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Abstract: Most standard MPC implementations partition the plant into several
units and apply MPC individually to these units. It is known that this strategy
can lead to sub-optimal plant-wide control performance, especially if the units
interact strongly. This paper tackles the problem of achieving optimal control
performance in plants with such an MPC structure. A modeling framework,
geared for use in MPC, that incorporates the interactions between the subsystems
is employed. One may think that modeling the interactions and communicating
the control actions between the controllers is sufficient to improve controller
performance. We show that this idea is incorrect and can lead to closed-loop
instability. A cooperation based MPC algorithm that converges to the plant-
wide optimum is developed. In practical implementations, the cooperation based
MPC scheme may have to be terminated before convergence is reached. To
permit such flexibility, we propose a feasible cooperation based MPC algorithm.
All cooperative iterates in this algorithm are feasible and the resulting MPC
controller is closed-loop stable. Two examples comparing the performance of
optimal and sub-optimal MPC controllers are presented.
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1. INTRODUCTION

With ever increasing demands on improvements
in productivity and efficiency of operation, the
chemical industry today places significant im-
portance on plant-wide automation. Improve-
ments in practical control technology can poten-
tially cut costs and raise profits. Over the last
decade, Model Predictive Control (MPC) has es-
tablished itself as one of the popular choices for
advanced process control.

A number of articles have focused on improved
plant-wide decentralized control. (Sandell-Jr. et
al., 1978) provide a survey of decentralized con-
trol methods for large scale systems. Some of
these decentralized controller design approaches
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approximate or ignore the interactions between
the various subsystems (Lunze, 1992; Siljak, 1991).
Other approaches lead to a sub-optimal plant-
wide control strategy (Acar and Ozguner, 1988;
Samyudia and Kadiman, 2002). (Cui and Jacob-
sen, 2002) describe performance limitations aris-
ing due to the decentralized control framework.
Most attention in the area of MPC has focussed
on the centralized control framework. However,
centralized control may not be practical, espe-
cially for large systems. In recent times, there
has been some interest in studying plant-wide
control within the MPC framework. (Lu, 2000;
Kulhavy et al., 2001) outlined the idea of cross-
functional integration within the MPC frame-
work and discussed requirements and poten-
tial benefits/impact of such technology. (Katebi
and Johnson, 1997) proposed a two level de-



composition coordination strategy for Gener-
alized Predictive Control(GPC) based on the
master-slave paradigm. (Zhu et al., 2000; Zhu
and Henson, 2002) described a plant-wide con-
trol strategy based on the integration of linear
and nonlinear MPC coupled with a plant decom-
position procedure. A sub-optimal strategy for
MPC of interconnected systems was proposed
by (Antwerp and Braatz, 2000). While these
methods have been demonstrated to work well
for the cases considered, no safeguards against
failure or closed-loop properties have been es-
tablished. (Camponogara et al., 2002) proposed
a distributed model predictive control scheme to
coordinate multiple agents. In their scheme, the
MPC controllers exchange state and input trajec-
tory information amongst themselves during a
sampling interval. We shall show through exam-
ples in section 6 that a strategy based purely on
the exchange of trajectory information (i.e. com-
munication) is unreliable and may cause closed-
loop instability.

The purpose of this work is to understand the
idea of optimal plant-wide control from the MPC
framework and provide algorithms that attain
the best achievable plant-wide control perfor-
mance through the suitable integration of the
various MPC controllers. The inherent communi-
cation capability of the prediction horizons and
an enhanced modeling framework are utilized
in arriving at these algorithms. For the methods
described in this work, we prove nominal prop-
erties like optimality, feasibility and closed-loop
stability. These properties are central to the prac-
tical applicability of plant-wide control methods.

2. MODELING INTERACTIONS FOR
PERFORMANCE IMPROVEMENT

Decentralized models Consider a plant compris-
ing of M subsystems. Let the decentralized (lo-
cal) model for each subsystem be represented by
a discrete linear time invariant (LTI) model of the
form

xii(k + 1) = Aiixii(k) + Biiui(k),

i = 1, 2, . . . , M (1)

in which k is discrete time, and we assume
(Aii, Bii, Cii) is a minimal realization for each
(ui, yi) input-output pair. Owing to material, en-
ergy and/or information flows there exists a level
of interaction between the subsystems. In the de-
centralized modeling framework, it is assumed
that the interactions have a negligible effect on
local variables. This assumption is not reliable in
many situations and can lead to deterioration in
control performance. The centralized modeling
framework, on the other hand, results in models
that are larger than necessary. In many cases, cen-
tralized control is not feasible for implementation
due to its sheer size, multiple time scales of oper-
ation, and limited operational flexibility.

