
SYSTEM'S NONLINEARITY MEASUREMENT BASED ON THE RPN CONCEPT

M. Farenzena and J. O. Trierweiler#

Group of Integration, Modelling, Simulation, Control and Optimization of Processes (GIMSCOP)
Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS)

Rua Duque de Caxias, 1303 apt. 603 CEP: 90010-283 - Porto Alegre - RS - BRAZIL,
Fax: +55 51 3316 3277, Phone: +55 51 3316 4072

E-MAIL: {farenz, jorge}@enq.ufrgs.br

Abstract: The nRPN, nRPNSTAT, and nRPNDYN are three novel indexes to measure system's
nonlinearity. These nonlinear measurements are derived from the Robust Performance Number
(RPN) concept. The total system's nonlinearity can be measured by the nonlinear RPN (nRPN),
while the purely static nonlinearity is captured by nonlinear static RPN (nRPNSTAT) and the
dynamic component by the nonlinear dynamic RPN (nRPNDYN). The novel indexes do not require
a nonlinear model, being enough a set of linear models. Therefore, they can easily be applied to
quantify the nonlinearities of industrial plants and used to answer several practical important
questions such as: How nonlinear is the system? Is it necessary to apply a nonlinear controller?
What kind of nonlinear controller is necessary? Copyright   2004 IFAC

Keywords: - nonlinearity, nonlinearity measurements, controller selection, RPN Methodology,
benzene distillation column

                                                          
# Author to whom the correspondence should be addressed.

1 INTRODUCTION
Is a nonlinear controller necessary? If the answer is
yes, what kind of nonlinear controller is required?
Nowadays, questions like these arise frequently. To
answer these questions it is necessary to quantify the
process nonlinearity degree. When the degree of
nonlinearity is low, a linear controller can be applied
without performance loss. Linear controllers are
much simpler to tune and to maintain. Therefore, one
will invest in a nonlinear controller when is really
necessary. Many times, simple nonlinear gain
compensation is enough to significantly improve the
control performance. In other situations, the process
dynamic also changes considerably. In these
situations, the nonlinear controller must also
compensate the system's dynamic and the nonlinear
controller becomes more difficult to tune and to
implement. In this work, three novel nonlinear
measurements (nRPN, nRPNSTAT, and nRPNDYN) are
proposed. These nonlinear measurements are derived

from the Robust Performance Number (RPN)
concept. The total system's nonlinearity can be
measured by the nonlinear RPN (nRPN), while the
purely static nonlinearity is captured by nonlinear
static RPN (nRPNSTAT) and the dynamic component
by the nonlinear dynamic RPN  (nRPNDYN).

About nonlinear measurements, there is not too much
available in the literature. For instance, Guay et al.
(1997) proposed a method based on the concavity
measure, while Helbig et al. (2000) quantify the
degree of nonlinearity based on the best linear
approximation to the nonlinear model. These
approaches only measure the open-loop degree of
nonlinearity and to apply these methodologies it is
necessary a nonlinear phenomenological model.
Therefore, the practical application is reduced and
not so simple.

Trierweiler (1997) and Trierweiler and Engell
(1997a) introduced the RPN for a plant set (RPPN)
index to quantify the degree of nonlinearity. The



RPPN needs only a set of linear models, which can
be obtained by identification or linearization of the
process in different operating points. The RPPN
takes the closed loop performance into account
automatically. The novel indices introduced in this
paper are improvement of the original RPPN.

This paper is structured as follows: in section 2 a
brief description of the RPN methodology will be
made. In section 3 the nonlinear RPN will be defined.
The nonlinearity degree of a high purity distillation
and the quadruple-tank system will be quantified in
sections 4 and 5, respectively.

