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Abstract: The task of improving the quality of the data so that it is consistent with material
and energy balances is called reconciliation. Since chemical processes often operate
dynamically in nonlinear regimes, techniques like Extended Kalman Filter (EKF) and
Nonlinear Dynamic Data Reconciliation (NDDR) have been developed. There are various
issues that arise with the use of either of these techniques: EKF cannot handle inequality
or equality constraints, while the NDDR has high computational cost.
In this paper, first, a recursive nonlinear dynamic data reconciliation (RNDDR) for-
mulation is discussed. The RNDDR formulation extends the capability of the EKF by
allowing for incorporation of algebraic constraints and bounds during correction. The
covariance calculations arising in the RNDDR are same as EKF, i.e., both, nonlinearity
and constraints are neglected during covariance propagation and calculation of uncertainty
in filtered estimates. The use of Unscented Transformation with the RNDDR gives the
Unscented Recursive Nonlinear Dynamic Data Reconciliation (URNDDR) formulation,
which addresses all the aspects of nonlinearity and constraints in a recursive estimation
framework, thus proving to be an efficient tool for real-time estimation.
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1. INTRODUCTION

The quality of process data in a chemical process sig-
nificantly affects the performance and benefits gained
from activities like performance monitoring, online
optimization and control. Processes are invariably
subject to random disturbances and process measure-
ment is corrupt with random errors. In order to ame-
liorate the effect of these random errors, estimation
methods can be used to obtain accurate estimates of
the process states and parameters.

Several different estimation methods have been pro-
posed in the literature depending on the assumptions
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made. For linear dynamic systems, the Kalman Filter
(KF) gives optimal estimates in presence of measure-
ment and state uncertainties (Gelb, 1988). For non-
linear systems, Extended Kalman Filters (EKF) have
been developed, which are based on linearising the
nonlinear equations and applying the Kalman filter
update equations to the linearised system. The ad-
vantages of the KF, the EKF and their variants lie in
their predictive-corrective form and the recursive na-
ture of estimation. The recursive form of these estima-
tion methods allows for rapid estimation in real-time,
which is extremely important for online deployment.
A major disadvantage of the KF and all its variants is
that they cannot take into account bounds on process
variables or other algebraic constraints.



In this paper, first, a Recursive Nonlinear Dynamic
Data Reconciliation (RNDDR) formulation is pre-
sented. The RNDDR formulation extends the capa-
bility of EKF by allowing for incorporation of alge-
braic constraints and bounds. The covariance calcula-
tions arising in the RNDDR formulation are similar
to the EKF, which is, linearized model based covari-
ance propagation and the calculation of uncertainty in
filtered estimates by using the Kalman gain i.e. by as-
suming an unconstrained correction. This formulation
has been extended with the aid of Unscented Trans-
formation (Julier and Uhlmann, 1997), to give the
Unscented Recursive Nonlinear Dynamic Data Rec-
onciliation (URNDDR) formulation which addresses
nonlinearity and constraints arising in both the propa-
gation and correction steps.

2. RECURSIVE NONLINEAR DYNAMIC DATA
RECONCILIATION (RNDDR)

In Kalman filter and its variants, the estimation pro-
cedure at each sampling instant can be regarded as
composed of two steps (as described in Vachhani et al.
(2003)). In the first step, the state estimates from the
previous time instant are propagated through the pro-
cess dynamic equations (along with its error covari-
ance matrix), while in the second step, the predicted
estimates are corrected using the measurements avail-
able at the current time instant. It is known that the
optimal updated estimates for KF (as also its variants)
are obtained by solving an unconstrained optimization
problem for which the objective function is given in
Equation A.5. In the absence of any constraints, the
solution of this optimization problem is given by the
standard Kalman filter update equation for the state
estimates given in Equations A.6 - A.7. The Kalman
filter can be extended to obtain simultaneous state and
parameter estimates, by treating the parameters to be
estimated as augmented states (Jazwinski, 1970).

If algebraic constraints or bound constraints have to
be imposed on the state estimates, these can be conve-
niently included in this optimization problem. In this
case, the solution of the optimization problem has to
be obtained numerically. This forms the basis for the
RNDDR method.

xk+1 = xk +
∫ (k+1)∆t

k∆t
f (x(τ),uk , p)dτ +wk

yk+1 = g(xk+1)+ vk+1 (1)

Consider the system given by Equation 1 with bounds
and algebraic constraints imposed on the states and
parameters. Let x̂k|k, p̂k|k, and Pk|k,a (a in the subscript
here refers to the augmented system) be given at
time instant ‘k’. The predicted state estimates x̂k+1|k
is determined by integration for the given parameter
estimate p̂k|k (same as p̂k+1|k) and the variance of
uncertainty in the predicted estimates is calculated by
covariance propagation as with EKF.

