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Abstract: Two methods, one based on Iterative Principal Components Analy-
sis(IPCA) and the other based on Data Reconciliation have been developed for
estimating a model from a data matrix containing missing data. These algorithms
are iterative in nature and analogous to the method based on PCA for treating
missing data. The methods incorporate information about the measurement errors
to develop the models and are optimal in a maximum likelihood sense. The close
connection of the methods with the Expectation Maximization (EM) algorithm
is also established. Simulated data from a Flow Network system with a variety
of error structures and missing data is used to evaluate the performance of the
proposed methods. In all cases, models estimated by the proposed methods were
superior to those obtained by the classical PCA-based missing data treatment
algorithms for nonuniform error.

Keywords: Missing Data, PCA, IPCA, Data Reconciliation, Expectation
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1. INTRODUCTION

Process industries are now using multivariate sta-
tistical methods frequently along side with uni-
variate methods. As a result treatment of missing
data has become more important from statistical
process control (SPC) perspective. Unless we have
an appropriate method for dealing with missing
measurements, one may end deleting an entire row
of data even if a single measurement in that row
is missing. When a process is operating at quasi-
steady state or in dynamic mode the samples have
time stamps and deletion of rows due to missing
or bad data leads to irregular sampling intervals.
Most of the popular model building techniques
such as Principal Components Analysis (PCA),
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Partial Least Squares (PLS) were originally de-
veloped for dealing with uniformly sampled data
without any missing value. Modifications are nec-
essary to accommodate missing values in the data
matrix. In this paper our focus is on Principal
Components Analysis only. PCA is a widely used
method to build models from a data matrix of
large number of highly correlated variables. Mod-
els developed using PCA are subsequently used to
monitor process operating performance and detect
impending faults. In dealing with data matrices
containing missing values, PCA faces difficulties
at two stages. Firstly, in building model from data
sets with missing values and, secondly in monitor-
ing phase when model is available from previous
analysis but some of the monitored variables have
missing values. Both problems have received con-
siderable attention from researchers. Historically,
NIPALS algorithm was used originally for build-



ing principal component models. Christofferson
(1970) extended NIPALS algorithm for finding
first and second principal component in presence
of missing values in the data matrix (Grung and
Manne, 1998). Now it has become more custom-
ary to use Singular Value Decomposition (SVD)
algorithms for finding the PCs. In the presence
of missing values in the data matrix, an iterative
imputation approach is used to fill the missing
values. Initially, the missing values are filled with
the unconditional mean of the respective vari-
able and SVD is done on the complete data set.
PCA solution is iteratively improved by updat-
ing the missing values with the estimated values
of the current model until the imputed values
stabilize (Grung and Manne, 1998; Troyanskaya
et al., 2001; Walczak and Massart, 2001). As-
suming that the model is available from a pre-
viously obtained data without any missing value
Nelson et al.(1996) and Arteaga et al.(2001) devel-
oped and analyzed several methods for calculating
scores from a data set with missing values. These
methods such as, Trimmed Score (TRI), Single
Component Projection (SCP), Conditional Mean
Replacement (CMR), Projection to Model Plane
(PMR) are useful from a monitoring point of view.
However all these methods use PCA in its natural
form (Nelson and MacGregor, 1996; Artega and
Ferrer, 2002). Though PCA is a robust and widely
used tool for model building but it has some limi-
tations too. As such, algorithms based on PCA for
building models from data matrix with missing
values also suffer from these limitations. In this
paper we will point out two such restrictions and
subsequently propose two algorithms which out-
perform currently used PCA-based missing data
treatment techniques in these situations.

