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Abstract: A nonlinear model predictive control (NMPC) algorithm was developed to dose
the chemotherapeutic tamoxifen to mice bearing breast cancer xenografts. A novel saturating
rate cell-cycle model (SCM) was developed to capture unperturbed tumor growth dynamics,
and a bilinear tumor kill term was included in the G-phase to account for the cycle-specific
nature of tamoxifen and its active metabolite. Drug pharmacokinetics were modeled using
a three-compartment linear model, which successfully approximated parent compound and
metabolite (4-hydroxytamoxifen) plasma concentrations as a function of time. Using daily
tumor measurements, the model predictive control algorithm successfully reduced tumor
volume along a specified reference trajectory over a period of 4 months. A more clinically-
relevant implementation using weekly or biweekly tumor measurements, and a prediction
horizon seven days beyond the measurement interval, also led to reduced tumor volumes.
In the mismatch case, a controller based on the simpler linear cell-cycle model (LCM) was
unable to track desired reductions in tumor volume. Controllers based on a lumped-parameter
saturating Gompertz model (GM), however, can yield similar performance to those using the
more complex saturating rate cell-cycle model. This performance was dependent on the cell-
cycle phase of drug effect, with poorer results for M-phase targeted drugs. Overall, NMPC is
a suitable algorithm for the class of chemotherapy problems with daily drug dosing, and the
algorithm developed here may be adaptable to the clinical setting for the treatment of human
breast cancer patients.
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1. INTRODUCTION

Cancer is the second-leading cause of death in the
United States and is responsible for $189.5 billion
in health care and research costs (The American
Cancer Society, 2004). It is estimated that more
than 1.4 million new cancer cases will be diagnosed
in the year 2004 alone (The American Cancer
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Society, 2004). Given the economic and societal
impact of the disease, improved treatment algorithms
could lead to dramatic reductions in morbidity and
economic burden by increasing treatment efficacy
and efficiency. Mathematical models of untreated
or treated tumor growth have been developed with
varying levels of complexity from the cellular to
the macroscopic scale (Norton, 1988; Asachenkov
et al., 1994; Bajzer et al., 1996). Furthermore, the
medical community focuses significant energy on



the development of mathematical models of drug
pharmacokinetics using available tools (D’Argenio
and Schumitzky, 1997). Using case study specific
models, the cancer chemotherapy treatment problem
can be posed in a model-based framework.

In fact, for more than a decade, various model-based
cancer treatment algorithms have been synthesized
with a focus on batch-like problems (Martin, 1992;
Panetta and Adam, 1995; Harrold et al., 2003). The
main focus of these approaches is to calculate a
treatment profile over a fixed duration that satisfies a
performance objective including, among other terms,
minimizing tumor size at a specified future time. The
durations may be as short as a cycle of therapy (28
days in (Harrold et al., 2003)) or as long as a full
course of therapy (52 weeks or more in (Martin,
1992)). The latter is a generic optimal treatment
problem using a “drug” and “tumor” with assumed
dynamic behavior; these problems can be solved
using a variety of methods including control vector
parameterization (Martin and Teo, 1994) and optimal
control theory (Ledzewicz and Schättler, 2002).
However, clinically-unrealistic assumptions about the
efficacy of compounds or treatment modalities (such
as continuous infusion over days) limit the impact
of generic formulations. To improve the potential
significance, case-study specific information from
human or animal studies, which includes tumor
growth, drug effect, toxicity, etc., are incorporated into
the mathematical models of pharmacokinetics (PK)
and pharmacodynamics (PD). Given these models,
one can pose cyclical cancer treatment as a mixed-
integer optimization problem (Harrold et al., 2003).

Not all cancer treatment problems have the pseudo-
batch structure outlined above. One such example,
and the case study evaluated in this work, is
the treatment of estrogen receptor positive (ER+)
breast cancer xenografts by the chemotherapeutic
tamoxifen (TM). The parent compound and its
more active metabolite 4-hydroxytamoxifen (HTM)
function through competitive inhibition with estrogen.
Drug-binding prevents receptor activation and causes
an accumulation of cells in late G1 phase due to
growth signal truncation. While neither the parent
nor active metabolite directly induce cell apoptosis
(programmed cell death), the cell stress resulting
from accumulation causes increased apoptosis as a
function of the total tumor size and the amount of
drug administered. TM treatment is the method of
choice against ER+ breast cancer, not only due to its
effectiveness but also because of its low toxicity that
enables long term dosing with minimal side effects
(Ellis and Swain, 2001). A typical TM regimen might
involve the patient taking daily TM doses for up to 5
years. Hence, it should be possible to develop a NMPC
algorithm to dose breast cancer patients with TM. The
present work addresses the synthesis of this algorithm
in the context of a preclinical mouse study using mice
bearing human breast cancer xenografts.

2. METHODS

Pharmacokinetic data were obtained from Robinson
et al. (1991). A single large dose of TM (200 mg

kg )
was administered orally (in 0.1 mL peanut oil) to non-
tumor-bearing, ovariectomized, athymic mice, and
plasma samples were taken at 0, 3, 6, 12, 24, 48,
72, and 96 hours after dosing. Plasma samples were
purified using chromatography; concentrations of TM,
HTM, and N-desmethyltamoxifen were determined
via comparison to a standard curve and the resulting
plasma concentrations represent the averaged values
from three mice.

