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Abstract: This paper focuses on feedback control of surface roughness in a deposition
process, based on a stochastic partial differential equation (PDE) which describes the
fluctuation of surface height in the spatial domain. Specifically, we focus on control of
surface roughness in a deposition process on a 1-dimensional lattice, whose fluctuation
of surface height can be described by the Edwards-Wilkinson equation, a second-
order stochastic PDE. We initially reformulate the stochastic PDE into a system of
infinite stochastic ordinary differential equations by using modal decomposition. A finite-
dimensional approximation of the Edwards-Wilkinson equation is then derived that
captures the dominant mode contribution to the surface roughness. A state feedback
controller is designed based on the finite-dimensional approximation to control the surface
roughness. Analysis of the closed-loop system shows that the controller can drive the
surface roughness governed by the infinite-dimensional system to desired levels. The
effectiveness of the proposed method is demonstrated by numerical simulations.
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1. INTRODUCTION

The surface roughness of thin films deposited from gas
phase precursors is an important variable to control
because it strongly affects the quality of such films. In
a thin film growth process, the film is directly formed
from microscopic random processes (e.g., particle ad-
sorption, desorption, migration and surface reaction).
Therefore, the stochastic nature of thin film growth
processes must be fully considered in the modeling
and control of the surface roughness of thin films.
The desire to understand and control the thin film
micro-structure has motivated extensive research on
fundamental mathematical models describing the de-
position processes, which include 1) kinetic Monte-
Carlo methods (e.g., (Gillespie, 1976; Fichthorn and
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Weinberg, 1991; Lam and Vlachos, 2001)), and 2)
stochastic partial differential equations (SPDEs) (e.g.,
(Edwards and Wilkinson, 1982; Villain, 1991)).

The kinetic Monte-Carlo simulation method can be
used to predict properties of the thin film, by explicitly
accounting for the micro-processes that directly shape
thin film microstructure. Recently, a methodology for
feedback control of thin film growth using kinetic
Monte-Carlo models has been developed in (Lou and
Christofides, 2003a; Lou and Christofides, 2003b).
The methodology leads to the design of (a) real-
time roughness estimators by using multiple small
lattice kinetic Monte-Carlo simulators, adaptive filters
and measurement error compensators and (b) feed-
back controllers based on the real-time roughness es-
timates. The method was successfully applied to con-
trol surface roughness in a GaAs deposition process
using an experimentally determined kinetic Monte-
Carlo process model (Lou and Christofides, 2004b).



Other approaches have also been developed to: (a)
identify linear models from outputs of kinetic Monte-
Carlo simulators and perform controller design by us-
ing linear control theory (Siettos et al., 2003), and (b)
construct reduced-order approximations of the master
equation (Gallivan and Murray, 2003).

However, the fact that kinetic Monte-Carlo models are
not available in closed-form makes it very difficult
to perform model-based controller design directly on
the basis of kinetic Monte-Carlo models. To achieve
better closed-loop performance, it is desirable to de-
sign feedback controllers on the basis of deposition
process models. This motivates research on feedback
control of deposition processes based on stochastic
PDE models of thin film growth.

This paper focuses on feedback control of surface
roughness in a deposition process, based on a stochas-
tic partial differential equation (PDE) which describes
the fluctuation of surface height in the spatial domain.
Specifically, we focus on control of surface roughness
in a deposition process on a 1-dimensional lattice,
whose fluctuation of surface height can be described
by the Edwards-Wilkinson equation, a second-order
stochastic PDE. We initially reformulate the stochas-
tic PDE into a system of infinite stochastic ordinary
differential equations by using modal decomposition.
A finite-dimensional approximation of the Edwards-
Wilkinson equation is then derived that captures the
dominant mode contribution to the surface rough-
ness. A state feedback controller is designed based
on the finite-dimensional approximation to control the
surface roughness. Analysis of the closed-loop sys-
tem shows that the controller can drive the surface
roughness governed by the infinite-dimensional sys-
tem to desired levels. The effectiveness of the pro-
posed method is demonstrated by numerical simu-
lations. Due to space limitations, we will present
in this paper the main results of this research; fur-
ther results and analysis can be found in (Lou and
Christofides, 2004c).