2 THE ROBUST PERFORMANCE NUMBER
(RPN)

The RP-number is a measure of how potentially
difficult it is for a given system to achieve the desired
performance robustly. The RPN of a multivariable
plant with transfer matrix G(s) is defined as
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where γ*(G(jω)) is the minimized condition number
of G(jω) and [ ]( )TTI −σ  is the maximal singular
value of the transfer function [I-T] T. T is the
attainable desired output complementary sensitivity
function that is determined for the nominal model G.

The RPN determined by two factors:

1.  [ ]( )TTIσ −  This term acts as a weighting function
that emphasizes the crossover frequency, that is the
most important region for the robust stability,
because feedback controller will operate in this
region.

2.  γ∗ (G)+1/γ∗ (G). The origin of this term is the
analysis of robust performance (RP) of inverse-
based controllers (see Trierweiler, 1997).

3 NONLINEAR RPN
The nonlinear RPN (nRPN), nonlinear dynamic RPN
(nRPNDYN) and nonlinear static RPN (nRPNSTAT) are
introduced to measure system's nonlinearity. These
nonlinearity measurements are derived from the
Robust Performance Number (RPN) concept. The
total system's nonlinearity can be measured by the
nonlinear RPN (nRPN), while the purely static
nonlinearity is captured by nonlinear static RPN
(nRPNSTAT) and the dynamic component by the
nonlinear dynamic RPN (nRPNDYN).

3.1 Preliminary definitions
Next, we introduce five concepts, which are used in
the definition of nRPN.

Definition 1: Minimized condition number of a
plant set P ( γ #(P) ). Consider the polytopic system
representation P consisting of NP linear models Gi

{ }
��

�
�
�

��

�
�
�

=≥=∈ � �
= =

∆ NP

i

NP

i
iiiiNP GGGP

1 1
1 1,0:,...,Co ααα . (2)

Then the minimized condition number of P is defined
as
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where L# and R# are the real, diagonal, and
nonsingular scaling matrices used to determine γ#(P).

The scaling matrices L# and R# can be calculated by
the solution of a generalized eigenvalue problem
(Trierweiler, 1997).

Definition 2: Maximal difference of the minimized
condition number for a plant set P (∆γ#(P)). For
the polytopic model P, the maximal difference in the
condition number (∆γ#(P)) is defined by
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Definition 3: Maximal singular value ratio of a
plant set P ( σ#(P) ). For the polytopic model P,
given by (2), the maximal singular value ratio of P is
defined by
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where )( ## RGL ισ  is the maximal singular value of
the scaled model Gi using the scaling matrices L# and
R#.

Definition 4: Projection Matrix ( M#(P) ). For the
polytopic model P, the projection matrix M# is a
symmetric matrix with the elements m#

ij given by
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where the vectors uk,i and vk,i are the kth column
vectors of the unitary matrices Ui and Vi
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obtained by the Singular Value Decomposition
(SVD) of the scaled gain matrix of the model i, i.e.,
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and Σi contains a diagonal nonnegative definite



matrix ΣNS of singular values arranged in descending
order:
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Definition 5: Projection Factor ( υ#(P) ). For the
polytopic model P, the projection factor is equal to
10 powered by the greatest element of the projection
matrix M# defined in (13), i.e.,
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The projection factor υ#(P) is used to detect a change
of multivariable gain sign, what is captured by the
projection matrix M#.

3.2 Nonlinear RPN curves
Based on ∆γ#(P), σ#(P), and υ#(P) we can finally
define the nonlinear RPN curves. Here, the nonlinear
RPN (nRPN), the nonlinear static RPN (nRPNSTAT),
and the nonlinear dynamic RPN (nRPNDYN) curves
are shown. The nRPN curve is used to capture the
total process nonlinearity, while nRPNSTAT and
nRPNDYN are applied to quantify the static and
dynamic contributions, respectively.

Definition 6: Nonlinear Robust Performance
Number curve (nRPN curve, Γ#). The nonlinear
RPN curve is defined as
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where Γ(G,T,ω) is given by (1b).          �
The potential increase of system's directionality is
captured by the term (∆γ#(P)), the modification of the
maximal singular value is considered by σ#(P), and
the change of the multivariable sign by υ#(P). From
the definition, the nRPN curve is always above the
RPN curve.