Tumor volume data for pharmacodynamic modeling
were obtained from Conley and coauthors (1999).
The study protocol involved athymic mice implanted
subcutaneously with ER+ xenografts and estradiol
pellets at day 0. Stratified groups were dosed via oral
gavage at 7.5, 15, 30, of 60 mg

kg tamoxifen per day
dissolved in 0.1 mL of purified water (vehicle had
no significant effect on tumor growth). Doses were
given once a day for five consecutive days followed
by two days off, beginning on day 12 of the study.
This seven-day pattern was repeated twice. Twice
each week, tumor volumes were recorded using digital
calipers assuming an ellipsoidal tumor of volume `w2

2
(` = longest tumor axis, w = shortest tumor axis
perpendicular to `).

In this paper, different models with similar names
and structures are presented. Tables 1 and 2 provide
a summary of the model abbreviations employed
throughout.

3. TUMOR GROWTH MODELING

Common models for describing untreated tumor
growth include the exponential and Gompertz, among
others (Martin and Teo, 1994). Biologically motivated

Table 1. Open-loop model nomenclature

SCM saturating rate cell-cycle model (unperturbed)
SCM-G saturating rate cell-cycle model with G-phase kill
SCM-M saturating rate cell-cycle model with M-phase kill
GM Gompertz model (with kill term)
LCM linear cell-cycle model
LCM-G linear cell-cycle model with G-phase kill

Table 2. Closed-loop model nomenclature

NC-G nominal case; controller designed using SCM-G
NC-M nominal case; controller designed using SCM-M
MC-Gu mismatch case; SCM-G as the simulated mouse; controller

designed using GM at equivalent input to SCM-G
MC-Mu mismatch case; SCM-M as the simulated mouse; controller

designed using GM at equivalent input to SCM-M
MC-My mismatch case; SCM-M as the simulated mouse; controller

designed using GM at equivalent output to SCM-M



cell-cycle models provide more insight into cell
behavior (Panetta and Adam, 1995), but these linear
state space models display exponential growth and are
unable to capture saturating tumor growth dynamics.
The Gompertz model (GM) is capable of capturing
clinically observed tumor dynamics (Norton, 1988),
but it does not capture information regarding the
progression of cells through the individual phases
of the cell-cycle. Cell cycle information is vital
from a treatment perspective because cycle-specific
anti-cancer compounds such as curacin A, Taxol,
and tamoxifen can be modeled in a biologically
meaningful manner (Lopes et al., 1993; Panetta and
Adam, 1995; Kozusko et al., 2001). To accurately
model both declining tumor growth rate and cell phase
distribution, a saturating rate cell-cycle model (SCM)
was constructed (Florian Jr. et al., 2003):

dXG

dt
=−kGXG ln

(

θ
N

)

+2kMXM ln
(

θ
N

)

(1)

dXS

dt
=−kSXS + kGXG ln

(

θ
N

)

(2)

dXM

dt
=−kMXM ln

(

θ
N

)

+ kSXS (3)

N = XG +XS +XM (4)

Here Xi corresponds to the volume (mm3) of cells
(assuming constant cell volume and 106 cells =
1 mm3) in the G (growing), S (DNA synthesis),
or M (mitosis) phases; θ is the plateau population
of the tumor (105 mm3); and ki’s denote transfer
rates between cell phases ( 1

hr ). The three states
correspond to cells in G0/G1 (G), S, or G2/M (M)
phases, and groupings were selected based on
experimental limitations. Representations of the five-
compartment cell-cycle model and the reduced three-
compartment cell-cycle model are shown in Figure 1.
Flow cytometry separates cells based on total DNA
content and a fluorescent DNA label, such as
propodium iodine (Lee et al., 2002). Cell phases
possessing equivalent amounts of DNA emit the same
fluorescence. The G0 and G1 phases contain the same
amount of DNA, hence they are indistinguishable and
are lumped together into the single phase, G. The same
scenario applies for cells in the G2 and M phases,
which contain twice the DNA as the cell prepares to
divide (Riesberg et al., 2001).

Two alternative tumor growth models, the three
compartment linear cell-cycle model (LCM) and the
GM were simulated for comparison with the above
model. Removing the logarithmic total population
dependence from individual transition rates in
Equations (1)-(3) results in the following governing
equations for the LCM:

dXG

dt
=−kGXG +2kMXM (5)

dXS

dt
=−kSXS + kGXG (6)

G1

G0

kS

k
M

kG

G M

S

G2

M

Fig. 1. The five phases of the cell-cycle: G0
(senescence), G1 (growth), S (DNA replication),
G2 (mitotic preparation), and M (mitosis).
Evaluating fractional distributions via fluorescent
DNA labeling and flow cytometry prevents
unique quantification of G0 from G1 (lumped as
G) and G2 from M (lumped as M).

dXM

dt
=−kMXM + kSXS (7)

N = XG +XS +XM (8)

The Gompertz model lumps cell phases into one
homogeneous population, N, with saturating growth
dynamics as N → θ :

dN
dt

= τ N ln
(

θ
N

)

(9)

All constants and variables are equivalent to previous
definitions; τ is a pseudo-doubling time ( 1

hr ).

