A NEW SIGNAL DESIGN TOOL FOR PROCESS MODEL IDENTIFICATION
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Abstract: A new low-cost systematic procedure to obtain high-quality data for model
identification is presented. Two major steps compose this methodology: first, a simplified
process model is built using a PIMS (Plant Information and Management System) database,
which contains limited information about the process behavior. Second, the signal
amplitudes and its directions are calculated, as well as the total time of the experiment. The
signal is designed to do not remove the system from its normal operating point, reducing
the identification costs. The new procedure was applied to an industrial distillation unit.

Copyright © 2004 IFAC

Keywords: Signals, Dynamic Models, Identification, Distillation Columns, Linear

Control Systems

1. INTRODUTION

Model identification is the key part of modern
advanced process control systems, since most process
controllers are based on a model.

Generally, a model can be obtained through rigorous
modeling based on the first principles or by empiric
modeling and parameter estimation using plant data.
In most cases, it is very difficult to create an accurate
first-principles model, due to the complexity of the
process and the lack of information. On the other
side, the empirical modeling, although easier to
obtain than the rigorous modeling, demands an
intensive identification test, where all manipulated
variables must be excited to produce some effects in
the controlled variables. Several well-known model
structures, like FIR (Finite Impulse Response), ARX,
OE (Output Error), BJ (Box-Jenkins), (Ljung, 1999),
SUBID (Subspace Identification) (Overschee and De
Moor, 1996), etc., may be used to fit the plant data.
The problem is that, normally, the identification tests

remove the plant from its normal operating point and
spend much time and money to be accomplished. It is
important that the signal of the manipulated variables
during the test be strong enough to excite the process
output, producing a good signal-to-noise relation
(SNR), given by:
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where @, is the signal spectra of the output variable

and @, is the signal spectra of the input variable.

High SNR guarantees a good quality of the identified
model, but may drive the process away from the
operating point. In this way, it is necessary to have a
tool to produce good data for model identification at
low cost and time.

In the literature, there is a variety of signals to
dynamic model identification (Cutler, 1988; Luyben



1992). The most used signal in identification tests is
the step signal, which is characterized by an abrupt
level change in the value of the system inputs and is
easy to implement. However, the step signal removes
the plant from its normal operating point, and is time
consuming, because the plant needs to achieve a new
steady state after the input variation. The random
binary signals and Pseudo Random Binary Signals
(PRBS) (Tulleken, 1990) have the advantage to
present zero mean during the identification test,
maintaining the industrial unit in the operating point.
However, they are also time consuming tests and are
not suitable for multivariable systems as explained
below. Still there are ramp signals and wave signals
to identification test, but these signals are not so used
in the practice.

For multivariable systems, usually, the step test is
preferred in process industries, where each
manipulated variable is changed individually.
Clearly, this procedure is time consuming and the
multivariable characteristic is not perfectly captured.
Besides, the signal amplitude of each input variable
is heuristically determined. The multivariable PRBS
uses a lot of signal directions to excite the system.
This fact is not good, because during the test a lot of
data are repeated, bringing undesired correlation
among all variables and the parameter estimation
becomes a difficult task. These characteristics were

the motivation to develop a new tool to signal design
for model identification.

In the next section the proposed methodology is
presented. In section 3, dynamic models of a
distillation unit are identified with data generated
from the proposed signal design methodology.

2. SIGNAL DESIGN METHODOLOGY

Unfortunately, most available identification tests do
not use the historical plant data. Nowadays, with
advent of PIMSs (Plant Information and Management
Systems), a plenty of plant data can be stored and
easily retrieved. Normally, these data are noisy and
do not contain good dynamic information about the
process. However, it is still possible to obtain some
information about the process from these data.

In order to take into account the historical plant data
in the signal design, two procedures are proposed in
this work: characterization of the input and output
noises and correlation analysis between inputs and
outputs. The correlation analysis is used to select
good plant data intervals to identify a simplified
process model.
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Fig. 1: Correlation analysis to select the best plant data intervals to model identification. The two first graphics
show the vector y(¢) and u(?) and their mean values, respectively. The third and fourth graphics show the
vectors Au(t) and Ay(?), and each subinterval in which the correlation function was calculated. the last graphic
shows the maximal correlation function values for each data subinterval and its threshold value.



2.1 Simplified process model identification

The first step of the multivariable signal design
methodology is the search for plant data intervals to
identify a simplified process model. It is based on a
sweeping procedure to observe how inputs and
outputs are correlated by calculating the correlation
function, given by:

N
Corr(k) = %ZAM (1)a(e + k) 2)
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where k& means the output shifting (in sampling
intervals), ¢+ means the actual sampling interval and
t+1 means de next sampling interval. N is the total
number of points and the variables Au and Ay are the
two normalized signals being analyzed. In case of
industrial plant data, Au (related to the inputs) and Ay
(related to the outputs) are calculated by :
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where [, and |, are the output and input mean values,
respectively, y(¢) and u(t) are the original output and
input vectors of plant data, respectively.

