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Abstract: Performance assessment of multivariate feedback control with minimum
variance control as the benchmark requires an interactor matrix to filter the closed-
loop output. This is to transfer the coordinate of the original variables into a new
one in order to separate the control invariant disturbance dynamics from the first
few terms of the closed-loop output Markov parameters. There has been a great
deal of interest to simplify this approach, in particular, to find methods that do
not need the general interactor matrix. With this motivation, this paper discusses
practical solutions to multivariate control performance assessment without relying
on the general interactor matrices. In particular, we will consider two practical
scenarios, 1) no a priori knowledge about the process model at all and 2) known
time delays between each pairs of inputs and outputs. Solutions to these two
scenarios are proposed. Several examples illustrate the feasibility of the proposed
approaches.
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1. INTRODUCTION

In recent years, there are growing research in-
terests in reducing the complexity of the a pri-
ori knowledge requirement for multivariate con-
trol performance assessment, such as (Ko and
Edgar, 2001; Kadali and Huang, 2004; McNabb
and Qin, 2001). Although these attempts have
reduced the complexity of the a priori knowl-
edge requirement to some extent, they all require
certain information that is computationally sim-
pler but fundamentally equivalent to the interac-
tor matrices, for example, the open-loop process
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Markov parameter matrices, the lower triangular
Toeplitz matrix, or the multivariate time delay
(MTD) matrix. That is, they all require a priori
knowledge that is beyond the pure time delays
between each pairs of the inputs and outputs.

In the univariate case, one interprets output vari-
ance under minimum variance control as the vari-
ance of the optimal prediction error for the given
time delay of a process. One can imagine that if a
closed-loop output is highly predictable, then one
should be able to do better, i.e. to compensate
the predictable content by a well designed con-
troller. Should a better controller be implemented,
then the closed-loop output would have been less
predictable. Therefore, the high predictability of



a closed-loop output implies the potential to im-
prove its performance by control re-tuning and/or
re-design, or in other word, the existing controller
may not have been satisfactory.

The actual process often has time delays, which
prevent the complete compensation of the pre-
dictable content of the output. For example, if
a univariate process has two sample time delays,
then the compensation control action will not take
effect on the output until two steps later and the
one step ahead prediction will not be useful for its
compensation. In this case, the best a controller
can do is to compensate the predicted content ac-
cording to the two step optimal prediction (multi-
step optimal prediction) and the minimum control
error will coincide with the two-step prediction er-
ror. Therefore, the two-step optimal prediction er-
ror is the lower bound of the output error that can
be achieved by a feedback controller. This lower
bound is also known as the minimum variance
that is often used for control loop performance
assessment (Harris, 1989).

Although the same rationale can not be exactly
carried over to multivariate processes due to the
relatively complex delay structure for multivariate
processes, multi step optimal predictions provide
useful information about the control performance.
We will show that the multi-step optimal pre-
diction error is analogous to closed-loop step re-
sponse of the univariate process from the white
noise to the output. The analogy provides an in-
teresting interpretation of the multi-step optimal
prediction error for multivariate processes and re-
sults in a new method for performance assessment.

While the prediction error based approach is gen-
eral, if certain process model knowledge such as
time delays between each pairs of inputs and out-
puts are available, one may be able to do more
about control performance assessment than the
prediction error based approach. It is known that
the diagonal form of the interactor matrix only
depends on the pair-wise time delays (delays be-
tween each pairs of the inputs and outputs). If one
can determine that the process has the diagonal
form of the interactor, the computation for the
performance assessment can be greatly simplified
(Huang and Shah, 1999). Thus there is a need
to determine whether a process has a diagonal
interactor matrix from the given pair-wise time
delays.

Motivated by the above discussions, this paper
dedicates to (1) development and analysis of the
practical performance assessment approach based
on optimal predictions, (2) development of meth-
ods to determine whether the process has a sim-
ple or diagonal form of interactor matrices. The
remainder of this paper is organized as follows. In
section 2, results on multivariate feedback control

performance assessment without relying on any
a priori process model knowledge are presented.
The performance assessment problem, when the
time delays between each pairs of inputs and out-
puts are known, is discussed in Section 3, followed
by concluding remarks in section 4.

