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Abstract: The results of a successful implementation of multivariate analysis on multiple 
fermentations are shown in the paper. To minimize batch-to-batch variability of an
industrial fermentation process, multi-way partial least squares (PLS) was used. Eighteen
baseline batches from different fermentors were analyzed. After applying diagnostics
tools and contribution charts, three batches were clearly identified to be abnormal, and
even among the remaining batches , inconsistencies were found.  The root causes of the
variability were determined by a combination of variable importance in the projection
plot and fermentation knowledge.  A new fermentation procedure was applied and the
quality improvement was demonstrated on 20 new batches.  These batches were more
consistent as evidenced by the improvement in the model fit  (R2X = 0.829 for the new 
batches versus R2X = 0.681 for the baseline batches) and in the percent of out-of-
specification (3.3% for the new batches versus 20.4% for the baseline batches). The on-
line multi-way PLS model was shown to detect bad batches promptly and to determine 
abnormal variables accurately.  The success of this implementation demonstrates the
value of applying multivariate analysis to large-scale industrial batch bioprocesses .
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1. INTRODUCTION
 
To achieve consistent product quality from a batch
process, minimizing batch-to-batch variability is
important. Multivariate statistical techniques such as
principal component analysis (PCA) or partial least
squares (PLS) are useful for quality improvement
(Chiang et al., 2001; Beebe et al., 1998; Zhang and
Lennox, 2004).  In off-line applications, these
techniques can identify and pinpoint the root causes
of batch-to-batch variability.  In on-line applications,
PCA/PLS models are used to monitor batch
conditions.  The objective is to identify and correct
abnormal conditions early enough to avoid out-of-
specification product.

In this paper multi-way PLS analysis was used for
quality improvement of an industrial fermentation
process at the San Diego biotech facility of The Dow 
Chemical Company . This application illustrates the
use of multivariate analysis for solving typical
industrial problems where root causes are unknown.
This paper also addresses practical issues of industrial 
data analysis and outlines the steps needed to
minimize variability in the final product quality.

2. METHODS

2.1 Multi-way PLS

Applying multi-way analysis for batch data is a two-
step process.  The first step is to unfold the three-way
batch data into two-way data (see Figure 1) and the 
second step is to apply regular PLS/PCA analysis.

In this mode of unfolding, each column contains a
particular variable over all time periods for all batch
runs and each row contains all variables at a
particular time for a particular batch.  After unfolding, 
regular PLS is applied with the X block (independent 
variables) as the unfolded matrix and the Y block
(dependent variable) as the maturity variable (Wold et
al., 1998). A monotonically increasing variable that 
is related to percent completion of a batch is used as 
maturity variable.  It is preferable to use a quality
variable.  However, for the case when the uncertainty 
in the quality variable is too high, elapsed time can be 
used as maturity variable instead.

This way of unfolding is attractive for on-line
implementations because the score calculation and
maturity prediction can be computed directly based



on on-line measurements.   Contribution charts can be
easily computed and interpreted.   Similar to regular
PLS, the T2 and Q statistics are used to monitor the
process, while the predicted Y variable gives
information about the maturity of a batch.  Because of 
these advantages, this mode of unfolding was used.

Fig. 1. Illustration of multi-way PLS for batch data.

2.2 Fermentation process

The multivariable analysis was performed on
experimental batches from the Dow Chemical San
Diego facility. The scope of the investigation
included six 20 L fermentors.  The key objective was
to eliminate problematic fermentation issues that
prevent 100% fermentation success rate.  The results
from this project will be leveraged to other large -scale
bioreactors.

Fermentation consists of two phases : growth and
production.  To enhance the sensitivity on analyzing
batch data, separate PLS models have been applied
for each phase using the SIMCA-P software
(Umetrics, 2003). In SIMCA-P, non-linear iterative
partial least squares (NIPALS) is used in PLS
computation and leave 1/7 out cross validation is used 
to determine the optimal number of PLS components.
In the growth phase, X-block contains on-line process
variables of interest and Y-block contains the optical
density (OD), which measures the dynamics and the
maturity of cell growth.  In the production phase, X-
block contains the same variables as in the growth
phase, but Y-block contains relative activity/protein
yield (referred to as activity in this paper).    Quality 
decisions are made based on OD and activity.
Therefore, it is more meaningful to use these two
variables, instead of elapsed time, in the Y block.