2. PRELIMINARIES

We consider a deposition process on a 1-dimensional
lattice. In this process, particles land on the surface at
a rate, ra. The rules for the deposition are as follows:
a site, l, is first randomly picked among the sites of
the whole lattice and the deposition site is determined
according to the following rules: 1) if the height of
this site is lower than or equal to that of both each
nearest neighbors, this site is picked as the deposition
site; 2) if the height of only one of the two nearest
neighbor sites is lower than that of the original site,
deposition is on that site; 3) if the height of each one
of the nearest neighbor sites is lower than that of the
original site, the deposition site is randomly picked
with equal probability between the two nearest neigh-
bor sites. A schematic of the rules of the deposition
is shown in Fig.1. There is no particle migration and
desorption taking place on this process (see (Lou and

Christofides, 2003a; Lou and Christofides, 2003b) for
film growth processes that involve these phenomena).
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Fig. 1. Schematic of the rules of the deposition.
The deposition process is a stochastic process. Kinetic
Monte-Carlo simulation can be used to predict the
evolution of the surface configuration in this process.
The kinetic Monte-Carlo model of the deposition pro-
cess is a first-principle model in the sense that the
deposition rules can be explicitly considered in the
model. However, kinetic Monte-Carlo models are not
available in closed-form, which prohibits their use for
model-based control design. As an alternative, closed-
form stochastic PDE models can be derived based on
the deposition rules to describe the evolution of the
surface configuration, which is consistent to that pre-
dicted by kinetic Monte-Carlo models. In this work,
we focus on model-based feedback control design
for surface roughness control using a stochastic PDE
model of the deposition process described in Fig.1.

The equation for the height fluctuations of the sur-
face in this deposition process was first developed by
(Edwards and Wilkinson, 1982). Recently, the same
equation was derived directly from the microscopic
transition rules of the process (Vvedensky, 2003).
Specifically, the height fluctuation of the surface is de-
scribed by the following stochastic partial differential
equation:

∂h
∂ t

= a2ra
∂ 2h
∂x2 +ξ (x, t) (1)

where x ∈ [−π,π] is the spatial coordinate, t is the
time, h(x, t) is the height of the surface at position x
and time t, a is the lattice size and ξ (x, t) is a Gaussian
noise with zero mean and covariance:

〈ξ (x, t)ξ (x′, t ′)〉= ς 2δ (x− x′)δ (t− t ′) (2)

where ς 2 = a3ra, δ (·) is the dirac function, and 〈··〉
denotes the average. Note that the noise covariance
depends on both space x and time t.

The surface roughness, r, is given by the following
expression:

r(t) =

√

√

√

√

√

1
2π

π
∫

−π

[h(x, t)− h̄(t)]2dx (3)



where h̄(t) =
1

2π

π
∫

−π

h(x, t)dx is the average surface

height.

Our objective is to control the surface roughness of the
deposition process described by Fig.1. The controller
design is based on the SPDE model of the process
(Eqs.1 and 2). To do this, we formulate a distributed
control problem in the spatial domain [−π,π]. The
control problem is described by the following stochas-
tic partial differential equation:

∂h
∂ t

= ν
∂ 2h
∂x2 +

p

∑
i=1

bi(x)ui(t)+ξ (x, t) (4)

subject to periodic boundary conditions:

∂ jh
∂x j (−π, t) =

∂ jh
∂x j (π, t), j = 0,1 (5)

and the initial condition:

h(x,0) = h0(x) (6)

where ν = a2ra, ui is the ith manipulated input, p
is the number of manipulated inputs and bi is the
ith actuator distribution function (i.e., bi determines
how the control action computed by the ith control
actuator, ui, is distributed (e.g., point or distributed
actuation) in the spatial interval [−π,π])

To study the dynamics of Eq.4, we initially consider
the eigenvalue problem of the linear operator of Eq.4,
which takes the form:

Aφ̄n(x) = ν
d2φ̄n(x)

dx2 = λnφ̄n(x), n = 1, · · · ,∞,

d jφ̄n

dx j (−π) =
d jφ̄n

dx j (π), j = 0,1

(7)

where λn denotes an eigenvalue and φ̄n denotes an
eigenfunction. A direct computation of the solution of
the above eigenvalue problem yields λ0 = 0 with ψ0 =
1/
√

2π , and λn =−νn2 (λn is an eigenvalues of multi-
plicity two) with eigenfunctions φn = (1/

√
π)sin(nx)

and ψn = (1/
√

π)cos(nx) for n = 1, · · · ,∞. From the
solution of the eigenvalue problem shown in Eq.7,
it follows that for a fixed value of ν > 0 the dis-
tance between two consecutive eigenvalues (i.e., λn
and λn+1) increases as n increases. Furthermore, the
eigenspectrum of operator A in Eq.7, σ(A) can be
partitioned as σ(A) = σ1(A)

⋃

σ2(A), where σ1(A)
contains the first m (with m finite) eigenvalues (i.e.
σ1(A) = {λ1, . . . ,λm}) and σ2(A) contains the remain-
ing eigenvalues (i.e., σ2(A) = {λm+1, . . . ,}.
To present the method that we use to control the
stochastic PDE of Eq.4, we first derive stochastic ODE
approximations of Eq.4 using modal decomposition.
To this end, we first expand the solution of Eq.4 in
an infinite series in terms of the eigenfunctions of the
operator of Eq.7 as follows:

h(x, t) =
∞

∑
n=1

αn(t)φn(x)+
∞

∑
n=0

βn(t)ψn(x) (8)

where αn(t), βn(t) are time-varying coefficients. Sub-
stituting the above expansion for the solution, h(x, t),
into Eq.4 and taking the inner product with the
adjoint eigenfunctions, φ ∗

n (z) = (1/
√

π)sin(nz) and
ψ∗

n (z) = (1/
√

π)cos(nz), the following system of in-
finite stochastic ODEs is obtained:
dαn

dt
=−νn2αn +

p

∑
i=1

biαn ui(t)+ξ n
α(t)

dβn

dt
=−νn2βn +

p

∑
i=1

biβn
ui(t)+ξ n

β (t); n = 1, . . . ,∞
(9)

where biαn =
∫ π
−π φn(x)bi(x)dx, biβn

=
∫ π
−π ψn(x)bi(x)dx,

ξ n
α(t)=

∫ π
−π ξ (x, t)φn(x)dx, ξ n

β (t)=
∫ π
−π ξ (x, t)ψn(x)dx.

The covariances of ξ n
α(t) and ξ n

β (t) can be computed
by using the following result (Åström, 1970):

Result 1: If (1) f (x) is a deterministic function, (2)
η(x) is a random variable with 〈η(x)〉 = 0 and co-
variance 〈η(x)η(x′)〉 = σ 2δ (x − x′), and (3) ε =
∫ b

a f (x)η(x)dx, then ε is a random number with 〈ε〉=
0 and covariance 〈ε2〉= σ 2 ∫ b

a f 2(x)dx.

Using Result 1, we obtain 〈ξ n
α(t)ξ n

α(t ′)〉= ς 2δ (t− t ′)
and 〈ξ n

β (t)ξ n
β (t ′)〉= ς 2δ (t− t ′).

In this work, the controlled variable is the expected
value of surface roughness,

√

〈r2〉. According to Eq.8,
we have h̄(t) = β0(t)ψ0. Therefore,

√

〈r2〉 can be
rewritten in terms of αn and βn as follows:

√

〈r2〉=

√

√

√

√

√

1
2π
〈

π
∫

−π

(h(x, t)− h̄(t))2dx〉

=

√

1
2π

∞

∑
i=1

[

〈α2
i 〉+ 〈β 2

i 〉
]

(10)

Therefore, the surface roughness control problem for
the stochastic PDE system of Eq.4 is formulated as the
one of controlling the covariance of the states αn and
βn in the stochastic ODE system of Eq.9.