Firstly, PCA is often not the optimal method for
model estimation in Maximum Likelihood sense.
For example, ordinary least squares is a maximum
likelihood method when measurement errors in
the regressor variables are negligible and error
in the dependent variable are independent and
identically distributed. Likewise, PCA can be con-
sidered maximum likelihood if all the measure-
ment errors are uncorrelated and of equal variance
(i.e. independent and identically distributed, iid).
This is a very restrictive assumption as process
measurements come from a wide variety of sen-
sors (i.e. thermocouple, gas chromatograph etc.)
and these different types of sensors have differ-
ent measurement accuracy. Sometimes instead of
using these raw variables, derived variables are
used in the data matrix, for example enthalpy
which is a derived variable obtained by multiply-
ing flowrate with temperature and heat capac-
ity. Thus, there is a possibility that errors may
be cross correlated as well. Wentzell et al.(1997)
developed Maximum Likelihood Principal Com-
ponent Analysis (MLPCA) which relaxed these
assumptions and gives ML estimate of the model

using alternating regression method. MLPCA re-
quires a priori knowledge of the true values of the
error covariance matrix (Wentzell et al., 1997). In
chemometrics applications often replicates of the
measurements are taken and an estimate of the
error covariance is available. Whereas, in process
industries replicates of measurements are rarely
taken. Recently, Narasimhan and Shah (2004) de-
veloped an iterative technique, Iterative Princi-
pal Components Analysis (IPCA) which estimates
both the model and the error covariance matrix
simultaneously (Narasimhan and Shah, 2004). In
this paper we will show the use of IPCA in missing
data context.

The other difficulty associated with PCA is to
decide on the number of principal components to
be included in the model. PCA relies on ad hoc.
methods such as, scree test, cross validation etc.
These methods are not backed by theory and they
often lead to inaccurate model order selection.
The problem becomes even more serious in the
presence of missing values in the data matrix.
IPCA provides an accurate way of determining
the number of independent variables by looking
at the singular values.

Two algorithms, one based on IPCA and the other
based on IPCA and Data Reconciliation have been
proposed in this paper for treating missing data.
Both methods are iterative imputation type and
henceforth labelled as IPCA Imputation Algo-
rithm (IPCAIA) and IPCA Data Reconciliation
(IPCADR). The algorithms are optimal in the
Maximum Likelihood Sense for steady state and
quasi-steady state processes. Several assumptions
are inherent in the development of the methods.
First, a true underlying model of lower dimen-
sion than the total number of variables does ex-
ist, Second, deviations of the measurements are
only due to random measurement errors, Third,
measurement errors are normally distributed and
Finally, the methods are only valid for treating
missing data which are Missing Completely At
Random (MCAR) or Missing At Random (MAR).
Treatment of missing data with Non Ignorable
(NI) mechanism is beyond the scope of the present
paper (Little and Rubin, 2002).

The paper is organized as follows, in section 2
IPCA algorithm and theory behind the algorithm
have been described. Missing data treatment al-
gorithm using IPCA is introduced in section 3.
Section 4 gives a brief overview of data reconcil-
iation and shows its application in combination
with IPCA algorithm for handling missing data.
In section 5 improved performance of these newly
developed algorithms has been demonstrated by
a flow network simulation example.



2. ITERATIVE PRINCIPAL COMPONENT
ANALYSIS (IPCA)

The details of IPCA can be found in Narasimhan
and Shah(2004). Here only the main steps of
IPCA have been discussed for completeness. IPCA
has two main steps, first, Optimally Scaled Prin-
cipal Components Analysis (OSPCA) and second,
Estimation of the error covariance matrix. IPCA
iteratively alternates between these two steps un-
til convergence.

An optimal scaling strategy has been used in
IPCA. It was shown that PCA is scaling invariant
with this scaling scheme. Let us consider a case
when all the measurements contain random errors
and are described by

Y = X + ε

where ε ∼ N (0, Σε) and the underlying model is
such that,

AX = 0
Scaling factor L is defined by,

LLT = Σε

After scaling the measurements with the scaling
matrix the transformed measurements are given
by,

