
INTERNAL MODEL CONTROL OF
A PHYSICAL VAPOR DEPOSITION

EFFUSION SOURCE

S. Tobias Junker ∗,∗∗∗, Robert W. Birkmire ∗∗,∗∗∗,
Francis J. Doyle III ∗∗∗∗

∗ Department of Chemical Engineering
∗∗ Institute of Energy Conversion

∗∗∗ University of Delaware, Newark, DE 19716, USA
∗∗∗∗ Department of Chemical Engineering,

University of California, Santa Barbara, CA 93106, USA

Abstract: Internal model based temperature controllers are developed for effusion
sources that are part of a continuous process for production of thin-film pho-
tovoltaic modules. Operation of this system in a research framework necessitates
the ability to perform fast, overshoot-free reference changes. To address input con-
straints, controllers are implemented using an anti-windup scheme. Both empirical
ARMAX models and a simplified fundamental model are utilized. Controllers were
designed in simulation studies and tested in experiments and a very good match
between simulation and experiment was obtained.
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1. INTRODUCTION

The effusion sources are part of a continuous pro-
cess for production of thin-film photovoltaic mod-
ules. The approach considered in the present work
is the manufacture of Copper-Indium-Gallium-
Diselenide (CIGS) films by deposition onto a flexi-
ble substrate using a roll-to-roll processing scheme
(Birkmire and Eser, 1997). The film is deposited
by thermal evaporation from a series of elemental
sources located sequentially through the deposi-
tion zone.

A critical issue in commercializing this approach
is to keep composition and thickness of the CIGS
film at their setpoint over long deposition times.
Due to long start-up and shutdown times, it is
equally important to efficiently perform setpoint
changes such that multiple recipes can be tested
in a single experiment.

1.1 Process Model and Control Structure

The process can be divided into two subsystems:
(1) the effusion subsystem, and (2) the deposition
subsystem.

The effusion subsystem consists of the elemental
sources where electric energy to resistive heaters is
supplied as the input and the outputs are temper-
ature and absorbance measured by thermocouples
and atomic absorption spectroscopy sensors for
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Fig. 1. Schematic cross section of effusion cell.



each source. Each effusion cell (see schematic in
Figure 1) is resistively heated in order to first
melt and then evaporate the metal. The crucible
is covered by a lid with two nozzles. Junker et al.
(2003) developed a fundamental mass- and heat
transfer model of the effusion sources.

The deposition subsystem consists of the moving
substrate to which the elemental vapor fluxes are
delivered as the input and the outputs are the
final film thickness and composition measured by
X-ray fluorescence (Junker et al., 2004).

A characteristic difference between these subsys-
tems is their dynamic behavior. The effusion sub-
system has a time delay on the order of seconds
and thus reacts quickly to input changes. The
deposition subsystem, on the other hand, has a
long time delay on the order of several minutes.

Since the effusion subsystem’s output is the de-
position subsystem’s input, disturbances of the
former affect the latter. Based on this distur-
bance structure, the process should be controlled
by a cascade structure where the outer control
loop regulates the deposition process by provid-
ing flowrate/temperature setpoints to the inner
control loop that regulates the effusion process.

For the outer loop, Junker et al. (2004) discuss the
application of internal model control and model
predictive control. For the inner loop, the present
work discusses efficient internal model control for
reference tracking of the copper source’s tempera-
ture. The developed controllers are based on (1) a
simplified form of the fundamental model, and (2)
empirical models identified based on input/output
data. Empirical models are developed to provide
a basis of comparison for the fundamental model
based controller.

1.2 Overview

The paper is organized in four main sections: de-
velopment of (1) empirical ARMAX and (2) sim-
plified fundamental models that are suitable for
controller design, (3) introduction to the internal
model control framework including the utilized
anti-windup scheme, and (4) discussion of the ob-
tained reference tracking results and comparison
to the corresponding simulations.