For covariance propagation, the nonlinear state space
model is linearized around [x̂k|k, p̂k|k],

[
ẋ
ṗ

]

=

[
Ak Γpk
0 0

]

︸ ︷︷ ︸

Ak,a

[
x
p

]

and the state transition matrix is approximated as-
suming an equivalent LTI system, Āk,a = exp(Ak,a∆t).
Using this linearized approximation, the covariance
matrix of estimation errors is propagated as

Pk+1|k,a =
[

Āk,a
]

Pk|k,a
[

Āk,a
]T

+

[
Qk 0
0 Qpk

]

(2)

In order to obtain the updated state estimates, the
following optimization problem is solved.

min
xk+1 ,pk+1

(yk+1 −g(xk+1))
T R−1

k+1(yk+1 −g(xk+1))+
([

xk+1
pk+1

]

−

[
x̂k+1|k
p̂k+1|k

])T

(Pk+1|k,a)
−1

([
xk+1
pk+1

]

−

[
x̂k+1|k
p̂k+1|k

])

subject to the following constraints,

xL ≤ xk+1 ≤ xU

pL ≤ pk+1 ≤ pU

h(xk+1, pk+1) ≤ 0

e(xk+1, pk+1) = 0

The optimal solution to this problem (x∗k+1, p∗k+1) pro-
vides the corrected state and parameter estimates. The
solution obtained using EKF is used as an initial guess
for solving the above optimization problem. It should
be noted that if the measurement model is linear, and
none of the inequality constraints are active in the
optimal solution, then the solution for the updated
state estimates obtained will be the same as the one
computed using Equation A.6. The covariance matrix
of the error in the updated state and parameter esti-
mates is computed using Equations ( A.7 and A.8). It
should also be noted that while equations (A.6, A.7
and A.8) are for state estimation, the Kalman filter
can be used for simultaneous state and parameter es-
timation by augmenting the system with parameters
as additional state variables and applying the Kalman
filter equations to the augmented system. By using
these equations, the effect of the constraints on the
covariance matrix of estimation errors is neglected.
This limitation is addressed in the proposed URNDDR
formulation.

3. UNSCENTED TRANSFORMATION

The use of unscented transformation in estimation the-
ory was first studied by Julier and Co-workers (Julier
and Uhlmann, 1997; Julier et al., 2000). Traditionally,
the covariance calculation in the Extended Kalman fil-
ter for nonlinear systems have used linearized approx-
imation of the process for propagation, see Equation
2. This approximation has two drawbacks:
(i) The linearized model may prove to be coarse, and
(ii) The analytical expression for the Jacobian matrix



may not be easy for large systems, requiring the use of
finite difference methods. This would involve further
computational errors.
The motivation for the unscented transformation is
that it is easier to approximate a probability distri-
bution than it is to approximate an arbitrary nonlin-
ear function or transformation (Julier and Uhlmann,
1997). In the unscented transformation a set of weighed
points are chosen to parameterize the mean and co-
variance of the probability distribution. The set of
points undergo the nonlinear transformation at hand,
and the statistical property of the result is calculated
from the transformed data set. The exact procedure of
the unscented transformation is presented below.

A n-dimensional random variable x with mean x̄ and
covariance Pxx is approximated by 2n + 1 weighed
points around the mean of distribution. The set of
points X is also referred to as the sigma set. The first
point chosen is the mean of the distribution,

X0 = x̄ W0 =
κ

n+κ

The rest of the 2n translated sigma points are chosen
symmetrically around the mean as,

Xi = x̄+(
√

(n+κ)Pxx)i Wi =
1

2(n+κ)

and
Xi+n = x̄− (

√

(n+κ)Pxx)i Wi+n =
1

2(n+κ)

where (
√

(n+κ)Pxx)i is the ith column of the matrix
square root of ((n + κ)Pxx) and Wi is the weight
associated with the corresponding point. Here κ is
a tuning parameter and the heuristic κ + n = 3 has
been suggested for normal distribution (Julier and
Uhlmann, 1997).