2. ASSESSMENT OF MULTIVARIATE
CONTROL PERFORMANCE WITHOUT ANY

A PRIORI KNOWLEDGE OF PROCESS
MODEL

2.1 Performance assessment using optimal multi
step prediction errors

The following multivariate process will be consid-
ered in this paper:

Yt = TUt + Nat (1)

where Tand N are proper (causal), rational trans-
fer function matrices in the backshift operator
q−1; Yt, Ut and at are output, input and noise
vectors of appropriate dimensions. at is further
assumed to be white noise with zero mean and
V ar(at) = Σa = I. However, if Σa 6= I, one can
always normalize N such that N ← NΣ1/2

a and
at ← Σ−1/2

a at, and then the new at will satisfy
Σa = I. Furthermore, we assume that T does not
have nonmimimum phase zeros in multivariable
sense (Huang and Shah, 1999). The interactor
matrix of T is denoted as D with order d and
the interactor matrix has three possible forms:
simple, diagonal and general. For details on the
three forms of the interactor matrix, readers are
referred to (Huang and Shah, 1999).

If the process (1) is controlled by a linear feedback
controller, the closed-loop model from at to Yt can
be represented by a moving average or a Markov
parameter form:

Yt = F0at + · · ·+ Fi−1at−(i−1) + Fiat−i + · · · (2)

This moving average model can be estimated
from routine operating data without any a priori
knowledge about the process.

Since at is white noise, the optimal ith step
prediction is given by

Yt|t−i = Fiat−i + Fi+1at−i−1 + · · · (3)

and the prediction error et|t−i = Yt−Yt|t−i is given
by

et|t−i = F0at + F1at−1 + · · ·+ Fi−1at−(i−1) (4)

The covariance of the prediction error can be
calculated as

Cov(et|t−i) = F0F
T
0 + F1F

T
1 + · · ·+ Fi−1F

T
i−1



and its scalar measure

si
4
= tr[Cov(et|t−i)] = tr(F0F

T
0 + · · ·+ Fi−1F

T
i−1)

The incremental of the prediction error can be
calculated as

ri
4
= tr[Cov(et|t−i)− Cov(et|t−(i−1))] = tr(Fi−1F

T
i−1)

If we plot si versus i, then the plot reflects how
the prediction error increases with the prediction
horizon. Note that as i → ∞, Cov(et|t−i) →
Cov(Yt). This fact can be seen by comparing
eqn(2) and (4).

A plot of ri versus i indicates how the incremental
of the prediction error changes with the prediction
horizon i. These two plots (ri and si) will be
shown to be useful for the interpretation of the
control performance.

To understand si and ri, a deterministic interpre-
tation of eqn(2) is helpful. The moving average
model of eqn(2) is applicable to both stochas-
tic and deterministic input. Considering that at

is a unit impulse, then the coefficient matrices
F0, F1, · · · , Fi, · · · are the impulse response coef-
ficients of the closed-loop system to the impulse
disturbance. Since ri = tr(FiF

T
i ), ri is a 2-norm

measure of the impulse response coefficients and
is analogous to the squared impulse response co-
efficients of a univariate process. Therefore a plot
of ri versus i reflects how the disturbance is regu-
lated by the controller, i.e. how the control error
is reduced versus time. Each point of the plot, for
example ri, represents the squared error of the
closed-loop response at time i due to an impulse
disturbance. Therefore, this plot of ri versus i, is
a good indication of closed-loop performance of a
multivariate controller, which has been suggested
in the literature for multivariate control perfor-
mance monitoring (Shah et al., 2002). However,
we will show that a si plot is more useful.

Since si = tr(F0F
T
0 + F1F

T
1 + · · · + FiF

T
i ), si

is nothing but the sum of squared error of the
closed-loop response to an impulse disturbance
up to time i. If we plot si versus i, each point
of the plot, for example si, represents the sum of
squared error (SSE) of the closed-loop response
up to time i. If, after time i, the disturbance can
be completely controlled (by a deadbeat control
for example), then the total error of the response
will remain to be si, which is the i step optimal
prediction error from stochastic view point. There
are two characters in a si plot worth noting. 1)
It is monotonically increasing or non-decreasing
curve. 2) Its steady state is tr[Cov(Yt)], the actual
variance of the output. Since si is the integration
of the squared closed-loop impulse response, it is
analogous to the step response and can be used
to determine dynamic information such as the

settling time of the closed-loop response to the
disturbance.