Ys = L−1X + L−1ε

Covariance of Ys is given by,

Σys = Sxs + I

This is an important result as it provides a conve-
nient way to select the order of the model. From
the eigenvalue shift theorem, eigenvectors of noise
corrupted covariance matrix, Σys is equal to the
eigenvectors of the noise free covariance matrix,
Sxs . So there is no distortion in the eigenvectors
due to the presence of noise in the signals. On
the other hand, eigenvalues of the noise corrupted
covariance matrix are shifted by unity from the
noise free eigenvalues. For example, if the rank
of the data matrix X s is m, then the last n-m
eigenvalues of Sxs will be exactly zero as the data
matrix is noise free and the last n-meigenvalues of
Σys will be unity. The eigenvectors corresponding
to these unity eigenvalues define the basis vec-
tors of the residual space, which is the constraint
model in scaled domain, As. Therefore, the model
order selection is not arbitrary. Rather it provides
a definitive way of selecting the model order. The
constraint model in the original domain is simply
given by,

A = AsL

The only unknown parameter is Σε. To estimate
Σε an iterative approach is taken. An initial
estimate of the constraint model, A0 is obtained
by ordinary PCA on the unscaled data matrix Y.
Using this initial estimate residuals at each instant
are calculated as, r (t) = A0y (t)

If the estimated model is exact, then the residuals
will be independent normally distributed variables
with zero mean. Thus the joint density function
of r(1) r(2) r(3). . . .r(N) is easily obtained and
the maximum likelihood estimate of Σε is esti-
mated by maximizing the log likelihood function
of r(1) r(2) r(3). . . .r(N), which is equivalent to
minimizing the following function:

min
Σε

Nlog

∣∣∣∣Â0Σε

(
Â0

)T
∣∣∣∣ +

N∑

i=1

(
rT
i (t)

(
Â0Σε

(
Â0

)T
)−1

ri (t)

) (1)

The maximum number of elements in Σys
that

can be estimated is restricted by the number of
constraints or the rank of A. If rank of A is m
then the maximum number of elements that can
be estimated is less than or equal to m(m+1)/2.
The method only allows error covariance in the
spatial direction.

3. IPCA IMPUTATION ALGORITHM
(IPCAIA)

IPCA algorithm has been discussed in the previ-
ous section. In this section we will describe the
main computational steps of IPCAIA and show
its link to the much celebrated Expectation Max-
imization (EM) Algorithm.

Let Y n×N be the data matrix containing the
noise corrupted measurements which include both
dependent and independent variables, where n is
the number of variables and N is the total number
of samples. If Yobs and Ymis denote the observed
and the missing values respectively then the data
matrix, Y = {Yobs, Ymis}.

Y = X + ε

where X is the noise free variables and ε is mea-
surement noise. There is no assumption on the
distribution of the variables Y or X. Only as-
sumption is that, ε follows a multivariate normal
distribution with mean zero and covariance Σε,
and the underlying model is such that,

AX = 0

The main steps of IPCAIA are given below:

(1) The missing values of the data matrix are
filled with the unconditional mean of the
variables. For example, the missing values of
the data matrix are filled by the row averages
of Y obs.

(2) The filled data matrix Y is supplied to the
IPCA algorithm. IPCA automatically deter-
mines the number of significant principal
components and gives an estimate of the
constraint matrix A, scaling matrix L and
predicts the noise free variables in scaled
domain, X̂s.



(3) The estimated noise free variables X̂s are
converted to X̂ in the original domain, X̂ =
LX̂s. Missing values in the data matrix are
filled with these predicted X̂ values.

(4) Return to step (2) and repeat these steps
until convergence.

The link between IPCA and Expectation Maxi-
mization (EM) algorithm is clear from the iter-
ative nature of the two algorithms. Each itera-
tion of EM consists of an Expectation step and
a Maximization step. The E-step calculates the
conditional expectation of the sufficient statistics
given the observed data and the current estimated
parameters. Because of filling the missing values
with the conditional expectation the variances are
underestimated and the main feature of the E-
step is adding corrections to the variances. Since
error variances are estimated in IPCAIA this can
be done implicitly by adding a scaled error term
to each of the estimates of the missing value. In
step 3 of the above algorithm, instead of filling
the missing values with X̂ missing values may be
filled with Ŷ where,

Ŷ = X̂ + Lν

ν ∼ N(0, I)

The estimated conditional expectation of the suf-
ficient statistics from the E-step is substituted in
the log likelihood function and parameters of the
model are estimated by maximizing the function.
This is the M-step of EM algorithm. Important
fact is that parameter estimation has to be max-
imum likelihood estimate for the observed data
set(Little and Rubin, 2002).