Values for the transfer rates (ki) and the pseudo-
doubling time (τ) were determined by minimizing
the squared difference between model predictions
and animal data (Conley et al., 1999). The model
parameters are summarized in Table 3. The tumor data
and model predictions are plotted in Figure 2. Both
the SCM and GM provide an accurate prediction of
tumor growth over the duration of the experiment. In
contrast, the LCM is unable to account for both rapid
initial tumor proliferation and the decreasing growth
rate observed with increasing tumor size. Rather, it
predicts an average fit of the growth data.

Table 3. Parameter values for the tumor
growth models: linear cell-cycle (LCM),
Gompertz (GM), and saturating rate cell-

cycle (SCM).

LCM GM SCM

kg 0.0168 — 0.0013
ks 0.0088 — 0.0390
kM 0.0429 — 0.0169
τ — .0010 —
θ — 105 105
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Fig. 2. Measured mean tumor volume data (circles;
N = 20 control mice) and simulated tumor size
(lines) as a function of time for LCM (dash-dot),
SCM (solid), and GM (dash, overlay on solid)
models. Error bars represent a 95% confidence
interval.

Akaikie’s Information Criteria, traditionally used by
the medical community to assess whether increases
in model complexity are justified by improvements in
model accuracy, is given by (Akaike, 1979):

AIC = n ln
(

SSE
n

)

+2∗ p (10)

Here, SSE is the sum squared error between the
model prediction and the data at the measurement
points, n is the number of data points, and p is the
number of parameters in the model. Since the number
of data points (17) and the SSE for both models
were equivalent (13.98 for each) while the number
of parameters increased from 1 to 3, AIC analysis
clearly favored the simpler Gompertz description.
However, this result was not unexpected and should
result if the SCM accurately portrays Gompertz
growth while maintaining cell phase information. The
benefit of including additional complexity in this case
allowed for an accurately targeted drug-effect when a
cycle-specific chemotherapeutic was employed. It was
anticipated that this improvement in model quality
will lead to improved performance by controllers
designed from this model (Morari and Zafiriou, 1989).

4. PHARMACOKINETICS

The pharmacokinetics of the oral agent TM and
its active metabolite HTM were modeled using
the first-order parent/metabolite with oral dosing
compartmental structure in Figure 3. A TM dose
is administered orally, and the parent compound is
absorbed from the gut. After absorption, circulating
TM can be cleared from the system (including
conversion to metabolites such as tamoxifen N-oxide,
N-desmethyltamoxifen, and others) or converted to
HTM. Circulating HTM is also cleared from the

gut
dose

kcl1 kcl2

V1 V2

k12k0

Fig. 3. 3-compartment model for plasma concentra-
tions of tamoxifen and 4-hydroxytamoxifen after
oral dosing

system. Of the metabolites, only HTM and N-
desmethyltamoxifen appear in plasma at detectable
concentrations (Ellis and Swain, 2001). Affinity
studies have shown N-desmethyltamoxifen binds with
estrogen receptors at 1

50 the affinity of TM and 1
1250 the

affinity of HTM (Ellis and Swain, 2001). As such, only
TM and HTM are postulated to contribute a significant
anti-tumor effect.

The following equations describe the TM and HTM
pharmacokinetics:

dX0

dt
=−k0X0 +u(t)

dX1

dt
=−kcl1X1 − k12X1 + k0X0

dX2

dt
=−kcl2X2 + k12X1 (11)

Y1 =
X1

V1

Y2 =
X2

V2

Here X0, X1, and X2 correspond to TM mass in the
gut, TM mass in plasma, and HTM mass in plasma,
respectively (µg), V1 and V2 are central compartment
volumes for the parent compound and metabolite
(mL), and ki denote transfer rates ( 1

hr ). Variables Y1
and Y2 represent the measured plasma concentrations
of TM and HTM ( µg

mL).

The parameters in equations (11) were fit by
minimizing the squared difference between model
predictions and data obtained from non-tumor bearing
athymic mice (Robinson et al., 1991) and the resulting
parameter values are summarized in Table 4.

Model predictions for both compounds can be seen
in Figure 4. The pharmacokinetic model is able
to capture the dynamic profile of the data with
only a slight over-prediction of TM concentration

Table 4. PK parameter values for the oral
dosing of tamoxifen.

Parameter Value

k0 0.052 1
hr

k12 0.340 1
hr

kcl1 0.349 1
hr

kcl2 14.866 1
hr

V1 2.354 mL
V2 0.060 mL
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Fig. 4. Actual (circles) vs. simulated (lines) PK for
TM (top) and HTM (bottom) after a 200 mg/kg
oral dose of TM. Each data point represents mean
plasma concentrations from three mice; error
bars are ± 1 standard deviation.

at t = 24 hours. Additional compartments or delays
could be incorporated into the TM model to more
accurately fit the data at the cost of increased number
of parameters, decreased parameter confidence, and
increased mathematical complexity.