3. FEEDBACK CONTROL

In this section, we design a linear state feedback
controller for the system of Eq.9 so that the surface
roughness defined in Eq.10 can be controlled to a
desired level.

3.1 Model reduction

Owing to its infinite-dimensional nature, the system
of Eq.9 cannot be directly used for the design of
controllers that can be implemented in practice (i.e.,
the practical implementation of controllers which are
designed on the basis of this system will require the
computation of infinite sums which cannot be done
by a computer). Instead, we will base the controller
design on finite-dimensional approximations of this
system. Subsequently, we will show that the resulting
controller will enforce the desired control objective in
the closed-loop infinite-dimensional system.



Specifically, we rewrite the system of Eq.9 as follows:

dxs

dt
= Λsxs +Bsu+ξs

dx f

dt
= Λ f x f +B f u+ξ f

(11)

where xs = [ α1 · · · αm β1 · · · βm ]T , x f =[αm+1 βm+1

· · · ]T , Λs = diag[−ν · · · −m2ν −ν · · · −m2ν ], Λ f

= diag[−(m+1)2ν −(m+1)2ν · · ·], u = [ u1 · · · up ],
ξs = [ ξ 1

α · · · ξ m
α ξ 1

β · · · ξ m
β ], and ξ f = [ξ m+1

α ξ m+1
β

· · ·].
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b1α1
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(12)

We note that the subsystem x f in Eq.11 is infinite-
dimensional.

Neglecting the x f subsystem, the following 2m-dimen-
sional system is obtained:

dx̃s

dt
= Λsx̃s +Bsu+ξs (13)

where the tilde symbol in x̃s denotes that this state
variable is associated with a finite-dimensional sys-
tem.

3.2 Feedback control design
We design the state feedback controller on the basis
of the finite-dimensional system of Eq.13. To simplify
our development, we assume that p = 2m and pick the
actuator distribution functions such that B−1

s exists.
The state feedback control law then takes the form:

u = B−1
s (Λcs−Λs) x̃s (14)

where the matrix Λcs contains the desired poles of the
closed-loop system; Λcs = diag[λcα1 · · · λcαm λcβ1 · · ·
λcβm], λcαi and λcβ i (1 ≤ i ≤ m) are desired poles
of the closed-loop finite-dimensional system, which
can be computed from the desired closed-loop surface
roughness level.

We first analyze the dependence of the covariances of
the states αn and βn (n = 1, · · · ,m) on the poles of
the finite-dimensional system of Eq.13. Then, we will
show in subsection 3.3 that the surface roughness of
the infinite-dimensional system of Eq.9 can be con-
trolled to the desired level by using the state feedback
controller of Eq.14, which only uses a finite number
of actuators.

By applying the controller of Eq.14 to the system of
Eq.13, the closed-loop system takes the form:

dx̃s

dt
= Λcsx̃s +ξs(t) (15)

To analyze the effect of the feedback controller on the
covariance of the state x̃s, we discretize Eq.15 in the
time domain, using ∆t as time step, as follows:

Xs(k +1) = GcsXs(k)+ζs(k); k = 0, · · · ,∞ (16)

where Xs(k) = x̃s(k∆t), Gcs = eΛcs∆t , ζs(k) =
∫ (k+1)∆t

k∆t
eΛcs(t−k∆t)ξs(t)dt. According to (Åström, 1970, Chap-
ter 3), if all eigenvalues of Gcs are within the unit circle
on the complex plane, the covariance matrix of Xs(k),
P(k) = 〈Xs(k)Xs(k)T 〉 converges to P(∞), which is the
solution of the following equation:

P(∞) = GcsP(∞)GT
cs +R1 (17)

where R1 = 〈ζsζ T
s 〉. Eq.17 can not be solved, in gen-

eral, analytically. However, for the specific deposition
system considered in this work, the analytical solution
for P(∞) can be obtained as follows:

P(∞) =

[

Pα(∞) 0
0 Pβ (∞)

]

(18)

where Pα(∞)= diag[ 〈α1(∞)2〉 · · · 〈αm(∞)2〉 ], Pβ (∞)=

diag[ 〈β1(∞)2〉 · · · 〈βm(∞)2〉 ]. Using Result 1, 〈αn(∞)2〉
and 〈βn(∞)2〉 (n = 1, · · · ,m) can be computed by using
the following expressions:

〈αn(∞)2〉=− ς2

2λcαn

; 〈βn(∞)2〉=− ς2

2λcβn

(19)

From Eq.19, we can see that by assigning the closed-
loop poles λcαn and λcβn (n = 1, · · · ,m) at desired
locations, the covariances of the states αn and βn
(n = 1, · · · ,m) can be controlled to desired levels.
Therefore, according to Eq.10, the contribution to the
surface roughness from the finite-dimensional system
of Eq.13 can be controlled to the desired level.

3.3 Analysis of the closed-loop infinite-dimensional
system

In this subsection, we show that when the state feed-
back controller of Eq.14 is used to manipulate the
poles of the finite-dimensional system of Eq.13, the
contribution to the surface roughness from the α f and
β f subsystem of the system of Eq.11 is bounded and
can be made arbitrarily small by increasing the dimen-
sion of the xs subsystem.

By applying the feedback controller of Eq.14 into the
infinite-dimensional system of Eq.11, we obtain the
following closed-loop system:

dxs

dt
= Λcsxs +ξs

dx f

dt
= Λε xs +Λ f x f +ξ f

(20)

where Λε = B f B−1
s (Λcs−Λs).

The boundedness of the state of the above system
follows directly from the stability of the matrices
Λcs and Λ f and the structure of the system, where
the xs subsystem is independent of the x f state (see



(Christofides, 2001) for results and techniques for
analyzing the stability properties of such systems).

Due to the structure of the eigenspectrum of operator
A (Section 2), the effect of the control action computed
from Eq.14 to the poles of the x f subsystem can be
reduced by increasing m. Therefore, by picking m
sufficiently large, the Λε xs can be made very small
compared to Λ f x f and thus, the closed-loop system
of Eq.20 can be adequately described by the following
system:

dxs

dt
= Λcsxs +ξs

dx f

dt
= Λ f x f +ξ f

(21)

On the basis of the above system, it can be shown that
the covariance of the state of the x f subsystem con-
verges to [ 〈αm+1(∞)2〉 〈βm+1(∞)2〉 · · · · · · ], where

〈αn(∞)2〉= ς2

2n2ν
; 〈βn(∞)2〉= ς2

2n2ν
; n > m (22)

Therefore, the overall contribution to the surface
roughness from the x f subsystem in Eq.11 can be
computed as follows:

ς
√

2π(m+1)ν
<

√

1
2π

∞

∑
n=m+1

[

ς2

νn2

]

<
ς√

2πmν
(23)

Clearly, as m → ∞, the contribution to the surface
roughness from the α f and β f subsystem goes to zero.

In summary, under the controller of Eq.14, the closed-
loop surface roughness, for m sufficiently large, can be
adequately described by the following expression:

√

〈r2〉= ς

√

1
2π

[λ ∗ +
∞

∑
n=m+1

1
νn2 ] (24)

where

λ ∗ =
m

∑
i=1

(− 1
2λcαi

− 1
2λcβi

) (25)

Remark 1. Note that to control the closed-loop sur-

face roughness to
√

〈r2
d〉, we need to design a con-

troller to assign the poles of the finite-dimensional
system of Eq.15 to appropriate values. The controller
which assigns the poles of the system of Eq.15 to
satisfy Eq.25 is not unique. Consequently, for a fixed
number of actuators, p, the controller that can drive
the closed-loop surface roughness to a desired level is
also not unique.