2. EMPIRICAL ARMAX MODEL

A standard model structure for system description
and control is the ARMAX model (Ljung, 1999, p.
83). It is a time-invariant parametric input-output
model that describes the current output y(k) as
a function of past outputs, past inputs u(k), and
an estimate of the disturbance via modeling of the
error e(k).

2.1 Model Structure

The general model structure is given by the dif-
ference equation (Ljung, 1999, p. 83)

A(q)y(k) = B(q)u(k − nk) + C(q)e(k) (1)

where e(k) is assumed to be white noise and the
transfer operators A, B, and C are defined as

A(q) = 1 + a1q
−1 + . . . + ana

q−na (2)

B(q) = b1 + . . . + bnb
q−(nb−1) (3)

C(q) = 1 + c1q
−1 + . . . + cnc

q−nc (4)

where q−1 is a backward shift operator, i.e.,

u(k − 1) = u(k) · q−1 (5)

and the model order is defined by the integers
(na, nb, nc, nk). Here, na is the number of poles,
(nb − 1) the number of zeros, and nk the time
delay. Different model structures are identified by
the notation ARMAXna, nb, nc, nk

.

2.2 Experiment Design

Empirical system identification (ID) of ARMAX
models is based on I/O data collected from the
process to be modeled. Since the true system is
nonlinear the experiment should be carried out at
the nominal operating point and the input data
should be “rich”, i.e., excite the system and force
it to show its properties (Ljung, 1999, p. 411).

A common input sequence is a random binary se-
quence that randomly switches the input between
two values u1 and u2. The minimum switching
frequency must neither be too fast to allow the
process to react nor too slow to prevent getting a
series of step responses. For the effusion source, a
value of nmin = 4 samples at a sampling time of
Ts = 2 seconds gives good results.

A random binary sequence at the operating point
is implemented in two stages: (1) the process is
driven to the setpoint via PID control and the
control move u� required to sustain this setpoint
is noted, (2) the upper and lower limits are chosen
as a 10% variation of u�, i.e., u1,2 = (1 ± 0.1)u�.

2.3 Model Estimation

Model estimation and analysis is carried via rou-
tines from MATLAB’s system identification tool-
box (Ljung, 2002). Since the models are used
for controller design, proper prediction of the dy-
namic (high frequency) behavior is crucial. This is
more important than the absolute values (low fre-
quency) since incorrect absolute values are more
easily compensated for by the controller.



In addition, the residuals should be independent
of the input and of each other (Ljung, 2002,
p. 2-32). This is tested via the cross-correlation
and auto-correlation functions, respectively, that
should lie entirely within their 99% confidence
intervals for the validation data set.

2.4 Results

Based on an old data set, an ARMAX2,1,6,2 model
was identified (see Table 1, left); a comparison
of experimental and predicted data is shown in
Figure 2. The residuals (not shown) lie almost
entirely within their 99% confidence intervals,
however, the dynamic behavior is not very well
predicted.

Table 1. ARMAX model parameters.

ARMAX2,1,6,2 ARMAX4,1,1,10

Coefficient Value Coefficient Value

a1 −1.9705 a1 −1.9482
a2 9.7059·10−1 a2 7.9386·10−1

b1 1.3123·10−3 a3 2.8465·10−1

c1 −3.4350·10−1 a4 −1.3019·10−1

c2 −1.9255·10−1 b1 9.3174·10−4

c3 −3.7459·10−1 c1 −9.6967·10−1

c4 −1.3116·10−1

c5 7.9861·10−2

c6 4.0042·10−2

For comparison, an ARMAX4,1,1,10 model was
identified based on a more recent data set (see
Table 1, right); experimental and predicted data
are shown in Figure 3. Unlike the previous model,
a separate validation data set was available and
the shown results use this data set. Clearly, the
results are very good since the dynamic behavior
is very well captured and since the residuals (not
shown) lie entirely within their 99% confidence
interval.
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Fig. 2. Simulation of ARMAX2,1,6,2 model.
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Fig. 3. Simulation of ARMAX4,1,1,10 model.