5. PHARMACODYNAMICS

The cycle-specific drug effects of TM and HTM were
coupled with the tumor growth model by including a
bilinear kill term in the differential equation for XG
in (1), termed the saturating rate cell-cycle model with
G-phase kill (SCM-G). Cycle-specific drug effects
were also incorporated for XG in (5) and for N in
(9), respectively. Conceptually, the bilinear structure
means that increases in drug concentration have an
increasing anti-tumor effect and a larger tumor will
have more cells susceptible to a given dose. Adding
the bilinear term yields the following modifications to
equations (1), (5), and (9), respectively:

dXG

dt
=−kGXG ln

(

θ
N

)

+2kMXM ln
(

θ
N

)

−kDXG

(

X1

V1
+ c

X2

V2

)

(12)

dXG

dt
=−kGXG +2kMXM

−kDXG

(

X1

V1
+ c

X2

V2

)

(13)

dN
dt

= τN ln
(

θ
N

)

− kDXG

(

X1

V1
+ c

X2

V2

)

(14)

Here kD is the drug-induced tumor death rate ( mL
µg hr )

and c represents the ratio between the binding
affinities of TM and HTM. Combining the kill rates
in this manner is justified based on the inhibition
mechanism of the drug, which involves the blockage

of estrogen receptor sites. A drug which binds more
tightly to the receptor acts as a more potent blocker,
and the relative strength of that bond serves as a basis
of comparison for its effectiveness versus other drugs.
As noted above, HTM has been shown experimentally
to possess a binding affinity 25-50 times that of TM
(Ellis and Swain, 2001), so c was set to 25 (possibly
underestimating HTM anti-tumor effect).

Unperturbed tumor growth rates and PK parameters
were fixed at identified values, and kD was estimated
by minimizing the squared difference between the
data and SCM-G predictions at each of four dosing
levels (60, 30, 15, and 7.5 mg

kg per dose). The kD

rates corresponding to the three lower dosing levels
were found to be in close agreement (0.00251 ±

0.00025 mL
µg hr ), while the rate for 60 mg

kg was

significantly lower (0.00192 mL
µg hr ). This discrepancy

is possibly due to a saturation of the estrogen receptor
pathway at the high dose level. By limiting the dosing
levels to 0 ≤ u(t)≤ 30 mg

kg per day (single daily dose),
the value of kD can be fixed to the mean value of
0.00251 mL

µg hr . Although Conley et al. (1999) did not
demonstrate long term survival of mice on daily TM
dosing, other authors have shown mouse longevity for
up to 2 years at 40 mg

kg daily dosing, thereby validating
the dosing range used here as within acceptable
toxicity limits (Martin et al., 1997).

Estimating kD for both the LCM-G and GM yielded
similar rate trends for kD. At the three lower dosing
levels (30,15, and 7.5 mg

kg ), kD values were in close

agreement (LCM-G: 0.00531 ± 0.00047 mL
µg hr ; GM:

0.00325±0.00024 mL
µg hr ) while rates at 60 mg

kg (LCM-

G: 0.00384 mL
µg hr ; GM: 0.00192 mL

µg hr ) were quite
different. Estimated kD rates between the GM and
SCM-G were also similar while rates determined for
the LCM-G were quite different. It is likely this
change results from the linear vs. nonlinear dynamic
structure of the models.

Figure 5 shows the ability of the pharmacodynamic
models to fit tumor growth during treatment (dose ≤

30mg
kg ). The model over-predicts drug effect for doses

of 15 and 30 mg
kg , however these over-predictions do

not seriously impact overall tumor growth predictions
over the 60 day period. A portion of this mismatch
results from fixing the unperturbed tumor growth
kinetics, which were different even among stratified
groups. For example, at day twelve for 30 mg

kg dosing
(Figure 5, bottom) the predicted tumor size is greater
than the measured tumor size on day 12 before
drug is administered. Still, the model predicts the
qualitative shape of drug-altered tumor growth and
model predictions remain within the 95% confidence
intervals.



6. CONTROLLER SYNTHESIS: SATURATING
RATE MODEL

A daily dose of 12.0 mg/kg TM applied to
the “simulated mouse” having PK governed by
Equation (11) and SCM-G pharmacodynamics given
by Equations (12), (2), (3), and (4) resulted in a steady
state xenograft tumor burden of 100 mm3. Note that
the term “steady state” describes a tumor volume
measurement taken at the same time each day. The
bolus administration of TM resulted in periodic drug
and tumor volume profiles, but measurements taken
at 24-hour intervals were steady. A nonlinear model
predictive control (NMPC) algorithm was developed
to regulate tumor volume (measured variable) by
manipulating TM dose on a daily schedule. In the
nominal case, this algorithm uses the previously
developed PK model in equation (11) and the PD
model from equations (2) to (4) and (12) to explicitly
predict the future tumor size based on the current and
past dosing profile. The delivery problem formulation
facilitated using the “∆U ” structure for the NMPC
problem. The standard two-norm squared control
objective was employed (Morari and Ricker, 1994):

min
∆U (k|k)

‖Γy [R(k +1)−Y (k +1|k)]‖2
2

+‖Γu∆U (k|k)‖2
2 (15)