To illustrate how this correlation analysis works to
select the best plant data intervals, Figure 1 presents
real plant data and the result of the calculated
correlation function.

It is important to note that the correlation function is
calculated for all time intervals, and the best intervals
are selected to compose the data set to identify a
simplified process model. To decide what intervals
will compose the identification data set, a threshold
value, L, should be defined. If the maximal
correlation value is greater than L, then the
subinterval is selected. This value is related to the
noise level, and it was defined as a value proportional
to the geometric mean between the standard
deviations of the input and output noise, given by:

L=26.[0, D, ©)

where 0, and Oy are the standard deviation of the
input and output noise, respectively. These values are
obtained from the less correlated subinterval as
described below.

Not only plant data time intervals need to be found,
but also the input and output noises amplitudes. It is
necessary to keep in mind that the input variation
effects should be great than the noise amplitude to

identify a good quality plant model. Although the
plant data, in special the output variables, are
corrupted by stochastic variations, it is convenient to
affirm that the difference between the output signal
(v) and its mean (|,), named as ydiff (vdiff =y — W),
follows the normal distribution, which is represented
by:

[—(ydzﬁ—uy)z]
2
1 205, ©)

—¢€
o2

where p is the probability density of the data (ydiff)
with deviation 0, and mean . If the data follows a
normal distribution, then 95% of the plant data must
lie between —2.6 0, and +2.6 g,. Considering this
confidence interval, then the noise amplitude is
2.6 0,. Therefore, comparing the distribution of the
plant output data with the normal distribution, it is
possible to determine the noise level. Similar to the
correlation analysis, the plant data is divided in time
intervals, as shown in Figure 2, and a comparison
between data distribution and the normal distribution
is made in each interval. Figure3 shows the
comparison for the second time interval of Figure 2.
The same comparison is done for all time intervals,
and the interval which the data distribution is closer
to the normal distribution is selected to evaluate the
noise level. The metric used to make this selection is
the absolute integral of the difference between the
normal distribution and the data distribution.
Observing the data of Figure 2, by visual inspection
it is clear that the second time interval better
represents the output noise level, which was the same
result obtained by applying the proposed procedure,
leading to an output noise level of 13.83 units
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Fig. 2: Plant data and subintervals.

This procedure is repeated to the others input and
output variables. As already was commented, the
noise level is one of the most important information
to design good signal to models identification. With



the selected data, a simplified model can be identified
by any identification algorithm, such as ARX, OF,
BJ, subspace identification, etc. At this stage it is
only necessary a First Order with Dead Time
(FODT) model to design a good input signals, having
a reasonable information about the process time
constant and process gain. In the next section it is
shown how to determine the manipulated variables
profile to be applied during the identification test.
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Fig. 3: Comparison between the normal distribution
and the output data distribution, for the second
time interval showed in Figure 2.

2.2 Input signal design

An important information in signal design is how
much time is necessary to keep the system excited in
order to capture the whole system response. In the
proposed methodology, this information is obtained
from the simplified model identified in the first step.
The time constant of each channel of the transfer
matrix contributes to determine the system time
constant. To calculate a representative system time
constant, it was chosen a geometric mean (Tgzp)
among all time constants present in the simplified
model, calculated by:
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where N is the total number of the nonzero system
time constants, and T, is the i™ system time constant.

The geometric mean gives a tradeoff between large
and small time constants. A simple arithmetic mean
tends to be closer to the high values of time
constants. Using the representative time constant of

the system, Tggp, it is defined three relevant

-1

frequencies: 05T 50, W = Topy» and

w=15 T;}EO, to determine how much time each

manipulated variable will be kept in a certain level
during the identification test. These frequencies were
chosen in order to design signals with high
probability to capture the true system dynamics.
Then, the time that each signal should be kept in a
determined level is:

®)

time _of _disturbance = ﬁ
w,
For each frequency, it is necessary to determine the
most important directions of the input signals. It can
be done by evaluating the frequency response,
G(iw), of the simplified model G (which was
determined in the first step of the methodology).
However, as it is very common to observe a great
difference among the system variables magnitudes, it

is important to consider the scaling of G(j«), given
by:

Gs(jw) = Ls.G(jw)-Rs )

where Lg and Rg are the input and output scaling
matrices, respectively. All necessary directions to
design the best signals for model identification can
be obtained by applying the Singular Value
Decomposition (SVD) to Gs(jw) yielding:

Gs(jw)=w> v’ (10)

where W and V" are the system output and input
direction matrices, respectively, and 2 is diagonal
matrix of the system singular values. Each column of
the ¥ is an input direction vector, named as U;. The
amplitudes, Au, of the designed input signals are
given by:

where Er is an expansion factor to guarantee that all
outputs will be excited, and is given by:

-1
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where Ay,,pise 18 the noise amplitude (determined in
the first step of the methodology). It should be clear
that the above procedure has to be applied for each
designed frequency . In the next section, the results
of applying the proposed signals design methodology
to model identification of a distillation unit.