Interaction models (IM): We employ IM to quan-
titatively assess the interactions between the sub-

systems. Modeling the interactions between sub-
systems provides a framework for improving
plant-wide control performance while retaining
most of the advantages of the decentralized con-
trol approach.

Consider a subsystem i (i = 1, 2, . . . , M). We
represent the effect of an interacting subsystem
j, j 6= i on subsystem i through a discrete LTI
model of the form

xij(k + 1) = Aijxij(k) + Bijuj(k)

j = 1, . . . , M

(2)

in which Bij represents the effect of the inputs of
subsystem j on the states of subsystem i.

For each subsystem i, the decentralized state vec-
tor xii is augmented with states arising due to
interactions with other subsystems. Let xi denote
the augmented set of states for subsystem i. The
interaction model (IM) for the entire plant can
therefore be expressed as a union of decentral-
ized and interaction models. After identification
of the significant interactions from closed-loop
operating data, we expect that many of the in-
teraction terms will be zero. In the decentralized
model, all of the interaction terms are zero.

3. PROBLEM FORMULATION AND
ASSUMPTIONS

In this work, we consider five formulations (P1

to P5) for unconstrained model predictive con-
trol (MPC), or LQR. In each case, a controller is
defined by using the first input from the solution
to the corresponding optimization problem.

P1 : Centralized MPC (3)

Min
x,u

Φ (x, u) =
∑

i

Φi (x, u)

s.t. x(t + 1) = Ax(t) + Bu(t)

x(k) = x̂(k)

t = k, k + 1, . . . , k + N − 1

in which

x = {x(k), x(k + 1), . . . , x(k + N)}

u = {u(k), u(k + 1), . . . , u(k + N − 1)}

x ∈ Rn, u ∈ Rm

represent the centralized state and input trajec-
tories through the control horizon. The horizon
length is N . The cost function for subsystem i
is Φi. The vector x̂(k) represents the current es-
timate of the centralized model states at discrete
time k.

P2

i : Decentralized MPC (4)
Min
xii,ui

Φi (xii, ui)

s.t. xii(t + 1) = Aiixii(t) + Biiui(t)

xii(k) = x̂ii(k)

t = k, k + 1, . . . , k + N − 1



in which xii represents the decentralized state
trajectory for subsystem i.

xii = {xii(k), xii(k + 1), . . . , xii(k + N)}

with xii(k) ∈ Rnii . x̂ii(k) denotes the estimate of
the decentralized model states at discrete time k.
For communication and cooperation based MPC,
an iteration and exchange of variables between
subsystems is performed during a sample time.
We denote this iteration number as p.

P3

i : Communication based MPC (5)

Min
x

p

i
,u

p

i

Φi

(
x

p
i , u

p
i , u

p−1

j 6=i

)

s.t. x
p
i (t + 1) = Aix

p
i (t) + Biiu

p
i (t)

+
∑

j 6=i

Biju
p−1

j (t)

xi(k) = x̂i(k)

t = k, k + 1, . . . , k + N − 1

in which
xi = {xi(k), xi(k + 1), . . . , xi(k + N)}

u
p
i = {up

i (k), up
i (k + 1), . . . , up

i (k + N − 1)}

and x̂i(k) represents the current estimate of the
communication model states. Notice that the in-
put sequence for subsystem i, u

p
i , is optimized

to produce its value at iteration p, but the other
subsystem’s inputs are not updated during this
optimization; they remain at iterate p − 1. The
objective function is the one for subsystem i only.

We next modify the objective functions of the
subsystem’s controllers in order to provide a
means for cooperative behavior among the con-
trollers. We replace the objective Φi with an ob-
jective that measures the entire system perfor-
mance. Many suitable objectives are possible.
Here we choose the simplest case, the overall
plant objective, which is the weighted sum of all
the subsystems’ objectives, Φ =

∑
i wiΦi. When

all the cost functions are quadratic, this formula-
tion exactly matches the centralized cost.

