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1 INTRODUCTION
In almost all identification procedure, the
optimization problem is formulated as the
minimization of a square error criterion, such as:
J = min � [e(t)]2, where the error, e, is the difference
between the measured (y) and predicted (yP) output,
i.e., e(t) = y(t)-yP(t).  But, this kind of criterion does
not give good results, if it is used directly without a
filter to identify dynamic models from the plant data
corrupted by unmeasured external disturbances.
Since unmeasured external disturbances are always
present in the industrial scenarios, it would be of the
great practical impact if a simple solution for this
kind of problem could be found. To go one step
ahead in this direction, in this paper, it is analyzed
how a criterion based on the square error of
derivative signal (i.e., min � [de(t)/dt]2 ) can improve
the quality of dynamic model.

The paper is structured as follows. In section 2, a
motivation example to compare both criteria is
presented. In section 3, it is shown how to calculate
the derivatives from plant data. In section 4, both

criteria are applied to the motivation example.
Finally, section 5 compares the quality of the
dynamic models identified using the novel
optimization criterion.

2 MOTIVATION EXAMPLE

2.1 Experimental Plant
To compare and analyze both criteria for
identification, it is used plant data from a heating
experimental unit consisting of two tanks with
constant volumes in series. Figure 1 shows the
system schematically. The first tank is fed with a
cold water stream (F) at temperature T0 and has an
adjustable electrical heating power, which is used as
manipulated variable. The controlled variable is the
outlet temperature of second tank, T2. In this work,
the inlet temperature T0 is considered as unmeasured
external disturbance and the inlet flowrate is kept
constant during the experiments. The real plant data
used in this work are from a unit available at Process
Control Group of Dortmund University (Saecker,
1995).



Figure 1. Schematic representation of the heating
plant of two tanks.

2.2 Experimental data
An experimental data set with decreasing inlet
temperature T0 was selected and is shown in Figure 2.
Although the temperature T0 is measured, we will
assume that this disturbance is not measured. To
design a controller for this unit, it is necessary to
have a good dynamic model between the manipulated
variable (heating power, Q) and the controlled
variable T2. But the measured output temperature is
influenced by both Q and T0. Therefore, the output
temperature T2 is corrupted by the inlet temperature.
It is possible to isolate the real effect of the heating
duty into the outlet temperature making the
temperature difference between inlet and outlet
temperatures (i.e., ∆T=T2-T0), since the velocity as T0
varies it is much slower than the dominant system's
dynamic. Figure 3 compares the two cases: with and
without inlet temperature compensation.
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Figure 2. Experimental data set with decreasing inlet
temperature T0 (disturbance), heating duty Q
(manipulated variable), and outlet temperature T2.

Next section shows the model identification for these
two data sets, applying Box-Jenkins and Output Error
structures.

2.3 Black-box Identification
Now the two data sets shown in Figure 3 are
identified using the Box-Jenkins and Output Error
model structures available in the MATLAB System
Identification Toolbox (Ljung, 1997).

Box-Jenkins models (BJ) give good results when
unmeasured disturbance like T0 are present, while the
Output Error (OE) models can only succeed when the
discrepancy between the model and experimental
data is produced by normal distributed measurement
noise.

Figure 4 shows the comparison between BJ, OE, and
plant data using identified models from the data set
∆∆T (cf. Figure 3). Since this data set the inlet
temperature effect T0 is compensate, both model
structures produce very good results.
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Figure 3. Data sets that are used in the identification
procedure: (1) ∆T2=T2(t)-T2(0) (solid line) data
without compensation of the inlet temperature
effect and (2) ∆∆T = ∆T(t)-∆T(0) = [T2(t)-T0(t)]-
[T2(0)-T0(0)] (dashed line) data with
compensation of the inlet temperature effect.
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Figure 4. Comparison between plant data without
effect of the variations in T0 (i.e., ∆∆T of
Figure 3) and the identified models OE and BJ.

The situation is completely different when the data
set ∆T2 is used. Figure 5 clearly shows that the model
BJ has captured the tendency of the model, although
has the larger square error if compared to the OE
model. On the other hand, the OE model cannot
capture the tendency as well as the BJ model. At this
point an important question arises: “which is the best
model?” If we compare with the results shown in



Figure 4, we can conclude that the BJ model is the
correct one. Therefore, it is much better to follow the
tendency (the derivative) than the output signal, in
other words, the discrepancy between the model and
experimental data is better described as a function of
[de(t)/dt]2 instead of [e(t)]2. In the next section, we
will see how we can calculate de(t)/dt from
experimental data.
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Figure 5. Comparison between plant data without
compensation of T0 (i.e., ∆T2) and the identified
models OE and BJ.

3 METHODS FOR DERIVATIVE
CALCULATION

In most of the industrial cases, plant data are
corrupted by noise, which increases the difficult to
yield the correct derivative signal. An example of this
is showed in Figure 6.
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Figure 6. Plant data and its derivative.