The transformed set of sigma points are evaluated by
Yi = g(Xi) and the predicted mean is computed as

ȳ =
2n

∑
i=0

WiYi (3)

The predicted covariance is calculated from the trans-
formed set and the predicted mean

Pyy =
2n

∑
i=0

Wi[Yi − ȳ][Yi − ȳ]T (4)

Thus, the unscented transformation can be used to
better model the changes in the statistical properties of
a random variable through a nonlinear transformation.
In the unscented transformation for more than three
dimensional variables, κ can take a negative value and
in such a case there is a possibility that the predicted
covariance becomes non-positive semi-definite. In this
situation, it is possible to modify the prediction algo-
rithm (Julier and Uhlmann, 1997).

Inequality constraints like bounds, for example x ≤
xU , take the following form

if Xi > xU , then Xi = xU

This briefly describes the unscented transformation.
Detailed discussion on Unscented Kalman Filter can
be found in Wan and van der Merwe (2000). In the
next section, the use of unscented transformation is
proposed towards addressing constrained nonlinear
transformations arising in the RNDDR formulation.

4. UNSCENTED RECURSIVE NONLINEAR
DYNAMIC DATA RECONCILIATION (URNDDR)

In the previous section, the unscented transformation
was explained. The advantage of the unscented trans-
formation is that it can handle nonlinearity and con-
straints in the transformation. Here, the algorithmic
implementation of the unscented recursive nonlinear
dynamic data reconciliation formulation is presented.

Consider the system given by Equation 1 with bounds
and algebraic constraints imposed on the states and
parameters. Let x̂k|k, p̂k|k, and Pk|k,a be given at time
instant ‘k’. In the first step of prediction, the unscented
transformation is used to determine the mean and co-
variance of uncertainty in the propagated states. A set
of sigma points are selected for propagation, involving
uncertain states and uncertainty in the equations (Wan
and van der Merwe, 2000). The selection follows the
approach outlined in the section on unscented transfor-
mation (section 3). Bounds are imposed on the above
set of points.

The constrained sigma points are propagated through
the nonlinear differential equations governing the pro-
cess to arrive at the set of translated sigma points.
The bounds are imposed on the set of translated sigma
points, to compute the propagated sigma points. Once
the propagated set of data has been determined, the
mean x̂k+1|k,a and the variance Pk+1|k,a are calculated
using the unscented transformation. Notice that in
the propagation step, the equality and inequality con-
straints are not taken into account. These constraints
are conveniently handled in the correction step which
is solved as an optimization problem. Further, impos-
ing bounds and constraints on the sigma points (in the
correction and propagation steps), might not preserve
the original properties of the unscented transforma-
tion. This has not been addressed in this paper.

In the correction step of the URNDDR, there is an
uncertainty associated with the na (number of states
+ number of parameters) propagated states x̂k+1|k,a
(Pk+1|k,a). Therefore, 2(na)+1 sigma points are used
for the correction step. The selection of the sigma
points is,

[

X̂0,k+1|k,a

]

=
[
x̂k+1|k,a

]
,W0 =

κ
(na +κ)

[

X̂i,k+1|k,a

]

=
[

x̂k+1|k,a
]

+

(√

(na +κ)
[

Pk+1|k,a
]
)

i

Wi =
1

2(na +κ)
[

X̂i+na ,k+1|k,a

]

=
[
x̂k+1|k,a

]
−

(√

(na +κ)
[

Pk+1|k,a
]
)

i

Wi+na =
1

2(na +κ)

and 2(na)+1 optimization problems are solved.

min
X j,k+1,a

(yk+1 −g(X j,k+1))
T R−1

k+1 (yk+1 −g(X j,k+1))+

(

X j,k+1,a −X̂ j,k+1|k,a

)T
(Pk+1|k,a)

−1
(

X j,k+1,a −X̂ j,k+1|k,a

)

subject to the following constraints,



xL ≤ X j,k+1 ≤ xU

pL ≤ P j,k+1 ≤ pU

h(X j,k+1,P j,k+1) ≤ 0

e(X j,k+1,P j,k+1) = 0

The optimal solutions to the 2(na) + 1 optimiza-
tion problems are the corrected sigma point set of
X̂ j,k+1|k+1,a. The mean x̂k+1|k+1,a and the covariance
Pk+1|k+1,a of the corrected estimates are calculated
using the unscented transformation.

For comparison purposes, the Unscented Kalman filter
(UKF) is also implemented in a similar fashion, with
the Kalman gain being used in the correction step
and constraints are not applied on the translated sigma
points during propagation.

