup within an
optimization-based integrated control and design
problem.

The results for the two cases with and without
anti-reset windup are presented in Table 1. The
resulting trajectories are displayed in Figure 3.

Table 1. Results of scenarios with and
without anti-reset windup.

Objective

Without anti-reset windup 369.68
With anti-reset windup 233.78

As expected, the example without anti-reset
windup in the controller has a larger integral
absolute error. This demonstrates worse control
performance in comparison to the case with anti-
reset windup for these particular parameters.

In the second example, the velocity form of the
digital controller will be used for both scenarios:



0 50 100 150 200 250 300
0

1

2

3

4

5

Time (min)

%
 A

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60

Time (min)

%
 V

al
ve

 o
pe

ni
ng

Without anti−reset windup
With anti−reset windup

Fig. 3. Results of scenarios with and without anti-
reset windup, control parameters fixed.

∆uc (i) = Kc

[
e (i)− e (i− 1) +

∆t

τI
e (i)

]
(4)

The key difference between the two scenarios is
that, in the first, the change in the controller
output is calculated based on the previous pre-
dicted controller position, which may differ from
the actual value entering the process.

∆uc (i) = uc (i)− uc (i− 1) (5)

In the second case, reset windup is handled cor-
rectly and the true actuator value is used instead:

∆uc (i) = uc (i)− ua (i− 1) (6)

In this example, the gain is allowed to vary and
we compare the results of a controller with and
without correct anti-reset windup. It is required
that the optimization scheme choose the best
gain to reject this particular disturbance and so
the controller gain will be included as a design
variable within this problem.

The results of the two formulations are reported
in Table 2. The case without correct anti-reset
windup has a larger integral absolute error in
comparison to the case where the correct actuator
position was fed back to the controller. It can also
be seen in Figure 4 that reset windup occurs in
the case without anti-reset windup and results
in poor control performance, since there is a
delay before the manipulated variable reacts to
the termination of the disturbance pulse at t =
100 min. The optimal gain obtained for equation
(5) is also smaller than that for equation (6)
because a larger gain would exacerbate the effect
of the reset windup. It can also be seen that at
the end of the time horizon the controlled variable
trajectory has still not achieved steady state at the
set point in the case of equation (5), because the
controller gain is less aggressive.
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Fig. 4. Results using equations (5) and (6) with
the gain allowed to vary.

Table 2. Results using equations (5) and
(6) with the gain allowed to vary.

Objective Kc

Equation 5 310.25 17.29
Equation 6 206.99 25.69

3. COMPARISON OF IPOPT AND
NONLINEAR SOLVERS

As mentioned previously, IPOPT/MPEC uses a
different approach to solving problems with com-
plementarity constraints than the conventional
general nonlinear solver. In this section, the re-
liability of the IPOPT/MPEC solver is compared
to IPOPT as a nonlinear solver (IPOPT/NLP),
MINOS and CONOPT2 running under GAMS.
The case study in question is the three mixing
tanks in series example from the previous section
with anti-reset windup provided by equation (6).

The nonlinearity of the case study arises from
two sources: the complementarity constraints of
the bilinear formulation for rigorous saturation
handling and the fact that the controller gain is
included as a decision variable.

The methodology of the comparison is as follows.
The results for the case study of the previous
example are taken as the base case. From the base
case, the values of all the variables are extracted.
Uniformly distributed random factors are then
added to these nominal values and the resulting
values are provided as an initial guesses to each
of the solvers. Thus each solver uses the same
initial guess. Each random factor is chosen from
a “ball” of radius α around the nominal value of
the variable. This was then repeated ten times for
each particular value of α.

The IPOPT solver was compiled with the MA27,
MA28, and the MA47 routines from the Harwell
Science Library. The performance of the aug-
mented Lagrangian line search was found to be
superior to that of the default filter method, and



therefore used in all the studies. All of the solvers
were limited to a maximum of 1000 iterations.

It should be noted that since the case study under
investigation is a nonlinear problem for which
the convexity has not yet been characterized, it
is possible that the resulting solution is not the
global optimum. For the sake of notational brevity
however, we will refer to the lowest known feasible
solution as the “optimal” solution.

The solvers were compared based on whether they
found the optimal solution, converged to a point
that was not the optimal value, or failed and
were unable to to converge to a solution within
a given number of iterations. This was done for
three different values of α (0.5, 1 and 10) and the
combined results are reported in Table 3.