Motivated by the interpretation of si, we define
the closed-loop potential pi as

pi
4
=

s∞ − si

s∞
(5)

Since si is monotonically increasing with i, pi is
monotonically decreasing. Since s0 = tr[Cov(Yt−
Yt|t)] = 0, p0 = 1. Therefore, pi starts from 1
at i = 0 and monotonically decreases to 0 and
0 ≤ pi ≤ 1. pi can be interpreted as follows: If a
deadbeat control action can be applied from time
i, then the process output SSE can be reduced
by 100 × pi percent. From stochastic view point,
if i is greater than the interactor order d (Huang
and Shah, 1999), there exists a control such that
the variance of the multivariate output can be
reduced by 100×pi percent of the current variance
(see Lemma 1 next for this control law). Since the
order of the actual interactor matrix is usually
unknown, one would look for the trajectory of the
closed-loop potential versus a range of possible
d. Potential plots such as those illustrated in
Fig. 2 are useful. Faster the potential decays
to zero, less the possibility to improve control
performance. Due to the monotonically decreasing
nature of the potentials and fixed starting and
ending values of the potentials, the area below the
potential plot well reflects the rate of its decaying.
Therefore, it is possible to define a scalar index to
monitor the change of the closed-loop potential.
This index is called relative potential index and
can be calculated as

ηp =
∫

p
(2)
i∫

p
(1)
i

− 1 (6)

where p
(1)
i is a reference potential calculated, for

example, from the data sampled before control
tuning, and p

(2)
i is calculated from data sampled

after the tuning. The value of ηp gives the per-
cent change of the closed-loop potential with the
positive sign indicating an increased potential and
the negative sign indicating a decreased potential.
Note that an increase of the potential implies a de-
teriorated tuning while a decrease of the potential
implies an improved tuning.

Lemma 1. If there is a controller with Q∗ = Q∗
0

expressed in the IMC framework such that its
closed-loop output can be written as

Yt = F0 + · · ·+ Fi−1q
−(i−1)

︸ ︷︷ ︸
F

+q−iR (7)

where i ≥ d and R is a proper rational transfer
function matrix, then there exists another physi-



cally realizable controller with Q∗ = Q∗i such that
its closed-loop output can be written as

Yt = F0 + · · ·+ Fi−1q
−(i−1)

︸ ︷︷ ︸
F

(8)

and the controller can be written as

Q∗i = Q∗
0 + T̃−1(q−iD)RN−1 (9)

where, the relation between the IMC control, Q∗,
and the actual feedback control, Q, is given by

Q = Q∗(I − TQ∗)−1 (10)

PROOF. Omitted due to space limit.

This lemma tells us that si, the i-step prediction
error or the sum squared error, is achievable by a
physically implementable controller if i ≥ d.

2.2 Example

Example 2. Consider a 2×2 multivariable process
with the open-loop transfer function matrix T and
disturbance transfer function matrix N given by

T =




q−1

1− 0.4q−1

0.5q−2

1− 0.1q−1

0.3q−1

1− 0.4q−1

q−2

1− 0.8q−1




N =




1
1− 0.5q−1

−q−1

1− 0.6q−1

q−1

1− 0.7q−1

1.0
1− 0.8q−1




The white noise excitation, at, is a two-dimensional
normally-distributed white noise sequence with
Σa = I.

Consider that the following multiloop controller is
implemented in the process:

Q = k




0.5− 0.20q−1

1− 0.5q−1
0

0
0.25− 0.200q−1

(1− 0.5q−1) (1 + 0.5q−1)




In this example, three control gains, k = 2.8, 3, 3.2
respectively, are considered. si and ri for i =
1, 2, · · · , 10 are calculated and plotted in Fig.1.
The si plot (top sub-figure) indicates that the
closed-loop settling time increases with the in-
creasing of the control gain, so does the SSE. For
example, the settling time for k = 2.8 is about
5 samples while the settling time for k = 3.2 is
more than 10 samples. The ri plot shown in the
bottom sub-figure of Fig.1 presents the similar in-
formation as si such as the information about the
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Fig. 1. si and ri plots.

settling time. However, unlike the si plot which is
monotonically increasing, the ri plot has a more
complicated and hard-to-interpret shape. We will
therefore recommend to use the si plot and the pi

plot(to be discussed next).