P4

i : Cooperation based MPC (6)

Min
x

p

i
,u

p

i

Φ
(
x

p
i , u

p
i , x

p−1

j 6=i , u
p−1

j 6=i

)

s.t. x
p
i (t + 1) = Aix

p
i (t) + Biiu

p
i (t)

+
∑

j 6=i

Biju
p−1

j (t)

xi(k) = x̂i(k)

t = k, k + 1, . . . , k + N − 1

4. COOPERATION BASED CONTROL

Sub-optimality (in the plant-wide sense) of the
communication based MPC scheme provides
the necessary motivation to seek an alternate
approach–one that is plant-wide optimal in the
nominal case. We note that while the commu-
nication based scheme accounts for the effect of
the interacting subsystems, it fails to consider the
effect of changes in local variables on other sub-
systems. Such an exchange scheme can give rise

to conflicts between the various communicating
controllers and lead to deterioration in control
performance (see section 6.1). The cooperation
based MPC scheme eliminates the possibility of
such controller conflicts by utilizing a cost func-
tion that reflects the plant-wide effect of local
variable changes. Each local regulator now charts
a control path that not only minimizes the local
objectives but also a projected cost at the plant-
wide level. The algorithm and some useful prop-
erties of this method are outlined below.

Algorithm 1. Given (x0

i , u
0

i ), i = 1, 2, . . . , M
and ε > 0
p← 1, ei ← Γε Γ� 1
while ei > ε
(xp

i , u
p
i ) = arg{P4

i }, i = 1, 2, . . . , M

ei = ‖(xp
i , u

p
i )− (xp−1

i , u
p−1

i )‖
p← p + 1
end (while)

At discrete time k, define

xi(k) = [xi(k + 1|k), . . . , xi(k + N |k)]
T

, (7)

ui(k) = [ui(k|k), . . . , ui(k + N − 1|k)]
T (8)

to be the vector of predicted states and inputs
respectively, through the control horizon. For the
particular case for which all the cost functions are
quadratic, we can represent the cost function for
the ith subsystem as

Φi (xi(k), ui(k)) =
1

2
x

T
i (k)Qixi(k)+

1

2
u

T
i (k)Riui(k)

(9)
in which

Qi = diag (Qi(1), Qi(2), . . . Qi(N)) and
Ri = diag (Ri(0), Ri(1), . . . Ri(N − 1))

denote the state and input penalties in the reg-
ulator through the control horizon. Eliminating
the states from the model equations ((1), (2)) and
propagating the inputs through the control hori-
zon, we can rewrite the interaction model for
subsystem i as

xi(k) = Eiiui(k) +

M∑

j=1,j 6=i

Eijuj(k) + fixi(k)

(10)

in which

xi(k) = x̂i(k) (11)

Eij =




Bij 0 . . . . . . 0
AiBij Bij 0 . . . 0

...
...

...
...

...
AN−1

i Bij . . . . . . . . . Bij


 fi =




Ai

A2

i
...
...

AN
i




(12)

Theorem 1. Given Qi(j) > 0, Ri(j) > 0 and
Qi(N) > 0 j = 0, 1, 2, . . .N − 1 , i =
1, 2, . . . , M . Algorithm 1 converges to an optimal
limit point.



Theorem 2. If the initial trajectory z
0 =

(
x

0, u0
)

satisfies ‖z0 − z
∗‖ ≤ 1

εδ for some δ ≥ 0 and
ε > 0 then we have ‖zp − z

∗‖ < ε for all p >
(δ + 1) logε

logΩ
, 0 < λ < Ω < 1 in which 0 < λ < 1

is a system dependent property.

5. FEASIBLE COOPERATION BASED
CONTROL

Theorem 2 provides a conservative lower bound
on the number of cooperative iterates required
for convergence. It is possible that the process
sampling time is shorter than the time required
for convergence of the cooperative iterates. To fa-
cilitate the practical use of the cooperative control
methodology, we need the iterates generated by
the cooperation based MPC scheme to be feasible
and closed-loop stable. The above two properties
permit us to terminate the cooperative scheme
at the end of each sampling interval and inject
the final iterate into the plant even if conver-
gence has not been attained. In order to satisfy
feasibility and closed-loop stability, we propose
modifications to the existing cooperation based
MPC framework. For the purpose of this study,
we restrict ourselves to MPC controllers with
quadratic cost functions.