3. INDUSTRIAL APPLICATION

The proposed methodology was applied to an
industrial naphtha distillation unit. A  brief



description of the process: the crude petroleum feed
is heated up in a heat exchanger battery, the salt is
removed, and the oil goes to the first separation unit,
a flash drum, to obtain a mixture of naphtha, diesel,
and solvents. The mixture goes to the second and
main separation unit, a distillation column, which
produces heavy naphtha, diesel, and small amount of
gasoline. The control objectives in this unit are to
keep the high quality of diesel, observed through
temperatures and volumetric flows, and to reduce the
atmospheric residue, which is the fraction of raw
materials that did not transform in commercial
products. This residual is produced in the distillation
column. To attain these control objectives, a MPC
(model predictive controller) calculates the setpoints
of some important variables in the system, such as
the petroleum feed, the flash temperature, and the top
temperature of the distillation column. The studied
distillation system has 8 inputs and 14 outputs. To
make a good signal design for a block diagonal
controller, it is necessary to group some related input
variables. In this case, three blocks were created:
block 1 (input 1, petroleum feed), block 2 (inputs 2
and 6, flash drum variables) and block 3 (inputs
3,4,5,7, and 8, related to the distillation column).

The signal design to identify a dynamic model to the
distillation wunit starts with a generation of a
simplified model, based on historic plant data. Ten
historic plant data sets were analyzed, and a
correlation analysis was carried out according to the
methodology described in Section 2.1. The noise
amplitudes were also determined, whose results are
presented in Table 1.

Table 1. Noise level of the system outputs.

Variable Noise Level Variable Noise Level
1 0.075 8 0.299
2 6.688 9 0.378
3 8.151 10 0.130
4 0.148 11 0.248
5 0.408 12 0.289
6 3.056 13 12.100
7 3.011 14 10.101

The designed and applied signals can be seen in
Figure 4.

With the identification test data set, a dynamic
model, using the discrete output error algorithm of
IDENT Toolbox (Ljung, 1989), was identified. The
estimated model parameters were then converted to
the continuos time domain. Figure 5 shows the
comparison between the identified model and the

identification test data set for two output variables for
each signal block. Because the system has many
output variables, only two variables were chosen to
show the results.
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Fig. 4: Designed signals to model identification of
the distillation unit.

It can be observed in Figure 5 that the obtained
results were satisfactory. The identified model
represents well the system behavior. It is important to
mention that the process did not leave its normal
operating point during the test, fact that can be
verified by the plant data average and standard



deviation, shown in Table 2.
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Fig. 5: Comparison between identified model and
plant data for some output variables.

CONCLUSIONS

A new methodology to design signals for dynamic
model identification was developed and applied to an
industrial unit, generating good quality data without
removes the plant from its normal operating point, at
a low cost. The implemented methodology does a
consistent and rational analysis of data sets contained
in PIMS databases, to extract some important system
information to guide a correct design of the
identification signals. These signals are oriented to
excite the system not only in the high gain direction
but also in the low gain, to better determine the
multivariable system gain.
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Table 2. Mean and standard deviation values of the
plant data during the identification test.

Y Mean Deviation
Block Block Block Block Block Block

1 2 3 1 2 3
1 14407 14264 143.80 0.55 3.01 0.51
2 75886 75391 78337 1717 6295 12.32
3 121243 125262 1201.30 1633 8357 3276
4 3343 3463 3533 0.13 352 010
5 11515 11174 116.06 226 270 3.50
6 17307 146.16  157.12 1587 3536  37.83
7 187453 2127.83 2227.72 10647 118.07  92.07
8 4635 4253 41.86 2.06 285 239
9 24902 23588  227.05 433 321 4.19
10 54.03 53.03 56.48 1.92 391 2.56
11 973 -10.05 9.63 0.83 1.50 1.5
12 347.69  350.07 35041 0.95 241 1.94
13 1839.43 1924.13  2035.30 130.03 7247 8550

—_
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3423.85 3441.15 3585.73 15391  40.84 4237
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