The potential plot of pi shown in Fig.2 is possi-
bly more useful in the interpretation of control
performance. For example, si for k = 3.2 has
a slowest rate to approach its steady state and
thus its potential decreases to zero at the slowest
rate. For a considerable range of the process delays
(expressed by interactor order d for example), its
potential is significantly different from zero. For
example, for an interactor order up to 5 samples,
the potential is larger than 0.3, i.e. 30% reduction
of variance is possible for the interactor order up
to 5. On the other hand, for the tuning of k = 2.8,
the potential dies to zero quickly. In this case,
there is not much potential left after the interactor
order is greater than 3.

For control tuning of multivariate systems or con-
trol upgrading from multiloop control to multi-
variable control such as MPC, one is interested in
whether control performance is indeed improved.
If an existing control gain is k = 3, assume that
the gain is tuned to 2.8 or 3.2 and representative
closed-loop data are sampled before and after the
tuning. Then the scalar measures of the relative
closed-loop potentials calculated from the data are
−0.21 or 0.39 for tunings k = 2.8 or 3.2 with
k = 3.0 as the reference. These results indicate
that 1) if the controller gain increases to 3.2,
then the resulting system has increased closed-
loop potential by 39%, indicating a deteriorated
performance; 2) if the controller gain decreases to
2.8, then the resulting system has reduced closed-
loop potential by 21%, indicating an improved
performance.
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3. ASSESSMENT OF MULTIVARIATE
CONTROL PERFORMANCE WITH KNOWN

PAIR-WISE TIME DELAYS

If the time delays between each pair of inputs
and outputs are known a priori, we should search
for a possible simple or diagonal structure of the
interactor matrix, which can greatly simplify the
computation of the multivariate minimum vari-
ance. Both the simple and the diagonal interactor
matrices can be calculated from the time delays
between each pairs of inputs and outputs of the
process. Once the interactor matrix is known, mul-
tivariate control performance assessment problem
is readily solved following the procedure of (Harris
et al., 1996; Huang and Shah, 1999). One may
surprisingly find that the simple and diagonal in-
teractor matrices are not uncommon, particularly
in industrial process, where the sparse structure of
the transfer function matrix is often observed. The
sparse structure also facilitates the determination
of the interactor structure.

Consider a multivariable transfer function matrix
of dimension n×m given by

T =




T11q
−d11 T12q

−d12 · · · T1mq−d1m

T21q
−d21 T22q

−d22 · · · T2mq−d2m

· · · · · · · · · · · ·
Tn1q

−dn1 Tn2q
−dn2 · · · Tnmq−dnm


 (11)

where Tij is a scalar transfer function from the
jth input to the ith output. Define a delay matrix

Ψ =




t11q
−d11 t12q

−d12 · · · t1mq−d1m

t21q
−d21 t22q

−d22 · · · t2mq−d2m

· · · · · · · · · · · ·
tn1q

−dn1 tn2q
−dn2 · · · tnmq−dnm


 (12)

where dij ’s are time delays that are assumed
known; tij is the first non-zero impulse response
coefficient from the jth input to the ith output,
which is typically unknown. From Ψ, we can arrive
a diagonal matrix

Θ =




qd1

qd2

. . .
qdn


 (13)

where di = min{dij : j = 1, · · · ,m}. Then the
following lemma is true:

Lemma 3. If T has a diagonal interactor matrix D
then D = Θ, where T and Θ are given by eqn(11),
and (13), respectively.

PROOF. Omitted due to space limit.

The following lemma provides a useful criterion
to determine whether a process T has a diagonal
interactor matrix:

Lemma 4. If K = limq−1→0 ΘΨ is of full rank
for all tij 6= 0, then 1) the interactor matrix is
diagonal and 2) D = Θ.

PROOF. The first part can be proved by notic-
ing the fact that limq−1→0 ΘT = limq−1→0 ΘΨ =
K. By the definition of the interactor matrix, if K
is of full rank, Θ must be an interactor matrix of
T . Based on the result of the first part, the second
part of the proof directly follows from Lemma 3.