The purposes of applying PLS for analyzing the batch 
data are:
• Identify batch-to-batch consistency
• Identify key variables that correlate with the OD

and activity
• Understand the root causes of bad batches

Eighteen batches were collected during a month
period to identify the baseline performance of the
process.  Process data were measured on-line every
minute, while quality variables (OD, activity, etc.)
were measured on an hourly basis.  Because OD and 
activity were monotonically increasing, all missing
values between sample points for the Y-block were
linearly interpolated using SIMCA-P.

3. RESULTS AND DISCUSSION

3.1 Consistency for the baseline batches

Figure 2 plots the predicted against the observed OD
for the 18 baseline batches in the growth phase.  The 
model fit  (R2X = 0.816 and R2Y = 0.980 for a PLS 
model with 6 components) is reasonably good,
indicating that some process variables correlate well
with the OD.  This is in spite of the fact that OD and 
elapsed time for each batch vary at the end of the
growth phase.

Fig. 2. Predicted OD versus observed OD for the
baseline batches in the growth phase.

From a control standpoint, it is important to
determine the key variables that are related to the OD.
To accomplish this, the variable importance in the
projection (VIP) plot  is used (Eriksson et al., 2001).
The VIP plot, computed based on the PLS weights
and the variability explained, ranks the process
variables in terms of their relative contribution in
predicting OD.

As shown in Figure 3, the top variables in the VIP
plot have higher correlation with the OD. On the 
average, variables with magnitude greater than one in
the plot are more relevant in predicting OD. Poor
control in these variables will definitely result in a
large inconsistency in the OD. At the same time,
variables with low correlation to OD must not be
ignored.  If these variables are related to the key
process parameters (e.g., through control loop), poor
control of these variables  will affect the key variables.
This will have a cascade effect on the consistency of 
the OD.  The VIP plot prioritizes the effort to
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determine the root causes of batch-to-batch
inconsistency.

Fig. 3. The VIP plot for the baseline batches in the
growth phase.

Figure 4 plots the predicted against the observed
activity for the production phase.  Comparison
between production and growth phases shows that the 
model fit is worse in production phase (R2X = 0.642 
and R2Y = 0.848 for a PLS model with 6
components).  This indicates that correlation between
the process variables and activity is weak for some
batches  and the correlation is not consistent from
batch to batch.  Note also that there are some spikes
in the predicted activity.  This means that some
process measurements are noisy.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Predicted activity versus observed activity for
the baseline batches in the production phase.

Model disagreement is especially large for some of
the batches at the end of production. For two batches,
the predicted activity is higher than the observed
activity for the entire production phase.  This is a
clear indication of abnormal batches.

3.2 Identification of bad batches

To understand the consistency of all the variables in
the growth phase, a number of diagnostics tools can
be used.  One of them is the plot of Y-block latent 

variable versus X-block latent variable.  If nonlinear
relationships are observed for all batches, then it will 
be more appropriate to apply non-linear PLS (Qin and 
McAvoy, 1992).   However, if linear relationships are 
observed for most batches, but nonlinear relationships
are observed for others, this indicates the presence of 
bad batches.

Fig. 5. Y-block latent variable versus X-block latent 
variable for two abnormal batches

As shown in Figure 5, nonlinear relationship is
observed for two batches in the growth phase. With
the use of the contribution charts (Miller and
Swanson, 1998), many abnormal variables were
revealed.  As an example, one of these variables is
plotted against OD for all batches in Figure 6.  Three 
batches have lower values in this variable than the
rest of the batches.

Fig. 6. Abnormal variable versus OD in the growth 
phase for all batches.

Diagnostic tools were also used to identify bad
batches in the production phase.  Two of the
abnormal batches in the growth phase were also
identified in the production phase.  Operators
confirmed that they encountered operating problems
during these 3 batches.  After removal of the
inconsistent batches, the model fit for both phases
improved. An additional result supporting the
removal was that now the Y-block latent variable
versus X-block latent variable is linear for the rest of 
15 batches.
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3.3 Root cause determination

Root cause analysis was based on the assumption that 
the top variables in the VIP plot explained most of the 
batch-to-batch variability.  Using this information and
fermentation knowledge, a new procedure with
several corrective actions was applied to the process.
Experiments were performed to validate
improvements in the key parameter.  It is shown in
Figure 7 that variability in this key parameter
becomes significantly smaller after the improvement
(standard deviation decreases from to 0.328 to
0.0732).

Fig. 7. Variability of the key variable before (left) and 
after (right) the implementation of new
procedure.

3.4 Consistency for the batches under new procedure

Fig. 8. Predicted activity versus observed activity for 
the new  batches in the production phase.

