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Abstract: Faults lead to loss of productivity and can eventually lead to loss of human
lives. Therefore, fault diagnosis is a critical procedure for increased reliability and safety.
Diagnostic observers, especially Unknown Input Observers (UIO) (Frank, 1990), have
been well studied in literature. In this paper a novel residual feedback structure is
proposed for fault diagnosis of a class of nonlinear systems. Conditions under which
such a feedback system converges are discussed. Simulation results of a residual feedback
nonlinear observer show that exact fault magnitude estimates are achieved.
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1. INTRODUCTION

Process fault diagnosis is the problem of identify-
ing the causal origins of malfunctions in a process,
given current sensor data and a priori knowledge
about the process behaviour under normal and ab-
normal conditions. Fault diagnosis is an important
procedure relevant to process safety and process eco-
nomics (Nimmo, 1995). The reliability of fault toler-
ant schemes is dependent on the diagnostic scheme
identifying the correct fault with reliable estimates for
the magnitude of failure.

Various techniques have been used to address the
problems in fault diagnosis (Isermann and Balle,
1997). Of the various model based techniques, the
unknown input observer has been widely studied for
residual generation. The structured residual approach
integrated with a decision logic is used for fault isola-
tion (Frank, 1990; Garcia and Frank, 1997). Observer
theory can also be used to estimate fault magnitudes
if each observer residual reflects the occurrence of a
single fault. However, the class of nonlinear systems
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for which such a fault decoupled observer can be con-
structed is limited. Seliger and Frank (1991) demon-
strate the use of such an observer for fault diagnosis
in a tank system. The theory of input reconstruction
can also be used for diagnosis to get reliable fault
magnitude estimates. In this strategy, the faults are
posed as unknown inputs to be reconstructed from the
measurements and known inputs to the process. This
theory is applicable for linear (Hou and Patton, 1998)
and linear descriptor (Hou and Patton, 1999a; Hou and
Patton, 1999b) systems.

In this paper, the design for an unknown input ob-
server (Frank, 1990) in addition with fault decoupling
is used to develop a nonlinear observer to track para-
metric and sensor faults. This design is applicable for
fault affine processes. The heat exchanger case study
used is nonlinear in faults and restricted linearization
is used to cast the model in a fault affine form. As
shown later, neglecting this critical information leads
to biased magnitude estimates, making the construc-
tion of a decision logic for fault isolation a difficult
task.



A residual feedback strategy is proposed to compen-
sate the nonlinearity in fault. The convergence crite-
rion for the feedback strategy is also presented. The
residual feedback observer gives unbiased fault mag-
nitude estimates. The results for the residual feedback
observer are presented for the heat exchanger case
study.

2. DESIGN OF NONLINEAR OBSERVER (NLO)

The unknown input observer (Frank, 1990) utilizes a
nonlinear model of the system given as,

ẋ = Ax+B(u,y)+Ed+K(x,u)f
y = Cx+Gf (1)

where, x is (n × 1) state vector, u is (p × 1) input
vector, y is (q×1) vector of measured outputs, d is the
unknown inputs/disturbance vector, f are the faults and
A, B, C, E, K, G are known matrices of appropriate
dimensions. The term Ed models the unknown inputs
to the actuator and to the dynamic process, K(x,u)f
models the process and actuator faults, and the term
Gf models the sensor faults. From these equations,
it can be seen that the dynamic equations may be
nonlinear only in input and output variables and the
input distribution matrix of the fault vector may be a
function of the inputs and the states.

The nonlinear observer is given by the equations
(Frank, 1990)

ż = Rz+J(u,y)+Sy
r = L1z+L2y (2)

z(t = 0) = z0

where z = Tx iff f = 0. This observer is valid for fault
detection if the residual r has the following properties

lim
t→∞

r(t) = 0 if f = 0 ∀ u,d,x0,z0 (3)

and

r 6= 0 if f 6= 0 (4)

The derivation of the conditions on the observer matri-
ces follows from the linear equivalent (Frank, 1990),
and the necessary/sufficient conditions for their exis-
tence (Frank and Wunnenberg, 1989) are available in
literature . For sake of brevity, the matrix conditions
are presented here.

TA − RT = SC
J(u,y) = TB(u,y)

TE = 0 (5)

TK 6= 0
L1T + L2C = 0

For the residuals to go to zero, R is required to be
stable i.e., have eigenvalues in the left half of the s-
plane.

3. DESIGN OF NONLINEAR OBSERVER WITH
RESIDUAL FEEDBACK (NLOFB)

In the previous section, a nonlinear observer design
for fault affine processes was presented. To account
for nonlinearity in fault, a modified observer structure
based on the previous design is proposed. A nonlinear
residual feedback is used for direct compensation of
the nonlinearity in fault. The nonlinear model of the
process is of the form,

ẋ = Ax+B(u,y)+K(y,u)f+φ(y, f)
y = Cx+Gf (6)

where φ(y, f) is Lipschitz in f, i.e

‖φ(y, f1)−φ(y, f2)‖ ≤ γ(y)‖f1 − f2‖

and the input distribution matrix may be a function of
the measurements and inputs.