5. STATE ESTIMATION PROBLEM

The first case study selected for the URNDDR is the
state estimation in a gas phase reversible reaction in
an isothermal batch reactor (Haseltine and Rawlings,
2003)

2A k̄
−→ B k̄ = 0.16

where reaction rate r = k̄P2
A . The partial pressures are

the state variables and the total pressure is measured.

x =

[
PA
PB

]

, yk = [1 1]xk

The initial state is x0 = [3 1]T . For state estimation
problem, the following parameters have been used:

∆t = 0.1, P0 =

[
36 0
0 36

]

, Q =

[
10−6 0

0 10−6

]

R = 0.01, x̂0 = [0.1 4.5]T , xL = [0 0]T ,

xU = [100 100]T

First the EKF result is presented in Figure 1 for the
above initialization scheme. As it can be seen without
the information about the constraints the EKF could
not converge to the actual dynamics and gives unreal-
istic estimates for partial pressure of component ‘A’.
The same was the case with UKF. With the added
information of constraints the RNDDR result is pre-
sented in Figure 2.

The RNDDR did converge to the actual dynamics
of the reaction system but it was stuck at the lower
bound for few sample instants before it could respond.
This can be explained by the fact that the covariance
calculation did not take into account the presence of
constraint and the correction step relies on the reli-
ability of the covariance calculation. In case of the
URNDDR, which takes the effects of constraints as
well as process nonlinearity during covariance calcu-
lation, it would be expected that it tracks the actual
dynamics better than RNDDR. This is verified by the
results presented in Figure 3 for the URNDDR. The
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Fig. 2. RNDDR Case 1 State Estimates. Line: Actual,
Dash-Dot: Estimated

URNDDR converged to the actual dynamics within
a few sample instants. This result is comparable with
the MHE results presented by Haseltine and Rawlings
(Haseltine and Rawlings, 2003) which is computation-
ally a more expensive procedure.
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Fig. 3. URNDDR Case 1 State Estimates. Line: Ac-
tual, Dash-Dot: Estimated

6. CSTR CASE STUDY

In the previous section, a state estimation example was
chosen to show the efficacy of the proposed approach.
In this section, the proposed URNDDR formulation
is rigorously compared against the EKF, Unscented
Kalman Filter (UKF) and the RNDDR formulations



for simultaneous state and parameter estimation in a
Continuous Stirred Tank Reactor (CSTR). The sim-
ulation result presented is the case when the cata-
lyst activity undergoes a change, and it is required
to simultaneously estimate the states and the catalyst
activity parameter. The implementation details of the
case study can be found in Vachhani et al. (2003).

Three different step changes in catalyst activity of
1 to 0.7, 1 to 0.8 and 1 to 0.9 at sampling instant
of 20 are introduced. The process is simulated for
100 sampling instants with sampling time of 0.05
hour, and the four estimators namely: EKF, RNDDR,
UKF and URNDDR are implemented. The Root Mean
Square (RMS) errors in the measurements (difference
between measured and true values) and the RMS er-
rors in the estimates (difference between estimated
and true values) of both measured variables and pa-
rameters are computed and averaged over the three
simulation runs for each of the methods, the results of
which are presented in Table 1. As it can be seen the
performance of the URNDDR is better than RNDDR
in terms of accuracy of results. The RMS errors in the
UKF result are marginally better than the URNDDR
result but at the trade-off of unrealistic estimates of
catalyst activity greater than one, as shown in Figure 4.
Hence, UKF is not a valid estimator for this problem.
A comparison of RMS errors reflects the accuracy of
the URNDDR formulation. It can be seen that the
URNDDR performs relatively better than the RNDDR
formulation. The computational cost for this prob-
lem correspondingly increases approximately from
0.2 seconds for RNDDR to 5 seconds for URNDDR
formulation. The RMS errors in the UKF result are
similar to URNDDR formulation, but at the trade-off
of unrealistic estimates of catalyst activity greater than
one, as shown in Figure 4. Hence, UKF is not a valid
estimator for this problem.
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Fig. 4. Catalyst activity estimate - UKF and URNDDR

In Figure 5, the results for all the discussed for-
mulations are presented for a ramp change in the
catalyst activity. On comparing the URNDDR with
the RNDDR result, it can be seen that with the use
of the unscented transformation, realistic estimates
which are consistently away from the constraints are
achieved. The result of the URNDDR is same as the

UKF if the constraints are not activated, this can be
seen in Figure 5 when catalyst activity has decreased
to less than one.
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Fig. 5. Catalyst activity estimate - EKF, RNDDR,
UKF and URNDDR

7. CONCLUSIONS

The Unscented RNDDR is motivated by the limitation
of the RNDDR in taking into account effect of non-
linearity and algebraic constraints on the covariance
matrix of estimation errors. In the RNDDR, the basis
of covariance propagation is on a linearized represen-
tation of the process and the covariance calculation
arising in the correction step is based on an equivalent
unconstrained minimization solution. With the use of
the unscented transformation, the effect of nonlinear-
ity and constraints is taken into account in both prop-
agation and correction steps of the URNDDR formu-
lation.