4. SIMULATION RESULTS
In this section, we present an application of the pro-
posed state feedback controller to the deposition pro-
cess described in Fig.1 to regulate the surface rough-
ness to a desired level. Specifically, the deposition oc-
curs on a lattice containing 1000 sites. Therefore, a =

0.00628. The deposition rate for each site is ra = 1s−1.
A 600th order stochastic ordinary differential equation
approximation of the system of Eq.4 is used to simu-
late the process (the use of higher-order approxima-
tions led to identical numerical results, thereby imply-
ing that the following simulation runs are independent
of the discretization). The δ function involved in the
covariances of ξ n

α and ξ n
β is approximated by 1

δ t .
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Fig. 2. Comparison of the open-loop profile of surface
roughness from the kinetic Monte-Carlo simula-
tor (solid line) and that from the solution of the
SPDE using 300 modes (dotted line).

In the first simulation, we compare the open-loop
surface roughness profile of the deposition process
from the solution of the stochastic PDE model of
Eq.1 to that from a kinetic Monte-Carlo simulation.
We use the kinetic Monte-Carlo algorithm developed
in (Vlachos, 1997) to simulate the process. First, a
random number is generated to pick a site among all
the sites on the 1-D lattice. If the height of this site
is lower than or equal to that of both each nearest
neighbors, this site is picked as the deposition site and
the height of this site increases by a; if the height of
only one of the two nearest neighbor sites is lower than
that of the original site, deposition is on that site and
the height of that site increases by a; if the height of
each one of the nearest neighbor sites is lower than
that of the original site, a second random number is
generated to randomly pick one of the two nearest
neighbors with equal probability and the height of the
picked site increases by a. Upon an executed event, a
time increment, dt, is computed by dt = − lnζ

N×ra
, where

ζ is a random number in the (0,1) interval and N is
the total number of sites on the lattice.

The profiles of surface roughness from the kinetic
Monte-Carlo simulation and the solution of the stochas-
tic PDE model are shown in Fig.2. The two profiles
are very close, which means that the stochastic PDE
model of Eq.4 can adequately (see Remark 2 below
for a discussion on this issue) simulate the evolution of
surface roughness of the deposition process described
in Fig.1.

Subsequently, we design a state feedback controller
based on a 60th order stochastic ODE approximation
constructed by using the first 60 eigenmodes of the
system of Eq.9. 60 control actuators are used to con-



trol the system. The ith actuator distribution function
is taken to be:

bi(z) =
1√
π

[sin(iz)+ cos(iz)]; i = 1, · · · ,60 (26)

Our desired roughness is around 0.0058. Using Eq.24,
we design the state-feedback controller such that
λcαi = λcβi =−3.55, for i = 1, · · · ,30. Under this state
feedback controller, the closed-loop surface roughness
is in the range [0.0057,0.0058]. Fig.3 shows a compar-
ison between the closed-loop roughness profile (solid
line) and the open-loop roughness profile (dotted line).
We can see the controller successfully drives the sur-
face roughness to the desired level, which is much
lower than that corresponding to open-loop operation
(ui(t) = 0, i = 1, . . . ,60).
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Fig. 3. Closed-loop roughness profile (solid line) when
the controller is designed based on the first 60
modes vs. the open-loop roughness profile (dot-
ted line).

Remark 2. Note that all simulation results of rough-
ness profiles shown in this section are realizations of a
stochastic process. Therefore, fluctuations can be ob-
served in all simulation results. Our control objective
is to drive the expected roughness to the desired level,
so roughness profiles from each simulation fluctuate
around this desired level due to the stochastic nature
of the process. Conceptually, if we run infinite number
of simulations with the same parameters, and average
the roughness profiles obtained from each simulation
run, the desired expected roughness profile can be
obtained.

Remark 3. Note that the controller design method de-
veloped in this work can be applied to other processes
described by stochastic PDE models. For example,
it can be used to control the stochastic Kuramoto-
Sivashinsky equation (Lou and Christofides, 2004a),
which describes evolution of surface microstructure in
a variety of physical and chemical processes including
ZrO2 thin film growth by reactive ion beam sputtering
(Qi et al., 2003).
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