The observer constructed is of the form,

ż = Rz+J(u,y)+Sy+Tφ(y,r)
r = L1z+L2y (7)

z(t = 0) = z0

Claim 1. For step faults in the dynamic system as de-
fined in Equation 7, the residuals converge to the faults
if matrices R,J,S,T,L1,L2 exist and the following
conditions are satisfied.

TA − RT = SC
J(u,y) = TB(u,y)

TK 6= 0
R =−c0I, c0 > 0

L1T + L2C = 0
L1(SG−TK) = (RL2G−R) (8)

‖L1T(φ(y, f1)− φ(y, f2))‖2 < c0‖f1 − f2‖

PROOF. Construct the following Lyapunov function,

v =
1
2
(r− f)T(r− f)

The derivative of the Lyapunov function is (ḟ is zero
for step faults, and e = z−Tx),

v̇ = (r− f)Tṙ
= (r− f)T [L1(ė+Tẋ)+L2ẏ] (9)

Using L1T+L2C = 0, ḟ = 0,



v̇ = (r− f)TL1ė

Given that the matrix conditions in the claim hold, the
error dynamics of the feedback nonlinear observer in
presence of fault nonlinearity can be written as,

ė = ż−Tẋ
= Re+(SG−TK(y,u))f+T(φ(y,r)−φ(y, f))

This leads to,

v̇ = (r− f)T [L1R(z−Tx)+L1(SG−TK)f]
+ (r− f)TL1T(φ(y,r)−φ(y, f)) (10)

Since R =−c0I, L1Rz = RL1z = R(r−L2y), RL2C−
L1RT = R(L2C−L1T) = 0, the first term in the above
expression can be simplified to

(r− f)T[Rr− (RL2G−L1(SG−TK))f]

If L1 is chosen as in Equation 8, the above term further
simplifies to −c0‖(r− f)‖2. Therefore,

v̇ = −c0‖(r− f)‖2

+ (r− f)TL1T(φ(y,r)−φ(y, f))
v̇ ≤−c0‖r− f‖2

+ ‖(r− f)TL1T(φ(y,r)−φ(y, f))‖ (11)

Using the Cauchy-Schwarz-Buniakowsky inequality,

v̇ ≤−c0‖r− f‖2

+ ‖(r− f)‖‖L1T(φ(y,r)−φ(y, f))‖ (12)

If the nonlinearity in fault (φ ) is Lipschitz in f, so is
L1Tφ(y, f) and by the condition in Equation 8

‖(L1T(φ(y,r)−φ(y, f))‖ < c0‖r− f‖ (13)

Therefore,

v̇ < 0 (14)

The derivative of the Lyapunov function is negative
definite and the residuals (r) asymptotically converge
to the actual fault magnitude (f).

4. HEAT EXCHANGER CASE STUDY

The heat exchanger is an important process unit in any
chemical engineering operation and the transients of
the process are extremely nonlinear. The first princi-
ples model of a counter-current heat exchanger is as
follows

VcṪc = qc(Tci −Tc)+
UA

ρcCpc
∆T

VhṪh = qh(Thi −Th)−
UA

ρhCph
∆T (15)

where, V is the volume and subscript ‘c’ and ‘h’ refer
to cold and hot side respectively, q is the known flow
rate, ρ and Cp are the density and specific heat of
the two streams and ∆T is the log mean temperature
difference,

∆T =
(Thi −Tc)− (Th −Tci)

log(Thi −Tc)− log(Th −Tci)
(16)

Table 1. Parameters for the heat exchanger

Notation Variable Steady state value
Vc Holdup on cold side 0.05 m3

Vh Holdup on hot side 0.05 m3

UA Heat transfer coeff. × area 10 KJ/oC min
Tc Cold stream temp. 53.03 oC
Th Hot stream temp. 62.63 oC
Tci Cold stream inlet temp. 25 oC
Thi Hot stream inlet temp. 100 oC

ρc, ρh Fluid densities 500 kg/m3

Cph, Cpc Specific heats 3 KJ/oCkg
qc Cold stream flow rate 0.01 m3/min
qh Hot stream flow rate 0.0075 m3/min

The steady state and parameters for the heat exchanger
operation are presented in Table 1. The inputs to the
heat exchanger, i.e. flow rates of hot and cold stream
are known. The outlet temperatures (Tc and Th) are
measured, while the inlet temperatures (Tci and Thi)
are the simulated parametric faults.