Twenty batches were collected in order to validate the
improvements.  Of the 20 batches, seven batches are
golden (no main problems were encountered and
process data correlate well with the quality variables).
One batch is  known to be bad.  The other 12 batches 

are questionable in a sense that some difficulties were 
encountered during the batch runs.

PLS models were applied here to identify the
consistency of the batches.  Improvement in the
growth phase was validated.  In the production phase 
the improvement is less clear on the first glance of
Figure  8, which plots the observed and predicted
activity (R2X = 0.635 and R2Y = 0.866 for a PLS
model with 4 components).  Six batches encountered
feed control issues for two hours during the
production phase.  This is illustrated in Figure 8.

Figure 8 also illustrates another effect that is typical
in real industrial applications. As it is shown, there
are large model disagreements for seven batches.
Without careful examination of the data and detailed
discussion with the process engineers, one may
incorrectly conclude that improvement has not taken
place.  However, a closer examination of the data
shows that activity measurements for these seven
batches are biased high. Large model disagreement 
means that a consistent model cannot be obtained to
relate process measurements to the activity accurately 
for all 20 batches.  This does not necessary mean that 
process measurements are inconsistent.

Fig. 9. Score plot consistency comparison between
the baseline batches (top) and the new
improved batches (bottom).

To understand the root cause, it is desired to examine 
the consistency of the process measurements using
the score plot (see Figure 9).  Each color in the plot 
represents a batch trajectory.  Consistency in the
batch (process data) is reflected in the consistency of 
the batch trajectories.  In other words, if the process 
data are consistent among all batches, their batch
trajectories will overlap. Of the 18 baseline batches
(top of Figure 9), four batches (22%) clearly have
different trajectories.  This indicates that some
process measurements are inconsistent from the rest 
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of the batches. For the 20 new improved batches
(bottom  of Figure 9), only one batch (5%) has a
different trajectory (this batch is known to be bad).
The spikes in the score plot are results of known feed
control issues .   Process data were more consistent for
the new batches, which validated the improvements
that were implemented.

From the score plot, it is clear that the process
measurements are consistent for the new batches.
Because the same fermentation procedure was applied
for these seven batches, activity measurements were
expected to be similar.  This posted a question of the 
activity measurements for these batches.

After discussion with the process engineers, it became
apparent that the deviation in activity was due to a
change of analyst.  The measurements were precise
but not accurate. Because of this, it is not
meaningful to interpret the model fit and to compare
the results to the baseline batches.  Model fit for the 
new batches would improve if the hardware problems 
did not occur and activity measurements were not
biased.  Although the model fit cannot be compared
directly, an examination between Figure 4 and Figure
8 shows that the activity prediction for the new
batches is less noisy (spikes in the predicted activity 
disappear in Figure 8). This is an indication of
improvement in the measurement system.

Fig. 10. Predicted elapsed time versus observed
elapsed time for the new batches in the
production phase.

To validate that the process data are indeed more
consistent for the new batches  than the baseline
batches  and that activity measurement are biased for
some batches , additional PLS models were built with
elapsed time, rather than activity, as the maturity
variable.  For these models, we are exploring the
correlation between the process data and elapsed time
for all batches.  As shown in Figure 10, the model fit
for the new batches (R2X  =0.829; R2Y = 0.957 for a 
PLS model with 9 components) is better than the
model fit in the baseline batches (R2X  =0.681; R2Y = 
0.955 for the model with 6 components) elapsed time 
as the maturity variable).  This indicates that the

process data are correlated with elapsed time
consistently for most of the new batches.

For passing quality testing for a batch, six
specifications have to be met.  There are 18 baseline 
batches, which translates to 108 opportunities for
failure.  The baseline performance is 22 defects out of 
108 opportunities (20.4%).  For the 20 new batches, 
there are 4 defects out of 120 opportunities (3.3%)
Therefore, quality improvement is clearly
demonstrated.

4. ON-LINE  MONITORING

To monitor performance during a batch run, it is
effective to use on-line multivariate control charts.
To illustrate this concept, golden batch data were
used to build multi-way PLS models.  The models
capture normal variability of the batches that are
acceptable to the users. Unlike Figure 9, the 7 golden 
batches overlap in the score plot (see Figure 11),
which confirms that the process data are consistent
for these batches .

Fig. 11. Score plot for the 7 golden batches in the
growth phase.

Fig. 12. Detection of an abnormal batch (solid line) 
using the first latent variable on-line.  Dash
lines and dotted line represent the critical limits 
and the average of the 7 golden batches,
respectively.