To guarantee feasibility, we eliminate the model
constraints and solve the cooperation based MPC
problem as a collection of unconstrained opti-
mization problems of the form

P5

i : Feasible cooperation based MPC

Min
u

p

i

Φp
i (xi(k), up−1

j 6=i ) =
1

2
u

pT

i (k)Riu
p
i (k)

+


ri(k) +

M∑

j=1,j 6=i

Hiju
p−1

j (k)




T

u
p
i (k)

(13)

in which

Ri = Ri + ET
ii QiEii +

M∑

j 6=i

ET
jiQjEji (14)

ri(k) = ET
ii Qifixi(k) +

M∑

j 6=i

ET
jiQjfixj(k) (15)

Hij = ET
ii QiEij + ET

jiQjEjj (16)
xj(k) = x̂j(k) (17)

We have the following results for feasible coop-
eration based MPC

Lemma 3. Given the MPC formulation P5

i , the
sequence of cost functions

{Φp} = {

M∑

i=1

Φp
i

(
xi(k), up−1

j 6=i

)
}

is a non-increasing function of p.

At time k, let

u
p∗
i

(
xi(k), up−1

j 6=i

)
=

[
u

p∗
i (k|k), . . . , up∗

i (k + N − 1|k)
]T

represent the solution to the optimization prob-
lem P5

i at iteration number p. The correspond-
ing optimum value of the cost function is de-
noted as Φp∗

i (xi(k), up−1

j 6=i ). The control law is ob-
tained through a receding horizon implementa-
tion of optimal control whereby the input applied
to subsystem i is u

p
i (xi(k), up−1

j 6=i ) = u
p∗
i (k|k).

Lemma 3 leads to the following theorem on
closed-loop stability.

Theorem 4. Given the MPC formulation P5

i i =
1, 2, . . . , M . Suppose the following assumptions
are satisfied

• (Ai, Bi) stabilizable
• Perfect knowledge of the states at each sam-

pling instant k (state feedback).
• Qi(0) = Qi(1) = · · · = Qi(N − 1) = Qi

• Ri(0) = Ri(1) = · · · = Ri(N − 1) = Ri

• Stage cost Li(k+j|k) = 1

2
xi(k+j|k)T Qi(j)xi(k+

j|k) + 1

2
ui(k + j|k)T Ri(j)ui(k + j|k) >

0, j = 0, 1, . . . , N − 1.
• Terminal state constraint xi (k + N |k) = 0
• ui (k + j|k) = 0, j ≥ N

then the origin is an asymptotically stable equi-
librium point for the closed-loop system x(k +
1) = Ax(k)+Bup(x(k), up−1), in which up(x(k), up−1) =[
u

p
1
(x1(k), up−1

j 6=1
), . . . , up

M (xM (k), up−1

j 6=M )
]T

, for all
x(k) and all p = 1, 2, . . . .

6. EXAMPLES

We present two examples to demonstrate and
compare the control performance of the various
MPC schemes described in this paper (P1 − P5).
To provide a consistent platform for comparison,
we ensure the following

• Perfect state feedback.
• Each regulator utilizes the optimal targets

i.e. the centralized model targets, in evalu-
ating its optimal control trajectory.

• No disturbances affect the plant.

To assess controller performance , we use the cu-
mulative stage cost (CSC) as an index to quantify
controller performance. The CSC index is given
by

∑
k

∑M
i=1

Li (k|k). In addition, the iterative
schemes for methods P3

i ,P4

i and P5

i are initial-
ized with the corresponding decentralized con-
trol solution.

6.1 Example 1

We consider a plant constituted by two subsys-
tems. The first subsystem is represented by a LTI
state space model comprising of 3 inputs, 3 out-
puts and 5 states. The LTI model for the second
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Fig. 1. Performance of the various schemes
within a sampling interval

Table 1. Controller performance

MPC Configuration Cumulative Stage
Cost

Decentralized MPC 344.45
Communication based MPC ∞ (Unstable)
Cooperation based MPC (1 iterate) 5.581
Cooperation based MPC (10 iterates) 3.307
Cooperation based MPC (convergence) 2.654
Centralized MPC 2.654

subsystem consists of 4 inputs, 4 outputs and 8
states. The two units are such that the behavior
of one subsystem affects the performance of the
other.

We investigate the performance of the decentral-
ized, centralized, communication and coopera-
tion based MPC frameworks when a set point
change is made to the outputs of subsystems 1
and 2. For scheme P5

i , the terminal state con-
straint (Theorem 4) is employed to guarantee
closed-loop stability. Table 1 summarizes the con-
troller performance for the various schemes con-
sidered (P1 −P5

i ).