In IPCAIA parameter estimation using IPCA
is equivalent to the maximization step of the
EM algorithm. The parameters of the model are
obtained by minimizing the objective function,

min︸︷︷︸
As,Xs

n∑

i=1

(Ys,i −Xs,i) (Ys,i −Xs,i)
′

Because of the optimal scaling strategy, in the
scaled domain the error covariance matrix is iid.
Thus, IPCA gives an ML estimate of the model
parameters under this optimal scaling scheme.
Since the missing values are filled by values from
the distribution of the data, the method remains
optimal in the presence of missing data.

4. IPCA DATA RECONCILIATION (IPCADR)

The IPCA Data Reconciliation algorithm for
treating missing data is a combination of two
methods: IPCA and Data Reconciliation. Before

describing the actual algorithm a brief introduc-
tion on Data Reconciliation is necessary. In pres-
ence of measurement error, the balance equations
are not satisfied exactly. The objective of data
reconciliation is to estimate the underlying noise
free variables so that they satisfy the balance
equations. In accordance with the earlier notation,

y (t) = x (t) + ε (t)

where y(t) is a nx1 vector of observations, x (t)
is a nx1 vector of the underlying variables and
ε (t) normally distributed measurement error. If
the time invariant constraint model is A then data
reconciliation solves the following weighted least
squares problem:

min
x

(y − x)T Σ−1
ε (y − x)

s.t.Ax = 0
(2)

If all the measurements are not available then
the x values corresponding to these unmeasured
variables are estimated using the constraints and
the available measurements. As the number of
unmeasured values increases the degree of freedom
also increases, so the estimation becomes poor. In
extreme cases when there is not enough redun-
dancy between the measurements and the model,
data reconciliation breaks down(Sanchez and Ro-
magnoli, 1996). This is important with regard
to missing data treatment because the degree of
redundancy changes with missing measurement.
So, while using data reconciliation for filling miss-
ing data we expect that the method will perform
better for small number of missing values in the
data matrix.

The main steps of the IPCADR algorithm are as
follows:

(1) The missing values of the data matrix are
filled with the unconditional mean of the
variables. For example, the missing values of
the data matrix are filled by the row averages
of Y obs.

(2) The filled data matrix Y is supplied to IPCA
algorithm. IPCA automatically determines
the number of significant principal compo-
nents and gives an estimate of the constraint
matrix A and the error covariance matrix Σε.

(3) The estimated constraint matrix and the er-
ror covariance matrix are used in equation
(2) to estimate the underlying variables x (t)
at each instant, where t=1. . . ..N. If enough
redundancy is not present in the data then
the missing values are filled by the uncondi-
tional mean.

(4) Return to step(2) and repeat these steps until
convergence.



Fig. 1. Schematic Diagram of the Flow Network

Table 1. Transfer Functions of the De-
terministic Signals

X1 X2
1

0.9s+1
1

0.8s+1

5. SIMULATION RESULTS AND
DISCUSSIONS

A flow network process, shown in figure 1, has
been chosen to demonstrate the strength of the
newly proposed methods. It is assumed that the
fluid flowing through the network is incompress-
ible and there is no time delay in the process.
The constraint model, A of the process can be
obtained easily from the mass balance equation at
the junctions. Four mass balance equations can be
written for this flownetwork system, so the model
order of the constraint matrix is four. In the above
example X1 and X2 were chosen as independent
variables. These are two deterministic signals with
slow dynamics. Transfer functions used to sim-
ulate these two flows are given in table 1. The
rest of the flow rates, X3 to X6 were estimated
from the mass balance equations. In accordance
with the previous notations these are the noise
free variables and satisfy the model,

AX = 0

The observed flow rates are corrupted by measure-
ment noise only,

Y = X + ε

Measurement noise were assumed uncorrelated
but with unequal variances

(
i.e.ε ∼ N

(
0, σ2

i
I
))

.
Each measurement vector has 200 data points.