Here Y (k +1|k) is the predicted future tumor volume
over the prediction horizon of length p, R(k + 1)
is the desired tumor volume over the same horizon,
and ∆U (k|k) is the (move horizon, m, length)
trajectory of future TM dosing changes calculated to
minimize the objective (15). The weighting matrices
Γy and Γu establish the relative importance of setpoint
tracking error and manipulated variable movement,
respectively; in the present work, these were set to
Γy = 1 and Γu = 0 for all simulations. Magnitude
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Fig. 5. Measured MCF-7 tumor xenograft data from
tumor-bearing athymic mice (circles) vs. LCM-
G (dash-dot), SCM-G (solid), and GM (dashed)
model predictions at daily oral dose levels of 7.5
(top), 15 (middle) or 30 mg/kg (bottom) TM.
Error bars represent a 95% confidence interval.
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Fig. 6. TM plasma concentration (top), HTM plasma
concentration (middle) and delivered TM oral
dose (bottom) as a function of time. The dashed
line in the bottom figure is the representation
of NMPC results for easy viewing in longer
simulations.

constraints were imposed to keep the daily TM dose
within the bounds prescribed by the linearity in the
PD effect with dose: 0 ≤ U (k|k) ≤ 30 mg

kg . The
resulting nonlinear programming problem was solved
using the fmincon function in MATLAB (©2004, The
MathWorks, Natick, MA). The studies evaluated in
the remainder of this section are nominal control
studies, with plant and model equivalent. The goal was
to evaluate the performance of an NMPC controller
formulation on a representative cancer chemotherapy
problem.

Chemotherapy dosing differs from traditional en-
gineering control systems in the manner of drug
delivery. TM was delivered as a bolus each day by
oral gavage in animal studies; this is conceptually
similar to administering the chemotherapeutic as
a pill. Hence, the “stepwise-constant” manipulated
variable was replaced by a daily bolus. TM plasma
concentration, HTM plasma concentration, and TM
dose are shown in Figure 6. Each day a bolus
was given (bottom, solid), and the corresponding
TM (top) and HTM (middle) concentrations showed
the characteristic rapid concentration rise and then
decreasing plasma concentration over the course of
the day. Of note is the accumulation of TM and HTM
in the plasma; a pseudo-steady state was reached
after about 10 days. The manipulated variable plot
(bottom) in Figure 6 provides the actual dosing profile
(solid) and this dose plotted in the traditional stepwise-
constant shape (dashed). For ease of viewing in longer
simulations, the stepwise-constant shape is plotted in
future figures; this stepwise shape is representative of
the TM dose and is not the exact dosing profile.

Controller tuning, i.e. setting the move and prediction
horizons, is often accomplished on an ad hoc basis.
Three candidate tuning sets for this case study are
shown in Figure 7. The “simulated mouse” initially
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Fig. 7. Tumor volume (top) and TM dose representa-
tion (bottom) versus time for m = 1 with p = 8
(solid) and p = 22 (dashed) as well as m = 2,
p = 8 (dash-dot).

had a 100 mm3 tumor burden and TM and HTM
plasma concentrations of 0; the NMPC controller was
started with a reference value of 100 mm3. Tumor
measurements were taken at 24-hour intervals. All
three tunings resulted in increased TM doses to offset
the initial rise in tumor volume due to unperturbed
tumor growth. As drug plasma concentrations rose
over the first few days, tumor volumes started to
decrease. After 56 days, the controller had achieved
a pseudo-steady tumor burden of 100 mm3. Settling
to within 1% of the desired trajectory (t99%) for
the m = 1, p = 22 case required markedly more
time than the other two tests; this was rejected as a
suitable controller tuning. From the bottom panel of
Figure 7, the aggressiveness of the m = 2 controller
can be observed; dose levels were changed about the
mean value for approximately 3 weeks. The m = 1,
p = 8 profile offered a smooth dosing profile and
comparatively rapid return to the 100 mm3 reference.

To determine which of the other two settings
(m = 1, p = 8 or m = 2, p = 8) provided superior
performance, a second trajectory was simulated. The
ability of the different NMPC controller tunings to
reduce tumor volume is shown in Figure 8. At four-
week intervals (corresponding approximately to a
“cycle” of traditional cancer chemotherapy), the tumor
volume reference was decreased by 20% of the then-
current value. The ability of the two controller tunings
to track the reference changes from 100 to 80, 64,
and 51.2 mm3, respectively, was quite good. As
expected, the more aggressive m = 2 tuning reduced
tumor volume more quickly, but this led to increased
undershoot with each step change and oscillatory
dosing profiles. While the aggressive m = 2 trajectory
reduced tumor size faster, the smoother m = 1 dosing
profile is more acceptable from a clinical perspective.

An inherent assumption to this point is the ability
to collect a tumor measurement on a daily basis.
While this might be possible in animal studies
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Fig. 8. Tumor volume (top), reference volume
(dashed, top) and TM dose representation
(bottom) as a function of time. Controller tunings
are m = 1 (solid) and m = 2 (dash-dot) with
p = 8.

at increased expense (using straightforward digital
caliper measurements), the cost and impact on patient
quality of life are prohibitive in human trials. The
most frequent rate at which a tumor size measurement
may be possible in humans is weekly without either
the development of a new measurement technology
or a reduction in time and cost associated with
current measurements. In the nominal case, the
following problem was posed. On day 0, and at 7-
day (days 7, 14, etc.) or 14-day (days 14, 28, etc.)
intervals, a tumor volume measurement was taken.
The controller was formulated with m = 1 and p = 14
or p = 21 for weekly and biweekly measurement,
respectively. The updated dose level calculated by
the NMPC algorithm was delivered daily until the
next measurement was obtained, and the controller
computation was repeated. The results are shown in
Figure 9. The weekly measurement had a t99% value
of 2 weeks, demonstrating excellent reference tracking
performance. The slower measurement rate resulted in
undershoot with a t99% of 4 weeks which, as expected,
was worse than the settling time from weekly updates.
In the case that biweekly measurement is all that
is available, the control algorithm can successfully
reduce tumor volume.