The nominal model G used in (13) is usually the
nominal operating point of the plant, where the
process will mostly work. When this operating point
cannot be selected among the possible plant models,
then the linear model with the worst possible
performance should be set as nominal model, i.e., the
model with the largest RPN.

The nRPN curve is influenced by static and dynamic
nonlinearities. To separate the contribution of each
kind of nonlinearity, the nRPNSTAT (Γ#

STAT) and
nRPNDYN (Γ#

DYN) curves are defined, as follows:
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Figure 1 shows a typical example of RPN, nRPN,
nRPNSTAT, and nRPNDYN plots. The larger the
difference between nRPN and RPN plots, the more
nonlinear the system.
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Fig. 1: RPN and nRPN curves for systems with static
and dynamic of  nonlinearity  Note that the
frequency is on a logarithmic scale so that -4
should be understood as 10-4.

If the nonlinearity is purely static the difference
between the nRPN and the RPN curves is constant
for all frequencies, since the process models differ in
the process gain only. Figure 2 illustrates this
situation, which typically occurs for pH-reactors.
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Fig. 2: RPN and nRPN curves for systems with pure
static nonlinearity

Therefore, the nonlinearity can be parceled out into
its static and dynamic component by adding to the
RPN curve the minimum difference between the
nRPN and RPN curves. This value corresponds to the
nonlinear static RPN curve, as defined by (14). The
dynamic component is given by subtracting from the
total nonlinearity (nRPN curve) the static component
(nRPNSTAT curve) as in equation (15).



The analysis of the nRPN, nRPNSTAT, and nRPNDYN
curves allow not only determining if a nonlinear
controller is necessary, but also allows choosing the
characteristics of the nonlinear controller that would
be necessary for a given plant, what is very important
for several practical applications. For example, if the
nRPNDYN and RPN curves are closer to each other
and the difference between nRPNSTAT and RPN
curves is large, a nonlinear controller with simple
static gain compensation (gain scheduling controller)
is recommended to improve the control performance.
In this case, a controller with variable dynamic will
not produce a better result. It is important to mention
that nonlinear controllers with fix dynamic are much
simpler to develop and maintain.

3.3 Nonlinear RPN indices
In the last section, it was shown that analyzing the
nRPN curves is possible to quantify the process
nonlinearities. For practical and quick analysis it is
better to quantify the process nonlinearities using
numbers (indices) instead of graphics. Therefore, to
capture the distance between the nRPN curves we
will introduce the nRPN, nRPNSTAT, and nRPNDYN
indices. These indices are defined by the relative
difference between the areas under the curves, i.e.,
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The areas are defined as follows:
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It was introduced the logarithm function in the
definition of nonlinear indices to make easier their
interpretation. Values smaller than 1 indicate that the
performance difference between nonlinear and linear
controllers is not significant, so that a linear
controller is recommended. Indices greater than 2
clearly indicate that a nonlinear controller is
necessary. Between 1 and 2 is a transition zone,
where in many times a robust controller can stabilize
all possible plants, but the performance loss can be
significant.

4 CASE STUDY:
HIGH PURITY DISTILLATION COLUMN

Distillation columns are currently the main
separation process applied in chemical and
petrochemical industries (Luyben, 1992). The control
of high purity distillation columns generally is not an
easy task, due to the coupling between the controlled
variables, susceptibility to the external unmeasured
disturbances and often high non-linearity degree.
Small disturbances in high purity columns are
responsible for great change in the product
compositions. Moreover, these columns shows high
time constants and asymmetric gain variation.

In this section the nonlinearity degree of an industrial
high purity distillation column used to split Benzene
from Toluene from a misture Benzene-Toluene-
Xilenes (BTX).