Table 3. Summary of results of compar-
itive study

Failure Suboptimal Optimum

IPOPT/MPEC 6.7% 0% 93.3%
IPOPT/NLP 100% 0% 0 %
MINOS 90% 10 % 0 %
CONOPT2 6.7% 0% 93.3%

The IPOPT/NLP solver performed the least sat-
isfactorily, although it is possible that a different
set of algorithm parameters might have resulted in
better performance. MINOS also performs fairly
poorly. IPOPT/MPEC and CONOPT2 were the
only solvers that found the known optimum. For
some initial guesses IPOPT would result in line
search errors terminating the solver prematurely.
At other times the objective function would come
fairly close to the known optimum, but the solver
would require over a 1000 iterations. Once again,
it should be borne in mind that a different set of
algorithmic parameters might have yielded differ-
ent results.

4. CASE STUDY II

The following case study is an example of the in-
tegrated design and control of a single continuous
stirred tank reactor. The first-principles model
described in (Schweiger and Floudas, 1998) was
used.

Briefly, the reaction taking place is a first order,
exothermic irreversible reaction (A → B). The
controlled variable is the temperature in the tank,
while the flow rate of water through the cooling
jacket is the manipulated variable. The distur-
bance is a step increase of 18.3 oC in the temper-
ature of the feed to the tank. The design variables
of this example are: the height and diameter of
the tank; the nominal operating temperature in
the CSTR and the reactor jacket; the nominal
concentration of reactant A exiting the tank; and

Table 4. Results of CSTR integrated
control and design case study

No saturation Saturation

Total Cost, $ 572.7 ×103 502 ×103

Capital Cost, $ 559.5 ×103 488.7 ×103

Diameter, m 8.57 7.97
Height, m 4.29 3.98
Controller gain -68.74 -100
Reset time 2 1.83

the gain and reset time of the associated con-
troller. The disturbance for this CSTR example
is such that the system exhibits saturation behav-
ior when the input saturation model formulations
are included in the integrated design and control
optimization framework, and the lower and upper
limits of the cooling water flow rate were set as 0
and 12.88 m3/h respectively. The objective func-
tion for the problem is the total cost of the process
operating over 4 years, which includes the capital
cost of the CSTR as well as the utility cost or
cost of operation over the period. The cost of off-
spec product is included as part of the objective
function by means of a penalty on the integral
square error of the concentration of reactant A
in the tank. Furthermore, the anti-reset windup
formulation described in equation (6) is used.

Previous work attempted to solve this problem
using the mixed-integer mathematical formula-
tion of input saturation, but found that the
time to solve the optimization problem with cur-
rently available MINLP solvers could become
prohibitive as the number of variables increased
(Baker, 2000). For this reason, the interior point
based solver IPOPT/MPEC will be applied to
the CSTR example instead to assess whether it is
able to successfully solve the optimization prob-
lem within a reasonable amount of time.

IPOPT/MPEC was successfully able to solve the
problem with results shown in Table 4 and Figure
5. It can also be seen that the case in which the
system is allowed saturate has a lower cost than a
comparative case in which the actuator behavior
is assumed to be strictly linear.

Using results for the system without saturation
handling as an initial guess, IPOPT/MPEC was
able to solve the rigorous saturation problem in
around 1 minute of CPU time, converging in 255
iterations.

5. CONCLUSION

This paper has discussed the use of comple-
mentarity constraints to describe actuator sat-
uration effects in integrated design and control
type problems. Neglecting to include anti-reset
windup was shown to lead to a suboptimal design.
In addition, a comparison of the IPOPT/MPEC



0 50 100 150
360.8

360.85

360.9

360.95

361

361.05

361.1

361.15

361.2

Time (hrs)

T
 R

 (
K

)

No saturation
With saturation

0 50 100 150
11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

13.2

Time (hrs)

F
 J (

m
 3  / 

hr
)

No saturation
With saturation

Fig. 5. Rigorous saturation handling for a CSTR.

solver against certain general nonlinear solvers
on a problem with rigorous saturation handling
was conducted, and showed IPOPT/MPEC and
CONOPT2 to have superior performance. Finally,
IPOPT/MPEC was successfully used to solve a
large scale nonlinear integrated design and control
problem with rigorous saturation handling.
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