7. CONTROLLER MODEL MISMATCH

The ability of the NMPC algorithm to perform despite
mismatch between the actual and controller models
was evaluated. The “simulated mouse” was taken as
the actual system, and either the LCM-G or GM
served as the controller model. As a tumor possesses
a population of cells in different phases of the cell
cycle and the overall growth dynamics saturate, these
choices represent a fair depiction of overall tumor
behavior. Furthermore, the robustness of developed
control systems based on models failing to capture
either nonlinear dynamic or cell-cycle information
was assessed. Tracking tumor volume deviations with
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Fig. 9. Tumor volume (top) and TM dose rep-
resentation (bottom) as a function of time.
Tumor volumes are measured weekly (solid) or
biweekly (dash-dot) under NMPC with m = 1,
p = 14 (solid) or p = 21 (dash-dot). The tumor
volume reference value is 25 mm3.

the LCM-G as the controller model was not possible,
however, due to the differences in dynamic behavior
between the LCM-G and SCM-G models over the
dose range of interest. Further analysis with the linear
cell-cycle model was discontinued as stability could
not be guaranteed for progressive reductions in tumor
volume.

Using the steady state input for the “simulated mouse”
(12.0 mg

kg day TM) resulted in a GM tumor burden of

104 mm3. The controller model and the “simulated
mouse” were initialized with the same steady state
dose to allow manipulation of the daily dose over
the full [0 mg

kg , 30 mg
kg ] range. To assess controller

performance under mismatch and to determine if the
additional complexity of the SCM-G was necessary
for high-performance control, closed-loop simulations
were compared for two cases: a four-stage trajectory
for tumor volume reduction with daily updates (m =
1, p = 8); and biweekly tumor volume updates (m =
1; p = 21) after a single reduction in desired tumor
volume.

NMPC controller simulations for tracking stepwise
tumor volume reductions under mismatched condi-
tions employed desired tumor volume decrements of
30% between stages. This corresponded to reference
trajectories of 100, 70, 51, and 34.3 mm3 over each
four-week cycle. The motivation for this alteration was
to better utilize the allowable dosing range toward the
maximum region (30 mg

kg ); requiring greater tumor
reduction during each step accomplished that task.
The results are shown in Figure 10. The NMPC
with the mismatched GM as the controller model
initialized with the same input (MC-Gu) did not
cause noticeable deviations from the nominal case
with the SCM-G as the controller model (NC-G). The
sum squared error increased by 10% (2603 vs. 2853
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Fig. 10. Tumor volume (top), reference volume
(dashed, top) and TM dose representation
(bottom) as a function of time. Tuning parameters
were chosen as m = 1 and p = 8 for both the
nominal (NC-G, solid) and mismatch (MC-Gu,
dash-dot) cases.

mm6); this was primarily caused by the undershoot
in the MC-Gu response profile. Differences in total
drug delivered were negligible, though NC-G delivery
profiles employed greater initial drug delivery in
response to reference step changes. This resulted in
a t99% that was typically one day faster, occurring on
day 14 (NC-G) vs. day 15 (MC-Gu) of each reference
step. The MC-Gu also resulted in reference trajectory
undershoot ranging from 1-2%. Both controllers led
to tumor volumes that setttled to within 1% of the
reference within the 4 weeks except the MC-Gu on
the third stage (51 mm3); 99% settling in the output
occurred if the step was extended for longer than
28 days. Furthermore, the undershoot did not affect
the ability of the MC-Gu to track the next tumor
decrement.

Both controllers were also compared assuming tumor
updates occurred every two weeks to better simulate
clinical practice, and the results are shown in
Figure 11. The input and output profiles were similar
with reference deviation and total drug administered
within 1% for the two systems. The t99% settling time
using the MC-Gu was markedly different, however,
taking 111 days versus 29 for the NC-G.

Overall controller performance with the MC-Gu as
the controller model did not differ significantly from
controller performance using the NC-G, though the
MC-Gu system displayed increased settling time in
most cases. This agreement in performance was not
unexpected. For the case of a G-phase-specific drug
like TM, the SCM-G can be closely approximated as
a Gompertz description at large tumor volumes. As the
tumor size increases, a greater fraction of cells reside
in G-phase; the SCM-G predicts 90% of the total cells
in G-phase at a size of 100 mm3 (increasing to 95%
by 1000 mm3). With the bulk of the population in G-
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Fig. 11. Tumor volume (top) and TM dose repre-
sentation (bottom) as a function of time. Tumor
volumes are measured biweekly under NMPC
with m = 1, p = 21 for the nominal (NC-G,
solid) and mismatch (MC-Gu, dash-dot) cases.
The tumor volume reference value is 25 mm3.

phase along with the kill term, the dynamic behavior
of the GM and SCM-G should be similar, as observed.