4.1 Process Description
The distillation column operates at atmospheric
pressure, being fed with a mixture of BTX and small
quantity of water. The column has 40 theoretical
trays. The benzene is removed in a sidestream
withdraw laterally at the third theoretical tray from
the top. At the top, due to a subcooling the small
quantity of water is separate from benzene in a two
phase drum. Fig.3 shows schematically the
distillation column.

BTX

Toluene and
Xilenes

Benzene

Purge

Benzene

AC
BZ

AC
TL

Water

Fig. 3: Schematic representation of the Benzene
column of a typical BTX unit

The controlled variables are benzene contamination
in the bottom stream and toluene concentration in the
sidestream. To control the compositions the
corresponding manipulated variables are reboiler heat
duty and sidestream flowrate.

A rigorous dynamic model of the benzene column
was built in the commercial simulator Aspen
Dynamics 11.1 using NRTL thermodynamic model
for the liquid phase. This dynamic model can
satisfactory describe the actually behavior of the real
column.



4.2 Operating Regions
The operating space is divided in six operating
regions defined by different compositions expressed
in ppm of benzene in the bottom stream and toluene
in the siedestream. Table 1 shows the operating
regions analyzed in this paper. For example, the OR1
of Table 1 means that the composition of benzene
and toluene are 50 ppm in the bottom and siede
streams, respectively. The OR1 to OR4 are high
purity operating points meaning high non-linearity
degree, whilst OR5 and OR6 can be considered as
moderate purity operating points.

Table 1: Definition of the Operating Regions (OR)

Toluene (ppm) in the Siedestream

50 200

50 OR1 OR2

200 OR3 OR4

Benzene
(ppm)
in the
Bottom
Stream

100 OR5 OR6

Figures 4 and 5 respectively show the static gain and
settling time for the transfer function of the channel
(toluene impurity)/(siedestream flowrate). The
transfer functions were obtained for several toluene
composition in the siedestream with a fix benzene
composition in the bottom stream equal to 50 ppm.
Note that both gain and settling time abruptly change
when the toluene composition is lower than 200 ppm.
The gain and settling time change approx. 100 and 40
times, respectively.
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Fig. 4:  Curve of the static gain for several
specifications of toluene impurity with a 50
ppm benzene loss in the bottom stream.

Table 2 and 3 respectively show the gain matrix and
settling time of the linearized models. These Tables
indicates that the behavior presented in Figures 4 and
5 can be extended to the other channels.

The qualitative analysis of the non-linearity degree
indicates that the regions of high purity (OR1 to
OR4) exhibit a great variation in the static gain and
dynamics. However, the regions where the

specifications are moderated (OR5 and OR6), the
non-linearity is less pronounced.
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Fig. 5: Settling time for several specifications of
toluene impurity and fix 50 ppm benzene loss
in the bottom stream.

Table 2: Gain Matrix for the OR defined in Table 1.
The output are toluene impurity and benzene
loss (rows) and the manipulated variables
are Sidestream flowrate and heaty duty
(columns)

50 200

50 �
�

�
�
�

�

−− 86,013,0
16,0026,0

�
�

�
�
�

�

−− 27,0041,0
33,0051,0

200 �
�

�
�
�

�

−− 37,0056,0
0043,0007,0

�
�

�
�
�

�

−− 34,0051,0
029,00044,0

1000 �
�

�
�
�

�

−− 34,0052,0
0014,00002,0

�
�

�
�
�

�

−− 34,0052,0
0014,00002,0

Table 3: Settling time (min)

50 200

50 1900 500
200 200 100

1000 45 45

4.3 nRPN Analysis
Fig. 6 shows the nRPN curves for each OR
calculated using a desired performance of 10 min rise
time and 5% overshoot. The set of linear models used
in each region was: the linear model determined in
the nominal operating point and the models with the
composition twice greater in each component (e.g.
the OR1, was described by the linear models with (1)
50 and 50 ppm, (2) 100 ppm and 50 ppm, and (3) 50
ppm and 100 ppm of toluene impurity and benzene
loss). Table 4 summarizes the corresponding values
of the nRPN, nRPNDYN and nRPNSTAT indixes.
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Fig.6: nRPN curves for each operating regions