After the models are built off-line, on-line monitoring
takes place.  Figure 12 shows the first latent variable 
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for monitoring abnormal behavior during the growth
phase of one bad batch. As process data are
collected, on-line predictions of the latent variables
and the quality variables are computed instantly. The
critical limits (dashed lines) are defined based on the
3 standard deviation limit of the golden batches.  The
statistic was above the limit in the beginning for this
batch, and then it went below the limit, and finally the 
statistic gradually increased above the limit again.
Because no corrective actions were done during the
batch run, the batch remained out of control.  To
identify abnormality during this run, contribution
charts were used.

One of the variables that was identified in the
contribution chart is  plotted in Figure 13, which
clearly shows that variable 10 (solid line) is above the 
average (dotted line) of the 7 golden batches.  If on-
line monitoring model was implemented during the
batch run, problems could have been identified
promptly, which could in turn avoid the production of 
out-of-specification product for this batch.

Fig.  13. Variable 10 (solid line) in an abnormal batch
run.  Dash lines and dotted line represent the
critical limits and the average of the 7 golden
batches, respectively.

 
5. CONCLUSIONS

Multi-way PLS was applied to 18 baseline batches of 
an industrial fermentation process at the San Diego
biotech facility of The Dow Chemical Company.
Three batches were identified as abnormal.  The
variability between the remaining batches was more
significant in the production phase than the growth
phase.  The top variable in the VIP plots explained
most of the variability. A new procedure was carried 
out to control this key parameter and twenty new
batches were made with the new procedure.  Multi-
way PLS analysis showed that the new batches were
more consistent in both phases as evidenced in the
improvement in the model fit  (R2X = 0.829 for the
new batches versus R2X = 0.681 for the baseline
batches) and in the percent of out -of-specification
(3.3% for the new batches versus 20.4% for the
baseline batches).

Seven golden batches were used to build a PLS model 
to capture normal operation conditions.  Bad batches
were detected promptly and abnormal variables were
determined accurately.

The use of multivariate analysis plays an important 
role at The Dow Chemical Company . Value has been
realized in many applications including batch quality
improvement  (this paper), scale-up of new batch
agrochemicals (Schnelle and Armstrong, 2003),
variable selection for multivariate calibration (Leardi
et al., 2002), and soft sensor development (Kordon et
al., 2002).  Implementation of on-line batch
monitoring in the future is expected to bring further
value.

ACKNOWLEDGMENT

Karl Schnelle and Mary Beth Seasholtz are thanked 
for their inputs on the manuscript.
 

REFERENCES

Beebe, K. R., R. J. Pell and M. B. Seasholtz (1998). 
Chemometrics: A Practical Guide, John Wiley & 
Sons.

Chiang, L. H., E. L. Russell and R. D. Braatz (2001). 
Fault Detection and Diagnosis in Industrial
Systems, Springer-Verlag.

Eriksson, L., E. Johansson, N. Kettaneh-Wold and S. 
Wold (2001). Multi- and Megavariate Data
Analysis, Umetrics Academy.

Kordon, A. K., G. F. Smits, E. Jordaan and E. Rightor 
(2002). Robust soft sensors based on integration
of genetic programming, analytical neural
networks, and support vector machines,
Proceedings of WCCI , 896 - 901.

Leardi, R., M. B. Seasholtz and R. J. Pell (2002).
Variable selection for multivariate calibration
using a genetic algorithm: prediction of additive
concentrations in polymer films from Fourier
transform-infrared spectral data. Anal. Chim.
Acta, 461, 189-200.

Miller, P. and R. E. Swanson (1998). Contribution
plots: a missing link in multivariate quality
control. Appl. Math. and Comp. Sci., 8, 775-792.

Qin, S. J. and T. J. McAvoy (1992). Nonlinear PLS
modeling using neural networks, Comput. &
Chem. Engr., 16, 379-391.

Schnelle, K. and K. Armstrong (2003).  Statistical
analysis of large pilot plant datasets, Proceedings
Foundations of Computer -Aided Process
Operations (FOCAPO), 459-462.

Umetrics, Inc. (2003). SIMCA-P+, version 10,
Multivariate process modeling software,
www.umetrics.com .

Wold, S., N. Kettaneh, H. Friden and A. Holmberg
(1998). Modelling and diagnostics of batch
processes and analogous kinetic experiments.
Chemom. Intell. Lab. Syst., 44, 331-340.

Zhang, H. and B. Lennox (2004). Integrated condition 
monitoring and control of fed-batch fermentation
processes. J. of Process Control, 14, 41-50.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