To avoid this problem, it is necessary to filter the
data before to apply the derivative. Here two
different forms to filter the plant data are compared:
low pass and Wavelets filters. These methodologies
are implemented in MATLAB. After filtering the
data, the derivative can be easily estimated, by finite
differences method, for instance.

3.1 Low pass filter (Idfilt (Ljung,1997))
Filtering data with classical low pass filters as
Butterworth filters usually given good results. These
filters are implemented in (Ljung, 1997) and (Signal
TB). In this paper the version of Butterworth filter
implemented in the matlab function idfilt
(Ljung,1997) was used.

3.2 Wavelets (Misra et al., 1999)
Wavelets provide a joint time-scale representation of
a signal through its projection onto nested orthogonal
subspaces; finer subspaces containing coarser
subspaces, in a multi-resolution framework. Signal at
each level of resolution is projected on an
approximation subspace and a detail subspace.
Differently of Fourier analysis, the Wavelets analysis
is based on infinite sets of base functions, not only
sines and cosines, which allow representing a noisy
signal as a sum of other signals with different
frequencies. If the objective is to remove noise, high
frequencies component of the signal must be
removed, in general.

To compare two methods to filter the data, Figure 7
shows the derivative of the filtered data by Idfilt and
Wavelets algorithms. The data set is the same as in
the Figure 6, but to make clearer the comparison,
only the first 200s are shown.
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Figure 7. Calculated derivatives from filtered data by
Idfilt and Wavelets algorithms. Only the first
200 s was plotted to increase the visual quality.
Idfilt1 (filter order = 2, cut-off frequency = 0.1),
Wavelets1 (decomposition level = 50), Idfilt2
(filter order = 2, cut-off frequency = 0.5), and
Wavelets2 (decomposition level = 1).

Due to good results and simplicity, the Idfilt with
filter order=2 and cut-off frequency=0.1 was selected
to be used in the rest of the paper. For data collected
at a corrected sampling rate (i.e., sampling time
based on the process dynamic), these parameters for
the filter can be in general applied and will produce
good results. Therefore, we recommend using a
Butterworth’s second order filter with 0.1 cut-off
frequency as a default and starting point selection.



4 APPLICATION IN EXAMPLE
Figure 5 shows the quality of the identified models
OE and BJ when the effect of the unmeasured
disturbance is not compensated. For BJ mode, as a
disturbance model is simultaneously identified with
the process model, can be expected better model than
for OE model structure. Unfortunately, the better
quality of the BJ model is masked if it is directly
compared with the original data (cf. Figure 5). On the
other hand, if the results are compared in a derivative
basis, the BJ becomes much closer to the derivative
data, as it is shown in Figure 8. Note that the OE
model has a bigger discrepancy here than in the
original data. To check this affirmation, the sum of
the quadratic errors between the derivative of the
model and the derivative of the plant data
(i.e.,� [de(t)/dt]2) and the sum of the quadratic errors
(i.e.,� [e(t)]2) were calculated. The results are
summarized in Table 1 and confirm our visual
impression, that the OE models fit better the original
data and the BJ model the derivative data.

Table 1. Sum of the quadratic errors obtained from
the Figures 7 and 8 for the OE and BJ
models.

Sum of quadratic error
� [e(t)]2

Sum of quadratic derivative
error (� [de(t)/dt]2)

OE BJ OE BJ

0.75x105 4.25x105 1.73x102 0.32x102
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Figure 8: Comparison between the derivative of the
plant data filtered by Idfilt and the derivatives of
the identified models OE and BJ.

When data are affected by load disturbances, it is
possible to affirm that quadratic error criterion brings
wrong conclusions about the quality of the identified
models. In the studied example, BJ model was better
than OE model, and not the opposite, as quadratic
error criterion would indicate. On the other hand, the
quadratic derivative error criterion has reflected
better the quality of the identified model. This makes
us to think about to use a different criterion for

system identification based on min � [de(t)/dt]2. The
next section explores this idea.

5 SQUARE DERIVATIVE ERROR AS
CRITERION FOR  IDENTIFICATION OF

DYNAMIC MODELS
The most common cost function for system
identification is to minimize the square error, i.e.
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Here, we propose to use the square derivative error as
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Just to show the benefices of the new criterion, we
apply it to identify the parameter a0, a1, a2, a3, and
a4 of the following second order transfer function
with pure time delay:

( )
132

10)(ˆ
2

4

+⋅+⋅
⋅+⋅=

⋅−

sasa
easasG

sa
(3)

To illustrate the potentialities of the new criterion, it
will be applied to two examples.

5.1 The two tanks heating system
This system was already as introduced as motivation
example in section 2. Here, the criterion S1 (eq. 1)
and S2 (eq. 2) are applied to the data set with and
without inlet temperature compensation.

The ∆∆T data set (with inlet temperature
compensation). Table 2 summarizes the parameters
of the identified models. The transfer function G1
was identified using a discrete OE model structure.
The discrete model was converted to continuos and
the corresponding parameters of (3) are listed in the
table. The solution of the nonlinear optimization
problems S1 and S2 for the second order transfer
function (3) gave the models G2 and G3 of Table 2,
respectively. The optimization problems were solved
using standard and generic optimization methods
implemented in the lsqnonlin function of the Matlab
Optimization Toolbox (Coleman et al., 1997).