Table 4: nRPN indexes corresponding to Fig. 6

nRPN nRPNDYN nRPNSTAT

OR1 3,85 1,43 2,40

OR2 3,49 1,89 1,58

OR3 3,31 1,10 2,18

OR4 1,99 0,75 1,13

OR5 1,24 0,04 0,90

OR6 1,05 -0,05 0,74

Analyzing Fig. 6 and Table 4, we can conclude that
the OR1 to OR3 are the most nonlinear exhibiting
both static and dynamic nonlinearities. To control the

column at these regions it is necessary to apply a
controller which can compensate both static and
dynamic behavior. For OR4, the plant can be already
controlled by a nonlinear controller with static
compensation only (e.g., gain schedule controller). In
this region the dynamic nonlinearity is not too
pronounced. The OR5 and OR6 can be controlled by
linear controllers. If tight performance is required for
these OR, a simple static compensation will do the
job quite well.

To show the effect of velocity of the closed loop in
the nonlinear degree, the column operating at OR5
was simulated with 3 controllers with the following
relations between the closed loop and open loop
dynamic: (a) twice faster, (b) 6 times faster, and (c)
12 times faster. The simulations results with
decentralized PI controllers which achieve these



relations are show in Fig. 7 for disturbances with
different magnitudes. The responses were normalized
by the disturbance magnitude to make easier the
analysis. Fig. 7 clearly shows that the faster the
controller (closed loop), less nonlinearity degree
exhibit by the plant. Note that the effect of closed
loop velocity is captured automatically in the nRPN,
as can be seen in Table 5. Note that for faster closed
loop response the nRPN is smaller indicating a
smaller nonlinearity degree.
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Fig.7: Simulation in closed loop with decentralized
PI controllers for OR5 and different relations
between the closed loop and open loop
dynamic: (a) twice faster, (b) 6 times faster,
and (c) 12 times faster.

Table 5: nRPN for OR5 and several rise time for the
closed loop response

Rise Time [min] nRPN
1 0.96

10 1.24
20 1.38
50 1.58

100 1.70
200 1.79

5 QUADRUPLE-TANK PLANT

5.1 Process description
The quadruple-tank process (see Fig. 8) is a
laboratory process that consists of four
interconnected water tanks. The linearized dynamic
model of the system has a real multivariable zero,
whose sign can be changed depending on operating
conditions. In this way, the quadruple-tank process is
ideal for illustrating many concepts in multivariable
control, particularly performance limitations due to
multivariable RHP zeros. The location and the
direction of zero have an appealing physical
interpretation. The target is to control the level in the
lower two tanks (i.e., h1 and h2) with the inlet
flowrates, F1 and F2.

T1 T2

h3

h1

h4

h2

V1 V2

F2

(1-x1).F1

F1

x1.F1 x2.F2

(1-x2).F2

Fig. 8: Schematic representation of the quadruple-
tank system

5.2 Process Model
The process model consists of the mass balance
around each tank and is given by
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( ) 4411
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3322
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1

1

1

1

hRFx
dt

dh
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dh
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(18)



where Ai is the cross-section area of Tank i, Ri is the
outlet flow coefficient of Tank i, hi is the water level
of Tank i, F1 and F2 are the manipulated inlet
flowrates and x1 and x2 are the valve distribution flow
factors  0 ≤ xi ≤ 1.

The  parameters  used  in this  work  are basically the
same as those in (Johansson, 2000)  and are given by
A1 = A3 = 28 cm2, A2 = A4 = 32 cm2,
R1 = R3 = 3.145 cm2.5/s and R2 = R4 = 2.525 cm2.5/s.