8. THEORETICAL STUDY: M-PHASE KILL

To test this hypothesis, a theoretical study was
conducted using the same pharmacokinetic and
pharmacodynamic data as the earlier studies within
this paper. However, the PD effect was moved from the
G-phase to the M-phase (where approximately 10% of
the tumor cells reside), resulting in the following PD
model (SCM-M):

dXG

dt
=−kGXG ln

(

θ
N

)

+2kMXM ln
(

θ
N

)

(16)

dXS

dt
=−kSXS + kGXG ln

(

θ
N

)

dXM

dt
=−kMXM ln

(

θ
N

)

+ kSXS

−kDXG(X1/V1 + cX2/V2) (17)

here equations (12) and (3) have been changed to
equations (16) and (17), respectively, to reflect a drug
acting primarily in the M-phase. The cell kill rate, kD
was determined as before for the four dosing levels
(60, 30, 15, and 7.5 mg

kg ). The rates for the three lower
dosing levels were still in close agreement (0.00161±
0.00015 mL

µg hr ) while the kill rate corresponding to

doses of 60 mg
kg was again much lower (0.00090

mL
µg hr ). This allowed the daily dosing range to be

fixed as before, (0 ≤ u(t) ≤ 30 mg
kg ) and the cell kill

rate was set at 0.00161 mL
µg hr . A change in cell-phase

specificity does not alter the GM PD effect, so kD

remained at 0.00325 mL
µg hr .

Figure 12 shows the predicted PD fit using the
SCM-M, GM (including drug effect), and actual
data. The SCM-M was able to capture the tumor
response profile and coincides with the Gompertz
predictions, demonstrating similar behavior for short
dosing periods. In addition, it is interesting to note
that the SCM-G also fit this data. All three models
display similar tumor volume responses for the dosing
regimen and time periods in question, despite each
having a different location for kill term effect.

Similar to the previous mismatch studies, the SCM-
M was set as the “simulated mouse” and tested
using either the mismatch case Gompertz model
as the controller model initialized with equivalent
input (MC-Mu) or the nominal case saturating rate
cell-cycle model with M-phase kill (NC-M) as the
controller model. To maintain a steady 100 mm3

xenograft tumor burden in the SCM-M, a daily dose
of 9.5 mg

kg was necessary, corresponding to a 262 mm3

tumor volume for the GM. Initialization employed the
same steady state dose to enable variable manipulation
over the entire dosing range. The two test cases
comparing stepwise reduction in tumor volume and
biweekly dosing updates were simulated to determine
whether performance similarity between the NC-G
and MC-Gu controllers was a result of a G-phase
chemotherapeutic acting on a predominantly G-phase
tumor.

The results of the four-stage reduction in tumor
volume simulation are shown in Figure 13. The
MC-Mu controller was unable to follow the desired
trajectory for the entire simulation, never reaching
a stable tumor volume within 1% of desired by
the time of the next decrement. The total drug
delivered by the MC-Mu was 5% less than the NC-
M system. Furthermore, the GM-based controller
was less aggressive, delivering less drug initially, but
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Fig. 12. Measured MCF-7 tumor xenograft data for
tumor-bearing athymic mice (circles) vs. model
predictions for the SCM-M (solid), and the GM
(dashed) dosed orally at 7.5 (top), 15 (middle)
or 30 mg/kg (bottom) TM per day. Error bars
represent a 95% confidence interval.
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Fig. 13. Tumor volume (top), reference volume
(dashed, top) and TM dose representation
(bottom) as a function of time. Tuning parameters
were chosen as m = 1 and p = 8 for both the
nominal (NC-M, solid) and mismatch (MC-Mu,
dash-dot) cases.

maintaining an elevated dose level for an extended
period of time. This significantly different dosing
profile contributed to the MC-Mu system falling short
of the desired trajectory by 1-5% at the end of each
stage. A final point of concern is the trajectory taken
by the MC-Mu controller following the step from
100 to 70 mm3. The response was more sluggish,
likely a result of the initial conditions for the model’s
operating state. While the NC-M maintains a steady
tumor burden of 100 mm3 at a dose of 9.5 mg

kg , the
same dosing resulted in a GM predicted volume of 262
mm3. At this operating state, small changes in dose
were predicted to cause large alterations in the tumor
volume, and the controller took a less aggressive
approach toward the desired reference trajectory.

This point is further illustrated in Figure 14 where
tumor dosing is updated biweekly. The NC-M
controller rapidly drove the tumor volume toward
the desired trajectory of 25 mm3, settling to within
1% of the desired setpoint by 28 days. The MC-
Mu controller, however, resulted in a trajectory that
had not reached the reference criteria by 72 days.
The dosing profile proves that the MC-Mu controller
yielded a less aggressive response, a side effect of the
large steady state tumor volume at the starting dose.

To improve controller performance, the GM was
initialized with identical tumor volume (MC-My)
to the “simulated mouse” (100 mm3) instead of
equivalent drug input (9.5 mg

kg ). For this tumor burden,
the GM required a steady state drug delivery of
12.0 mg

kg . Maintaining both dosing inputs within the

constraints, 0 ≤ U (k|k) ≤ 30 mg
kg , required redefining

the input constraints as 2.5 ≤ U (k|k) ≤ 27.5 mg
kg .