The proposed method is an extension of the unscented
Kalman filter, without sacrificing the essential recur-
sive computation advantage of the Kalman filter. The
results of simulation studies indicate that the proposed
method provides more accurate estimates of states and
parameters, than previous approaches without signif-
icant increase in computation effort. The method can
be deployed online for real time state and parameter
estimation in nonlinear processes.

Appendix A. KALMAN FILTER

Let the discrete linear stochastic state-space system be
of the form,

xk+1 = Ākxk +wk

yk+1 = C̄k+1xk+1 + vk+1 (A.1)

where wk and vk+1 are independent normally dis-
tributed random variables with covariance Qk and
Rk+1 respectively.

Assume unbiased estimates of the state at time instant
‘k’ (x̂k|k) and the measurement at time instant ‘k +
1’ (yk+1) are available. The state estimate for time



Table 1. Catalyst deactivation

RMS Errors V P T CA Tc Par Est
Data 0.4892 1.9373 0.6913 0.0050 0.6553 -
EKF 0.1629 2.0122 0.4419 0.0020 0.4128 0.0297
UKF 0.1740 1.6352 0.1981 0.0006 0.1659 0.0207

RNDDR 0.1528 1.9023 0.4056 0.0018 0.3768 0.0271
URNDDR 0.1452 1.8350 0.2277 0.0010 0.1830 0.0248

instant ‘k + 1’ (x̂k+1|k+1) can be expressed as a linear
combination of the two,

x̂k+1|k+1 = K′
k+1 x̂k|k +Kk+1yk+1 (A.2)

For x̂k+1|k+1 to be an unbiased estimate of xk+1, we
require K′

k+1 = (I −Kk+1C̄k+1)Āk. Thus the recursive
estimator can be rewritten in two parts, first for pre-
diction and the second for correction.

x̂k+1|k = Āk x̂k|k

x̂k+1|k+1 = x̂k+1|k +Kk+1
(
yk+1 −C̄k+1 x̂k+1|k

)
(A.3)

We also assume Pk|k, defined by the covariance matrix
of errors in the state estimates x̂k|k, is known. There-
fore, the uncertainty in x̂k+1|k can be calculated as,

Pk+1|k = ĀkPk|kĀT
k +Qk (A.4)

The Kalman gain matrix is arrived at by solving the
following unconstrained optimization problem

min
xk+1

(yk+1 −C̄k+1xk+1)
T (Rk+1)

−1(yk+1 −C̄k+1xk+1)

+(xk+1 − x̂k+1|k)
T (Pk+1|k)

−1(xk+1 − x̂k+1|k) (A.5)

giving the filtered state estimate as,

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 −C̄k+1 x̂k+1|k) (A.6)

Kk+1 = Pk+1|kC̄
T
k+1(Rk+1 +C̄k+1Pk+1|kC̄

T
k+1)

−1 (A.7)

The covariance matrix of errors in the filtered state
estimates is given by

Pk+1|k+1 = (I −Kk+1C̄k+1)Pk+1|k (A.8)

REFERENCES

Gelb, A. (1988). Applied optimal estimation. M.I.T.
Press, Cambridge.

Haseltine, E. and J. Rawlings (2003). A critical
evaluation of extended kalman filtering and
moving horizon estimation. Technical report.
Texas-Wisconsin Modeling and Control Consor-
tium. Available at http://www.che.wisc.edu/jbr-
group/tech-reports/twmcc-2002-03.pdf.

Jazwinski, A. H. (1970). Stochastic processes and
filtering theory. Academic Press, New York.

Julier, S. and J. Uhlmann (1997). A new extension of
the kalman filter to nonlinear systems. In: Inter-
national Symposium Aerospace/Defense Sensing,
Simulation and Controls.

Julier, S., J. Uhlmann and H. Whyte (2000). A
new method for the nonlinear transformation of
means and covariances in filters and estima-
tors. IEEE Transactions on Automatic Control
45, 477–482.

Vachhani, P., V. Gangwal, S. Narasimhan and R. Ren-
gaswamy (2003). Recursive techniques for state
and parameter estimation in nonlinear dynamical
processes. submitted to AIChE J.

Wan, E. A. and R. van der Merwe (2000). The un-
scented kalman filter for nonlinear estimation.
In: Proceedings of IEEE Symposium 2000 (AS-
SPCC), Lake Louise, Alberta Canada.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