5.3 Operating Points
The quadruple-tank process is studied at a minimum-
phase operating point (MOP) and at a nonminimum-
phase operating point (NMOP), due to the presence
of the RHP transmission zero. Table 6 summarizes
the operating conditions of MOP and NMOP. Note
that the main difference between the OPs is the valve
distribution flow factors, x1 and x2, which are
responsible for the difference in h3 and h4 levels. All
other variables are almost the same for both OPs.

Table 6: Definition of the Operating Points

Variables MOP NMOP

h1, h2 [cm] 12.26,   12.78  12.44,   13.16

h3, h4 [cm]   1.63,    1.41   4.73,     4.99

F1, F2 [cm3/s]  9.99 ,  10.05   9.89,     10.36

x1, x2 [-]     0.7,     0.6   0.43,      0.34

Table 7: RHP zero and RGA

MOP NMOP

RHP zero none 0.0128

RHP zero
input
direction

_
�
�

�
�
�

�

−
=

6806.0
7326.0

zu

RHP zero
output
direction

_
�
�

�
�
�

�−
=

6329.0
7743.0

yz

RGA(0)

�
�

�
�
�

�

−
−

4.14.0
4.04.1

�
�

�
�
�

�

−
−

64.064.1
64.164.0

5.4 RHP Zero and RGA
Johansson (2000) shows that the quadruple-tank
system always has two transmission zeros, whose
locations can be classified based on the x1 + x2 value.
When 0 < x1 + x2 <1, one of the transmission zeros is
located in RHP. For the case where  x1 + x2 = 1, the
system has a transmission zero at the origin, whereas
for 1 < x1 + x2 < 2 no RHP zero occurs. Table 7
shows the RHP zeros for both OPs. For NMOP, the

input zero direction, uZ, and output zero direction, yZ,
were also included in the table. The steady-state
RGA (see Table 7) clearly shows that the pairing
used for MOP (i.e., (F1, h1) and (F2, h2)) should not
be applied to NMOP. When the system operates in
NMOP the pairing is inverse, due to the transmission
zero that changes its signal. A complete analysis
about the controllability to the quadruple-tanks
system is presented in Trierweiler and Farina (2002)

5.5 Analysis of the Nonlinearity Degree
To calculate the nonlinearity degree it is necessary to
define a set of possible plants. Here, we will analyze
the degree of nonlinearity against to inlet flow
variation (i.e., F1 and F2) and to split ratio variation
(i.e., x1 and x2).

Table 8: Inlet flowrates used for linearizing the
nonlinear model

Model 1 Model 2 Model 3

F1 [cm3/s] 8 12 10

F2 [cm3/s] 12 8 10

5.6 Influence of inlet flows F1 and F2
The set of models used in the analysis of inlet flow
influence is defined in Table 8. The polytopic model
used in the analysis is obtained by linearizing the
nonlinear model at the steady state conditions
corresponding to F1 and F2 as shown in Table 8 and
for x1=0.7 and x2=0.6 in the case of MOP and x1=0.43
and x2=0.34 for NMOP.

Results for MOP

The analysis of nRPN and RPN curves indicates that
the system is practically linear for inlet flowrate
variations, as we can see in Fig. 9. This figure was
obtained using a desired performance of 50 sec rise
time and 5% overshoot.
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Fig. 9: nRPN and RPN plots for MOP and inlet flow
variations.

Table 9 shows the corresponding nRPN indices for
the influence of the feed flowrate. Note that the
nonlinearity is very small and it is almost static, since



nRPN ≈ nRPNSTAT. The dynamic nonlinearity is
almost non-existent (i.e., nRPNDYN= -1.84).