The reduction in range for lower dosing levels
did not significantly impact tumor treatment as the
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Fig. 14. Tumor volume (top) and TM dose repre-
sentation (bottom) as a function of time. Tumor
volumes are measured biweekly under NMPC
with m = 1, p = 21 for the nominal (NC-M,
solid) and mismatch (MC-Mu, dash-dot) cases.
The tumor volume reference value is 25 mm3.

manipulated variable did not enter this range for all
investigated simulations. Dose predictions within the
excluded upper range, however, were implemented
immediately following negative steps in the reference
trajectory and contribute to the initial, rapid tumor size
reduction.

Revisiting the constraint development, it was observed
that doses within the range of 7.5 to 30 mg

kg
resulted in similar tumor-kill rates while kD at
doses of 60mg

kg were markedly reduced, possibly
as a result of receptor saturation. The dose at
which saturation begins (between 30 − 60 mg

kg ) was
not explicitly known. If one assumed that doses
slightly above 30 mg

kg would not achieve saturation,
the following magnitude constraints can be enforced:
2.5 ≤ U (k|k) ≤ 30 mg

kg . A performance comparison
between the NC-M, MC-Mu, and GM controllers
initialized at equivalent tumor volumes (MC-My),
can be found in Figure 15. The NC-M response is
identical to that for the first step in Figure 13 (analyzed
above). In response to a decrease in desired tumor
volume (100 → 70 mm3), the MC-My controller was
more aggressive than the MC-Mu controller. Both had
trajectories which undershoot and eventually settle to
within 1% of the desired tumor volume, however the
MC-My controller reached the desired tumor volume
faster and had the smaller t99%.

The stepwise tumor volume reduction and biweekly
update test cases were simulated for the NC-M and the
MC-My controllers; results are shown in Figures 16
and 17, respectively. The MC-My controller dosed
more aggressively than the MC-Mu controller for the
four-stage trajectory, and the MC-My system reached
the desired reference on the same day as the NC-M
system. Undershoot occurred for each step and settling
to within 1% of the desired value was not achieved
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Fig. 15. Tumor volume (top) and TM dose representa-
tion (bottom) as a function of time. For tuning
parameters of m = 1 and p = 8, the predicted
trajectory is shown for the nominal (NC-M,
solid) and the mismatch (MC-My, dashed; MC-
Mu, dash-dot) cases. Reference tumor volume
was 70 mm3.

during any of the four-week stages. Similarly, a more
aggressive trajectory was taken by the MC-My system
in the biweekly update study. Undershoot resulted
during weeks 3-4 with oscillations around the desired
trajectory ceasing by week 16 (not shown). In both
cases superior controller performance was achieved
with the MC-My vs. the MC-Mu (results in Figures 13
and 14, provided that undershoot in tumor volume
can be tolerated). These new controller settings were
not able to outperform the NC-M, taking more time
to settle in all studies. Furthermore, these results
demonstrate the importance of incorporating cell-
cycle information, especially if the fraction of the
susceptible tumor population is small compared to the
total tumor population (as is the case for an S- or M-
phase targeted drug).

9. SUMMARY

A NMPC controller was designed to dose TM, a cycle-
specific chemotherapeutic, to mice implanted with
ER+ breast cancer xenografts. This controller is based
on novel PK and PD models of TM dose and MCF-7
tumor growth, and the algorithm is ready for testing
in a preclinical setting on mice. Adaptation to actual
breast cancer patients would require TM PK and PD
data from humans, but the model predictive control
framework provides the groundwork for a patient-
tailored dosing algorithm capable of constraining drug
delivery within safety-induced bounds and responding
to changes in patient response.

The closed loop system designed with the linear cell-
cycle model in the controller was unable to track
the four-stage trajectory for tumor volume reduction.
Employing the less detailed nonlinear GM in the
controller design resulted in similar trajectory tracking
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Fig. 16. Tumor volume (top) and TM dose representa-
tion (bottom) as a function of time. For tuning
parameters of m = 1 and p = 8, the predicted
trajectory is shown for the NC-M (solid) and
MC-My (dash-dot) systems. Reference tumor
volume decreased every 4 weeks, starting at 100
mm3.
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Fig. 17. Tumor volume (top) and TM dose repre-
sentation (bottom) as a function of time. Tumor
volumes are measured biweekly under NMPC
with m = 1, p = 21 for the NC-M (solid) and
the MC-My (dash-dot) cases. Reference tumor
volume was 25 mm3.

results when compared to controllers designed with
the more complex SCM. Controller performance was
dependent on the cycle phase of drug effect, with
more significant performance deviation between the
nominal and mismatch systems when the drug effect
targeted a smaller portion of the the overall tumor
population (M vs. G). Furthermore, given the rate at
which tumor volume measurements are taken in the
clinic, failure to track cell phase for cycle-specific
chemotherapeutics can lead to gross misestimates in
tumor volume reductions. Future foci include toxicity
modeling/monitoring (e.g. white blood cell count) and
development of a multi-rate NMPC algorithm with
state estimation to allow toxicity- and efficacy-driven
changes to the dosing profile in real-time.
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