The decentralized MPC regulators attempt to
track their respective set points with no knowl-
edge of the effect of the interacting subsystem.
Control performance consequently suffers and
the deterioration in control performance is re-
flected as a relatively large CSC index. The cen-
tralized MPC regulator on the other hand is
equipped with the complete model and all inter-
actions are accounted for exactly. This controller
therefore achieves the optimal nominal plant-
wide control performance. The sequence of iter-
ates generated by the communication based MPC
scheme converge to a non-optimal limit point.
In this case, the resulting communication based
MPC controller leads to unstable closed-loop be-
havior. This example illustrates the unreliability
of the communication based MPC scheme (P3

i ).
In accordance with Theorem 1, the cooperation
based MPC scheme P4

i converges and the perfor-
mance is identical to the centralized MPC con-
troller. For scheme P5

i , we examine closed loop
performance when the cooperative scheme is ter-
minated after 1 iterate and when the scheme is
terminated after 10 iterates. As expected from

lemma 3, the CSC index decreases with the it-
eration number until we reach the centralized
CSC index. Figure 1 shows the performance of
the various schemes within a sampling interval.
It is verified that the controller resulting from
scheme P5

i stabilizes the plant in closed-loop for
all values of p.

6.2 Example 2

Table 2. Controller performance

MPC Configuration Cumulative Stage
Cost

Decentralized MPC 76.953
Communication based MPC 52.773
Cooperation based MPC (1 iterate) 51.142
Cooperation based MPC (10 iterates) 50.529
Cooperation based MPC (convergence) 50.495
Centralized MPC 50.495

The second example is a reactor separator with
recycle. The control challenges posed by the dy-
namics of the recycle stream has been studied
by (Luyben, 1993a), (Luyben, 1993b) and (Luyben,
1994). (Wu et al., 2002) and (Monroy-Loperena et
al., 2004) have addressed the problem of plant-
wide control structure selection for reactor sepa-
rator processes with recycle. For the process con-
sidered, fresh feed of reactant A enters a CSTR
where an exothermic reaction A→ B takes place.
The outlet stream from the reactor is a mixture of
product B and unreacted A. This stream is fed to
a distillation column where the separation of the
two occurs. The distillate, rich in reactant A, is
recycled back to the reactor. The bottoms stream
is almost pure B and is drawn out. It is desired
to maintain the reactor temperature at 331.5oC.
The flow rate to the reactor is manipulated to
achieve this objective. The control objective for
the distillation column is to maintain the top and
bottom compositions of A at their desired specs
by manipulating the reflux to the column and the
vapor boil up flow rate.

The flow of the reactor outlet stream to the dis-
tillation column and the recycle of the distillate
back to the reactor are sources of complex inter-
action. A change in the reactor operating con-
ditions affects the performance of the distilla-
tion column and vice-versa. For the purpose of
this study, a linearized model around the desired
steady state is used to represent the plant.

Due to changes in operating conditions, it is de-
sired to decrease the reactor temperature by 5oC
and increase the composition of A in the distillate
by 0.05. Decentralized MPC gives unsatisfactory
performance as this mode of operation does not
consider the two-way interaction between the re-
actor and the distillation column. In comparison,
communication based MPC leads to an improve-
ment in control performance. However, as ob-
served in section 6.1, communication based MPC
is an unreliable control strategy as it lacks well
defined convergence and closed-loop properties.



With cooperation based MPC, we require a max-
imum of 28 cooperative iterates to achieve con-
vergence. To permit real-time implementation,
we employ the feasible cooperation based MPC
controller in conjunction with Theorem 4. This
controller is guaranteed to be feasible and closed-
loop stable. In accordance with Lemma 3, the cost
function is observed to be a non-increasing func-
tion of the iteration number p at each time step.
The performance of the various MPC controllers
are summarized in Table 2. For this example, we
note that a single cooperative exchange leads to
a 33.5 percent improvement in control perfor-
mance in comparison with decentralized MPC.

7. CONCLUSIONS

In this work, the problem of integrating several
MPC controllers to achieve optimal plant-wide
control was addressed. The proposed coopera-
tive MPC methodology is plant-wide optimal at
convergence. To facilitate real time implemen-
tation, we propose a feasible cooperative MPC
strategy. All iterates generated by this scheme
are feasible and the resulting MPC controller is
closed-loop stable. The theoretical aspects and
performance of the proposed methods are illus-
trated through two examples.
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