Lemma 4 provides a sufficient condition for the
determination of the interactor structure. In prac-
tice, one can relax this condition by checking the
determinant of K (if K is not a square matrix,
one has to use the singular values instead), to de-
termine conditions for the singularity. MATLAB
symbolic toolbox is useful for such an application.
The procedure is as follows: 1) calculate the de-
terminant or singular values, 2) find condition for
the determinant to be zero or the singular values
to be zero, and 3) check whether these conditions
hold. Next, we will demonstrate the method of
determining the structure of the interactor matrix
using an industrial example.

Example 5. Consider an industrial 6 × 6 process
presented in (Gao et al., 2003), which has the
following pair-wise delay matrix:

Ψ =




q−1 0 0 0 0 0
q−1 q−1 q−1 0 q−1 0
q−1 q−1 q−1 0 q−1 0
0 0 0 0 q−1 0

q−2 q−2 0 q−2 q−2 q−2

0 0 0 q−1 q−1 0




(14)

An unitary interactor matrix was calculated in
(Gao et al., 2003) using complete knowledge of the
process transfer function matrix. The result was

D =




0.059q 0.72q 0.4q −0.56 0 0
0.006q 0.42q −0.90q −0.09q 0 0
−0.023q −0.31q −0.098q −0.47q 0 0.82q
−0.033q −0.44q −0.14q −0.67q 0 −0.57q
−0.997q 0.068q 0.025q 0 0 0

0 0 0 0 q2 0




(15)

Using the method discussed in this section, we
would get



Θ =




q
q

q
q

q2

q




(16)

and K matrix

K =




t11 0 0 0 0 0
t21 t22 t23 0 t25 0
t31 t32 t33 0 t35 0
0 0 0 0 t45 0

t51 t52 0 t54 t55 t56
0 0 0 t64 t65 0




(17)

The determinant of K can be calculated as
det(K) = t25t64t56(t22t33 − t32t23). Due to the
sparse structure of industrial processes, the de-
terminants often have such a simple structure.
Since tij 6= 0 by the definition, the condition for
the determinant to be zero is t22

t32
= t23

t33
. Whether

this condition holds can be easily determined by
checking the variables of the process. As discussed
in (Gao et al., 2003), CV2 is temperature, CV3

internal reflux ratio, MV2 reboiler stem flow, and
MV3 internal reflux flow. The chance for the con-
dition to be true has the probability → 0. There-
fore, the interactor matrix should have a diagonal
structure and the complete knowledge of the mul-
tivariate process, which was assumed in (Gao et
al., 2003), is not necessary. In the worst case, if
one is not able to determine whether the condition
is true, one would at most need to find out the
first non-zero impulse response coefficients of four
sub-transfer functions, a significant reduction of
the a priori knowledge than the complete transfer
function matrices.

Is this result in a contradiction to that of (Gao
et al., 2003) shown in eqn(15)? It has been shown
in (Huang and Shah, 1999) that the two unitary
interactor matrices are equivalent if

D̄ = ΓD (18)

where Γ is a unitary constant matrix. It can be
shown by using QR decomposition that if

Γ =




−0.0592 −0.0065 0.0236 0.0330 0.9974 0
−0.7234 −0.4251 0.3103 0.4417 −0.0679 0
0.4000 −0.9003 −0.0976 −0.1389 0.0249 0
−0.5596 −0.0934 −0.4734 −0.6738 0 0

0 0 0 0 0 1
0 0 0.8183 −0.5748 0 0




(19)

pre-multiplying eqn(15) by Γ results in eqn(16), a
diagonal interactor matrix! Therefore, difficult to
see or not, eqn(15) is in fact a diagonal interactor
matrix. The thumb of rule is that higher the
dimension, higher the chance to have a diagonal
interactor structure.

Once the diagonal structure of the ineractor ma-
trix is determined, the multivariate minimum
variance can be determined by following the ap-
proaches discussed in (Harris et al., 1996; Huang
and Shah, 1999) in addition to the multi-step op-
timal prediction based approach for performance
assessment.

4. CONCLUSION

In this paper, we have discussed two practical
approaches for multivariate feedback control per-
formance assessment. The first approach assumes
that there is no any a priori knowledge about the
process model. The solution is based on the multi-
step optimal prediction error. This approach is
general and applicable to processes with or with-
out a priori model information. The second ap-
proach assumes that time delays between each
pair of inputs and outputs are available. Then
the structure of the interactor matrices may be
determined from the given time delays. The sim-
ulation examples have shown the feasibility of the
proposed algorithms.
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