Table 9: nRPN indices for MOP and
inlet flowrate variations

nRPN nRPNSTAT NRPNDYN

-1.33 -1.84 -1.49

Fig. 10a shows the closed loop response of the
nonlinear dynamic model for different setpoint
changes in h1. Two decentralized linear PI controllers
were used in the simulation. In Fig. 10b the responses
are normalized by the step change. This figure clearly
confirms that the system is practically linear.
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Figure 10:Closed loop step response several setpoint
changes

Results for NMOP

Very similar results are obtained for the NMOP (not
shown here). Therefore, we can conclude that the
system is weak nonlinear against inlet flowrate
variation. Simple linear controllers will succeed to
control the system at least for the inlet flows listed in
Table 8.

Influence of the distribution ratios x1 and x2

In this section, the influence of x1 and x2 in the
degree of nonlinearity will be measured. x1 and x2
are responsible for the location of the transmission
zeros, what can increase the nonlinearity degree.

Table 10: Distribution Ratio used to construct the
polytopic model for MOP

Model 1 Model 2

x1 [-] 0.7 0.5

x2 [-] 0.5 0.7

Results for MOP

The first operating region to be analyzed is around
the minimum phase operating point (MOP). Table 10
shows the linear models that compose the polytopic
model.

Fig. 11 shows the nRPN and RPN plots for the MOP.
The desired performance was 50-sec rise time and
the 5% overshoot. Table 11 presents the nRPN
indices for the influence of the feed distribution ratio.
Based on these results, it can be concluded that the
system is weak nonlinear and a linear controller
performs well.

Table 11: nRPN indices for x1 and x2 variations and
MOP

NRPN nRPNSTAT nRPNDYN

-0.024 -0.040 -1.73
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Fig. 11: nRPN and RPN plots for x1 and x2
variations and MOP (both axes are in

logarithmic scale).

Fig.12 shows the closed loop response of the
nonlinear dynamic model for the operating points
defined by (x1,x2) = (0.8,0.7), (0.7,0.6), and (0.6,
0.7).
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Figure 12: Closed loop step response for MOP and
(x1,x2) = (0.8,0.5), (0.7,0.6), and (0.6, 0.7)



For each one of these operating points, the setpoint
h1 and h2 were simultaneouly changed by -2 and 2
units, respect. A full linear PI controller was used in
the simulation. This figure clearly confirms that a
simple linear controller will perform well.

Results for NMOP

For the NMOP the set of models that will be
analyzed is defined in Table 12. This OR shows a
transmission zero located in RHP, causing inversion
in the determinant of the gain matrix. The right
pairing for NMOR is (F1-h2) and (F2-h1).

Table 12: Distribution Ratio used to construct the
polytopic model for NMOP

Model 1 Model 2 Model 3

x1 [-] 0.5 0.3 0.2

x2 [-] 0.3 0.5 0.2

RHP zero 0.0119 0.0111 0.0498

Figure 13 shows the nRPN and RPN plots for
NMOR. This figure was obtained using a desired
performance of 50 sec rise time and 5% overshoot.
Table 13 shows the nRPN indices for the influence of
the feed distribution ratio. Based on these results, it
can be concluded that the NMOP is more nonlinear
than the MOP, but a linear controller still performs
well. nRPN lower than 1 indicates that a linear
controller will perform satisfactory. Above this
value, the benefits of a nonlinear controller become
more evident.
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Figure 13: nRPN and RPN plots for x1 and x2
variations and NMOP (both axes are in

logarithmic scale).

Table 13: nRPN indices for x1 and x2 variations and
NMOR

nRPN nRPNSTAT nRPNDYN

0.680 0.490 -0.380

Figure 14 shows the closed loop response of the
nonlinear dynamic model for the operating points
defined by (x1,x2) = (0.2,0.2), (0.5,0.3), and (0.35,
0.25). For each one of these operating points, the
setpoint h1 and h2 were simultaneously changed by -
2 and 2 units, respect. A full linear PI controller was
used in the simulation. This figure clearly confirms
that a simple linear controller will perform well. Note
that for the NMOP there is a little performance
degradation if compared to the MOP. If it is decided
to applied a nonlinear controller, a simple gain
scheduling controller is recommended, since the
nonlinearity is mainly static (see Table 13).