5. PARAMETRIC FAULTS CASE STUDY

In the following case study, the previously discussed
observers are designed to monitor the changes in the
inlet temperatures. The heat exchanger problem is
nonlinear in fault and restricted linearization is car-
ried out to cast the process model in a fault affine
form for design of the nonlinear observer. For the
residual feedback observer, the actual nonlinearity in
fault is compensated. Therefore, it is expected that the
nonlinear observer would give biased fault magnitude
estimates, while the residual feedback observer should
give exact estimates of the fault severity.

5.1 Observer Design- NonLinear Observer (NLO)

For design of nonlinear observer, the heat exchanger
model equations given in Equation 15 are cast in the
fault affine (Ref Equation 1), by restricted lineariza-
tion where,

y = x =

[

Tc
Th

]

and f =

[

∆Tci
∆Thi

]

A =





−
qc

Vc
0

0 −
qh

Vh
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where

Kc =
UA

ρcCpcVC
and Kh =

UA
ρhCphVh

θ1 = 100−Tc, θ2 = Th −25 and d =

(

log
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θ2

)2
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(
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log
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The nonlinear observer as described in Equation 2 is
implemented with the following choice of the observer
matrices that satisfies the conditions in Equation 5:
T = I2, R = −I2, S = A − R, J = TB(u,y), L1 =
−K(y,u)−1 and L2 = −L1.

5.2 Observer Design- NonLinear FeebBack Observer
(NLOFB)

The system equations (Ref Equation 15) are conve-
niently written in the following form

ẋ = Ax+B(u,y)+K(y,u)f+φ(y, f)

where

y = x =

[

Tc
Th

]

and f =

[

∆Tci
∆Thi

]

A =





−
qc

Vc
0

0 −
qh

Vh



 and B(u,y) =





qc

Vc
25

qh

Vh
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K(y,u) =





qc

Vc
0

0
qh

Vh



 and φ =

[

Kc
−Kh

]

∆T

where ∆T is as defined in Equation 16. The nonlinear
observer as described in Equation 7 is implemented
with the following choice of the observer matrices
that satisfies the conditions in Equation 8: T = I2,
R = −I2, S = A−R, J = TB(u,y), L1 = RK(y,u)−1

and L2 = −L1.

In addition to the matrix conditions, the following
condition is a sufficient condition for the convergence
of the observer.

‖L1T(φ(y, f1)−φ(y, f2))‖2 < c0‖f1 − f2‖ (17)

For the particular choice of the design matrices, this
implies
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Fig. 1. NLO result: ∆Thi = −20oC

|∆T (f)−∆T (r)|
‖r− f‖2

(

(

KhVh

qh

)2

+

(

KcVc

qc

)2
)0.5

< 1(18)

where

∆T (f) =
(Thi + f2 −Tc)− (Th −Tci − f1)

log(Thi + f2 −Tc)− log(Th −Tci − f1)

f = [ f1, f2]
t (19)

It should be noted that the above is only a sufficiency
condition and so, it is possible that the r → f as t → ∞
even if the above condition is violated. This may oc-
cur, for example, when the fault magnitudes are large.
The observer design is validated through simulation
results involving different fault magnitudes and direc-
tions, which are presented in the subsequent section.

5.3 Case Study Results

Results of the NonLinear Observer (NLO) for two
fault cases (∆Thi = −20oC and ∆Tci = 10oC) are pre-
sented in Figures 1 and 2 respectively. It is seen that,
the estimates of the fault magnitudes are biased; this
occurs because the nonlinearity in fault is not compen-
sated for during restricted linearization. For example,
when (∆Thi = −20oC), the residual for Tci is non-zero
and the magnitude of the residual for Thi depends on
the magnitude of the actual Thi fault. Therefore, the use
of absolute thresholding of residuals is not possible to
achieve fault isolation.

Results of the NonLinear Observer with FeedBack
(NLOFB) are presented in Figures 3, 4 and 5 for three
different fault levels: ∆Thi = −20oC, ∆Tci = 10oC and
a simultaneous occurrence of both faults: ∆Thi = 300C
and ∆Tci = 20oC. The terminal values of the residu-
als approach the corresponding fault magnitudes for
all cases. Thus, this ensures complete decoupling of
faults and correct estimation of the fault magnitudes.
This validates the design of the NLOFB.
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Fig. 2. NLO result: ∆Tci = 10oC
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Fig. 3. NLOFB result: ∆Thi = −20oC
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Fig. 4. NLOFB result: ∆Tci = 10oC

6. CONCLUSIONS

A feedback structure for the unknown input observer
for a system with a specified structure of nonlinearity
has been presented. This feedback structure extends
the capacity of the diagnostic observer towards fault
identification by mimicking the nonlinearity in fault
by aid of residuals. This has been demonstrated by
achieving unbiased fault magnitude estimates in the
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Fig. 5. NLOFB result: ∆Thi = 30oC,∆Tci = 20oC

case of parametric faults in the heat exchanger case
study.
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