3. SIMPLIFIED FUNDAMENTAL MODEL

The fundamental model developed by Junker et
al. (2003) is a set of nine coupled nonlinear ordi-
nary differential equations. Since this form is not
suitable for internal model control design, simple
first and second order plus time delay models are
determined based on a simulated process reaction
curve. This is preferred to a Taylor linearization
since the low model orders simplify controller de-
sign. It is justified a posteriori since the controllers
perform equally well as those based on the more
detailed ARMAX models developed in the previ-
ous section.

The models’ transfer functions are given by

M1 =
K1e

−α1s

τ1,1s + 1
(6)

M2 =
K2e

−α2s

(τ2,1s + 1)(τ2,2s + 1)
(7)

where the first index refers to the model order.
The gain K is computed directly as the quotient
of final process output and input step size while
time constants τ and time delay α are computed
via a least-squares optimization that minimizes
the sum-squared error between step response and
prediction (see Table 2).

Table 2. Parameters of first and second
order plus time delay models.

K1 α1 τ1,1 K2 α2 τ2,1 τ2,2[ ◦C
%power

]
[s] [s]

[ ◦C
%power

]
[s] [s] [s]

8.19 78.16 539.96 8.19 17.64 527.23 69.88

The normalized residuals are shown in Figure 4.
Consistent with intuition, the second order plus
time delay (SOPTD) model is a better repre-
sentation the process’s high frequency character.
Therefore, controllers are designed based on this
model only.

4. INTERNAL MODEL CONTROL

4.1 Basic Structure

Internal model control (IMC) is characterized by
two main features (see Figure 5): (1) the output
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Fig. 4. Residuals of first and second order plus
time delay models.



y of process P is compared to the output ŷ of
model M in order to obtain an estimate of the
unmeasured disturbance d, and (2) the controller
C is designed from an inverse of the process model
(Garcia and Morari, 1982).

Model invertibility is limited by time delays and
right half plane zeros. If contained in the model,
it has to be factorized into an invertible part
M− and a noninvertible part M+ (Garcia and
Morari, 1982). The controller is then given by

C =
F

M−
(8)

where F is an appropriately chosen filter (Morari
and Zafiriou, 1989; Ogunnaike and Ray, 1994). A
typical nth order filter is

F =
1

(λs + 1)n
(9)

where λ is the tuning parameter — a larger λ leads
to more sluggish control action.

4.2 Anti-windup Design

Control of the effusion source is limited by ac-
tuator constraints since the electric heater has a
maximum power output of 2kW. Without proper
compensation, this results in very sluggish con-
trol since the controller is unaware of the input
saturation.

The situation can be remedied by using the anti-
windup framework of Zheng et al. (1994). The ba-
sic idea is to minimize the difference between the
unconstrained and constrained process outputs by
introducing an additional feedback loop around
the nonlinear saturation block (see Figure 6).

5. CONTROL RESULTS

Anti-windup IMC results are presented for empiri-
cal models based on two ID experiments and three
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Fig. 6. Anti-windup IMC structure.

ARMAX models and for the simplified SOPTD
model. For each model, a sluggish and an aggres-
sive tuning are tested, in order to demonstrate the
dependence of controller performance and noise
sensitivity on the tuning. Proper controller tuning
is tested in simulation studies before performing
any experiments.

5.1 Empirical Model

ARMAX2,1,6,2 Model The results for a sluggish
(λ = 50s) and an aggressive (λ = 10s) tun-
ing are shown in Figures 7 and 8, respectively.
Clearly, the simulated results are not in very good
agreement with the experimental data. For the
sluggish tuning, the controller is more sluggish
than predicted in the tuning experiment, for the
aggressive tuning, it is more aggressive and very
oscillatory. These results are contradicting each
other. The controller should either be always too
aggressive or always too sluggish.

Since the used model is based on old data, the
observed behavior is most likely caused by changes
made to the experimental system between the
ID and control experiments. The achieved control
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Fig. 7. ARMAX2,1,6,2 model with λ = 50s.
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Fig. 8. ARMAX2,1,6,2 model with λ = 10s.



action is unacceptable such that the model in
its current form is of limited value for controller
design.