0 2500 5000
7.5

8
8.5

9
9.5
10

10.5
h1 response for set−point variation

le
ve

l (
cm

)

0 2500 5000
9.5
10

10.5
11

11.5
12

12.5
h2 response for set−point variation

le
ve

l (
cm

)

time (sec)

x
1
=0.2,x

2
=0.2  

x
1
=0.5,x

2
=0.3  

x
1
=0.35,x

2
=0.25

Figure 14: Closed loop step response for MOP and
(x1,x2) = (0.2,0.2), (0.5,0.3), and (0.35, 0.25).

Results for both MOP and NMOP
Now, it is analyzed the case where both operating
region are included. The linear models used to
calculate the degree of nonlinearity are listed in
Tables 10 and 12.

Figure 15 shows the nRPN and RPN plots for
NMOR/MOR. This figure was obtained using a
desired performance of 50-sec rise time and 5%
overshoot.
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Figure 15: nRPN and RPN plots for x1 and x2
variations and NMOP/MOP (both axes are in

logarithmic scale).



Table 14 shows the corresponding nRPN indices.
Based on these results, it can be concluded that the
NMOR/MOR is much more nonlinear than the MOR
and NMOR separately. The reason is that the
multivariable process gain changes its sign, so that a
nonlinear controller is required.

Table 14: nRPN indices for x1 and x2 variations and
NMOP/MOP

nRPN nRPNSTAT nRPNDYN

2.60 2.42 -0.285

Figure 16 shows the simulation results produced by a
nonlinear model predictive controller (Duraisk,
2001). With this kind of controller it is possible to
work with the system in both operating regions.
Equivalent simulations with linear controllers are
unstable.
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Figure 16: Set-point change and disturbance
rejection capability for NMOP/MOP using

NMPC (a) controlled variables and (b)
manipulated variables and (c) disturbances.

The main reason for the high nonlinearity is the sign
inversion of the gain matrix. If we invert the pairing
for only the NMOP models, the total nonlinearity
must decrease, because the inversion disappears.
Figure 17 shows the nRPN and RPN plots for
NMOR/MOR, where the models corresponding of
NMOP have been modified to fit the (F1-h2) and
(F2-h1) pairing. Table 15 shows the corresponding
nRPN indices. Based on these results, we can
concluded that a linear controller can stabilize the
control loop if a switching mechanisms is
implemented to select the correct pairing based on
the operating region.
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Figure 17: nRPN and RPN plots for x1 and x2
variations and NMOP/MOP (both axes are in

logarithmic scale).

Table 15: nRPN indices for x1 and x2 variations and
NMOP/MOP changing the paring of NMOP

nRPNR nRPNSTAT NRPNDYN

0.79 0.53 -0.19

6 CONCLUSIONS
Three novel indexes were introduced to measure
system's nonlinearity. These nonlinear measurements
are derived from the Robust Performance Number
(RPN) concept. The total system's nonlinearity can
be measured by the nonlinear RPN (nRPN), while
the purely static nonlinearity is captured by nonlinear
static RPN (nRPNSTAT) and the dynamic component
by the nonlinear dynamic RPN (nRPNDYN). The
novel indexes do not require a nonlinear model,
being enough a set of linear models. Therefore, they
can easily be applied to quantify the nonlinearities of
industrial plants and used to answer several practical
important questions such as: how nonlinear is the
system? Is it necessary to apply a nonlinear
controller? What kind of nonlinear controller is
necessary?

The novel indices were applied to quantify the
nonlinearity degree of two case studies: an industrial
high purity distillation column and the quadruple-
tanks system. For the quadruple-tanks system the
nonlinearity was quantified against inlet flow and
distribution ratio variations. This system can perform
well in almost all situations. The only condition that
requires a nonlinear controller is the case where the
system goes from the NMOP to MOP and vice-versa.
The predictions made by nRPN indices were
confirmed by nonlinear simulations with linear
controllers.
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