Figure 9 shows that all three models are very similar
what is also seen in Figure 10 where the
corresponding step responses are presented. These
results confirm that for experimental data without
significant unmeasured external disturbance the
optimization criteria S1 and S2 are similar.



Table 2. Transfer function coefficients were obtained
 from the ∆∆T experimental data

Parameters of equation (3)TF

a0 a1 a2 a3 a4

G1 / OE -0,01 4.4.10-3 4997.5 154.1 30.0

G2 / S1 0.0 4.3.10-3 5541.0 148.9 28.0

G3 / S2 0.0 4.3.10-3 5663.0 150.5 28.0

0 200 400 600 800 1000 1200 1400
−2

0

2

4

6

8

10

Time, [s]

T
, [

ºC
]

Plant                            
Output Error, ∆∆T, (G1)
Square Error, (G2)               
Square Derivative Error, (G3)    

Figure 9. Models were identified using the ∆∆T
experimental data set: G1 identified with OE (is
assumed as true model, see fig. 4), G2 identified
with criterion S1 and G3 with S2.
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Figure 10. Step responses of G1, G2, and G3.

The ∆T2 data set (without inlet temperature
compensation). For this experimental data, the
situation is completely different to the case before.
Here, due to the external unmeasured/uncompensated
external disturbance, the optimization criteria S1 and
S2 converge to different parameters as shown in
Table 3. In this table, G4 was identified using a
discrete BJ model structure. The discrete model was
converted to continuos and the corresponding
parameters of (3) are listed. The solution of the
nonlinear optimization problems S1 and S2 are G5
and G6, respectively.

Figure 11 shows clearly that the square derivative
error criterion, i.e., S2, is the best criterion for
identification, since it is closed to the Box-Jenkins

model (assumed as the true model, for the case with
load disturbances). The step responses shown in
Figure 12 make clearer the difference between the
models. Note that the model based on the square
derivative error (G6/S2) has almost the same
parameters and response as BJ and is almost
unaffected by the presence of disturbance as we can
see with the comparison between the models G3 and
G6.

Table 3: Transfer function coefficients were
obtained from the ∆T2 experimental data

Parameters of equation (3)TF

a0 a1 a2 a3 a4
G4 / BJ -0,006 4.4.10-3 6013.2 142.6 30.0
G5 / S1 0.0 1.9.10-3 3158.0 112.4 30.0
G6 / S2 0.0 4.0.10-3 5156.0 143.6 30.0
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Figure 11: Models were identified using the ∆T2
experimental data set: G4 identified with BJ (is
assumed as true model, see fig. 5), G5 (dashed
line) identified with criterion S1 and G6 (dashdot
line) with S2.
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Figure 12. Step responses of G4, G5, and G6.

5.2 Additional example
The following LTI model is used as the true plant in
this example:
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Figure 13 shows the block diagram used to generate
the data to be used in the identification procedure.
The plant output y, the PRBS input u, and the output
disturbance d used as experimental data are shown in
Figure 14. It is assumed that the output disturbance is
not measured, i.e., in the identification procedure
only the signal u and y are used.

Figure 13. Block diagram used to generate the
identification data
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Figure  14. Open-loop data used in the identification
test

Table 4 summarizes the parameters of the identified
models. The transfer function G7 was identified
using BJ model. The solution of the nonlinear
optimization problems S1 and S2 gave the models G8
and G9, respectively.

Table 4: Transfer function coefficients
for the additional example

Parameters of equation (3)TF

a0 a1 a2 a3 a4

Plant 0 1 1 2 5
G7 / BJ 0,063 1.265 1.304 2.152 5
G8 / S1 0.0 1.436 4.871 4.414 3,5
G9 / S2 0.0 0.991 1.059 2.058 5

Figure 15 shows the step responses of the models.
Note that the model G9 agrees very well with the true
plant. Even the BJ model does not produce good
results. This result clearly shows that the proposed

square derivative error criterion (S2) is much better
than the traditional square error criterion (S1).
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Figure 15. Step responses of the identified models:
true plant (solid line), G7/BJ (dotted line), G8/S1
(dashdot line), and G9/S2 (dashed line).

6 CONCLUSIONS
The paper proposed a new criterion for system
identification based on the square derivative error
(i.e., min � [de(t)/dt]2 ). It was shown that, special
when the plant data is corrupted by unmeasured
external disturbances, the min � [de(t)/dt]2 criterion
produces much better results than the traditional
square error criterion (i.e., J = min � [e(t)]2 ) . The
reason why the new criterion produces better results
is its capacity to capture the process tendency instead
of trying to pass through all experimental points.
Since unmeasured external disturbances are always
present in the industrial scenarios, the new criterion
can have significant impact in real process
identification problems.
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