Two indicators were used to assess the perfor-
mance of the proposed methods. First, Total Sum
of Squared Error (TSE), which is defined as,

TSE =
N∑

j=1

n∑

i=1

(
Xmis

ij − X̂mis
ij

)2

Secondly, Subspace Angle(θ), this is the angle
between the two subspaces specified by their
columns. If the true constraint model is A6x4 and
the estimated constraint model is Â6x4, then the
angle between each column is defined by,

θi =
∥∥∥∥A.i −A.iÂ

T
(
ÂÂT

)−1

Â

∥∥∥∥

θ =
∑

θi
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Fig. 2. Prediction Capability Comparison. Total
Sum Square Error vs. variance of error vari-
ances
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Fig. 3. Model Quality Comparison. Subspace Angle
between the estimated model and actual model
vs. variance of error variances

For a two dimensional space this is the angle at
the intersection of two planes. If the angle is small,
the two matrices will be nearly linearly dependent.

It was claimed in the previous sections that
the proposed methods perform better than PCA
based imputation algorithms in two situations,
first, model estimation when the errors are not iid(
i.e.Σε 6= σ2I

)
and second, model order selection

in the presence of missing data. To demonstrate
the first point, the Total Sum Square Error (TSE)
and the Subspace Angle (θ) estimated by all three
methods are plotted in figure 2 and 3. The devia-
tions of the noise variance from iid was quantified
by var(error variance). In both cases 7.3% of the
total values were missing. TSE gives a measure of
the prediction capability of the algorithms. When
the noise covariance is close to iid performance
of all three methods are practically indistinguish-
able. But as it deviates further from the iid as-
sumption the performance of the PCA based algo-
rithm deteriorates sharply. The subspace angle is
also smaller for the models estimated by IPCAIA
and IPCADR algorithms compared to the PCA
based algorithm.

The results on the robustness of the algorithms
are shown in figure 4. In this case the error covari-
ance matrix deviates from iid only moderately;
var(error variance) is 0.0035. As the missing data
increases above 10% of the total data, the differ-
ence between the estimated models becomes ap-
parent. Estimated model using IPCAIA algorithm
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Fig. 4. Robustness Comparison Plot. Subspace
Angle between the estimated model and actual
model vs. % missing data
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Fig. 5. Fraction of Variance Explained vs. %Miss-
ing Value

is very good for missing values as high as 25%,
while the PCA-based algorithm performs poorly
for this large amount of missing data. On the
other hand, IPCADR algorithm performs well up
to moderate range of missing data. But at a high
range the method breaks down because of lack of
redundancy.

The improved model order selection criteria in
the presence of missing data are evident from
figures 5 and 6. Figure 5 shows that as more
values are missing in the data matrix, total vari-
ance explained by first two principal components
increases (figure 5). So, methods used in PCA for
selecting model order, such as Scree plots suffers
even more in the presence of missing data. On
the other hand, the last four eigenvalues from
IPCAIA and IPCADR do not deviate significantly
from unity (figure 6). Therefore, the model order
selection is precise for these two methods even in
the presence of missing data.

6. CONCLUSIONS

In this work two limitations of PCA in connection
with missing data treatment have been pointed
out: 1) model order selection in the presence of
missing data, 2) model building from data with
unequal noise variances. The proposed algorithms
IPCAIA and IPCADR provide a precise way of
model order selection by looking at the eigen-
values. Error covariance is incorporated in the

3 4 5 6
0

0.5

1

1.5
7.3%
12.75%
24.9%

3 4 5 6
0

0.5

1

1.5

Eigenvalue Number

Fig. 6. Last four eigenvalues estimated by IP-
CAIA(top) and IPCADR (bottom)

model estimation procedure. Thus, a maximum
likelihood estimate of the model parameters can
be obtained. From the simulation study it was
evident that IPCAIA was able to estimate good
models up to a fairly significant amount of missing
data (25%), while IPCADR showed good perfor-
mance up to moderate range (13%). Both meth-
ods outperformed PCA-based missing data treat-
ment algorithm for the unequal noise situation.
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