ARMAX4,1,1,10 Model Being based on a more
recent ID experiment, the model’s main difference
besides higher na and nc is a five fold increase of
nk from 1 to 5. At Ts = 2s, this closely matches
the α = 25s delay of the fundamental model
(Junker et al., 2003).

The results for a sluggish (λ = 100s) and an
aggressive (λ = 22s) tuning are shown in Figures
9 and 10, respectively. In the simulations, the
experimentally observed noise was approximated
by bandlimited white noise with a power of 5·10−6

and a frequency of 50 Hz.

Unlike the ARMAX2,1,6,2 model, the new model
is very sensitive to measurement noise. This sen-
sitivity increases as λ decreases. For λ = 22s this
clearly has a negative effect on the output which
overshoots resulting in unacceptable performance.
For λ = 100s the noise amplification is acceptable
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Fig. 9. ARMAX4,1,1,10 model with λ = 100s. Sim-
ulation with bandlimited white noise (power
= 5·10−6 @ 50 Hz).
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Fig. 10. ARMAX4,1,1,10 model with λ = 22s. Sim-
ulation with bandlimited white noise (power
= 5·10−6 @ 50 Hz).

and the simulation is in good agreement with the
experiment.

Analysis The results obtained this far indicate
that reference changes in less than three minutes
are possible. Since neither of the two models suf-
fices, a new model is devised by compounding
the noise insensitive dynamic part (na, nb, nc)
of ARMAX2,1,6,2 and the time delay nk of
ARMAX4,1,1,10 to a new ARMAX2,1,6,2+8 model.
Applicability of this new model was verified by
reproducing the ARMAX2,1,6,2 results in a simu-
lation study.

5.1.1. ARMAX2,1,6,2+8 Model Using the same
tuning constants as for ARMAX2,1,6,2 the results
are shown in Figures 11 and 12. Both experiments
show an improved performance and are closer to
the simulation results.
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Fig. 11. ARMAX2,1,6,2+8 model with λ = 50s.
Simulation with bandlimited white noise
(power = 5·10−6 @ 50 Hz).
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Fig. 12. ARMAX2,1,6,2+8 model with λ = 10s.
Simulation with bandlimited white noise
(power = 5·10−6 @ 50 Hz).



5.2 SOPTD Model

For the simplified fundamental model, the tuning
constant λ is defined with respect to the model
time constants via the dimensionless tuning con-
stant L, i.e.,

λ = L · τ2,1 + τ2,2

2
(10)

The results for a sluggish (L = 0.25) and an
aggressive (L = 0.1) tuning are shown in Figures
13 and 14, respectively. The experimental studies
were performed in a single run, first for the slug-
gish, then for the aggressive tuning.

During the first reference change (Figure 13, left),
the agreement between model and simulation is
excellent. For following reference changes, there is
a slight offset in the control move, however, the
dynamic behavior of the control moves matches
very closely.

The experimental reference changes exhibit a
slight overshoot which the controller is not able
to compensate for in a timely fashion. A similar
overshoot can be reproduced when introducing
plant model mismatch in the simulation studies,
such that this is the most likely cause for the
observed behavior.
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Fig. 13. SOPTD model with λ = 74.64s.
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Fig. 14. SOPTD model with λ = 29.86s.

Overall, the experimental validation shows an
excellent agreement with the simulation which
proves the usefulness of the developed models for
a priori controller tuning. Results obtained with
the simple SOPTD model compare very favorably
with the more complicated ARMAX models.

6. SUMMARY

In this paper, anti-windup internal model con-
trollers for temperature control of a physical vapor
deposition effusion source were presented. The
controllers are based on both empirical ARMAX
models and a simplified fundamental model. Con-
trollers were designed in simulation studies and
tested in experiments. A very good match between
simulation and experiment was obtained which
proves the usefulness of the developed models for
a priori controller tuning. Controllers based on
both models achieved good performance for fast,
overshoot-free reference tracking.
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