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Abstract: Optimal control problems for nonlinear systems are generally difficult to study.
Closed-form solutions are often limited to linear systems and quadratic performance
indices. This paper proposes a numerical approach to solve nonlinear optimal control
problems using Bellman’s principle of optimality in discrete time and space. The approach
is based on Simple Cell Mapping (SCM), a numerical procedureto approximately
describe nonlinear state-space dynamics. The paper discusses the construction of a general
control database and performance index database along witha backward search algorithm
to formulate optimal control policy. The cell space dynamicprogramming methodology
is investigated on a nonlinear CSTR model. Numerical studies dealing with the influence
of space and time discretization on computational feasibility are presented.
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1. INTRODUCTION

Optimal control of nonlinear dynamic systems has
been an active research area for several decades. In
general, the optimal control problem poses formidable
difficulties, which are only compounded by nonlin-
earities and constraints placed on state and control
variables. Since many chemical engineering systems
fall under this category, they present challenging prob-
lems. For example, the Continuously Stirred Tank re-
actor (CSTR) is known to exhibit highly nonlinear
behavior. Since process operations are under increas-
ing demand to adapt and perform over a wide range
of operating conditions, the limitations of traditional
linear control theory are becoming more pronounced.
As a result, research in nonlinear control theory has
become one of the most important and relevant areas
at present.

In theory, optimal control problems may be studied by
analytical techniques such as calculus of variations,
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Pontryagin maximum principle, Bellman’s principle
of optimality and the Hamilton-Jacobi-Bellman equa-
tion (Lee, 1964; Lapidus and Luus, 1967). However, in
the presence of strong nonlinearities and constraints,
very few closed-form solutions are found. Alterna-
tively, numerical techniques tend to be both cumber-
some and computationally prohibitive (Kushner and
Dupuis, 1992; Dupuis and James, 1998).

In this paper, we investigate the application of dy-
namic programming in discrete time and space to
solve an optimal control problem for a CSTR. This
numerical procedure is based on Bellman’s princi-
ple of optimality in discrete domain. Discretization
of the independent variable is commonly used for
numerical procedures using nonlinear programming
(Biegler, 1984; Logsdon and Biegler, 1989; Tieuet al.,
1995; Luus, 1994). This paper uses an approach based
on the discretization of dependent variables also.

The foundation for the approach is provided by cell-
to-cell mapping methods introduced by Hsu (1980).
These methods have been primarily used for perform-



ing global analysis of nonlinear systems. Several ex-
tensions to optimal control problems have been pro-
posed since (Hsu, 1985; Crespo and Sun, 2002). These
methods have yet to be investigated for process sys-
tems related to chemical engineering.

The idea of discretization of state and input variables
is not new. Dynamic programming over discrete grids
has been suggested by Bellman and Kalaba (1965) and
Lapidus and Luus (1967). However, Bellman cited the
“menace of expanding grid” and the “curse of dimen-
sionality” as the causes of practical limitations, which
continued to plague most numerical techniques. At
present, the cell-mapping based methods offer a sys-
tematic and efficient methodology to explore nonlin-
ear dynamics. Although the “menace” and the “curse”
are still alive, they are rendered less potent due to the
rapidly advancing computing power as well as cheap
storage and fast data retrieval. At least for low dimen-
sional systems, the cell mapping methodology offers a
computationally feasible alternative.

The remainder of the paper is organized as follows.
The concept of Simple Cell Mapping (SCP) is ex-
plained followed by a discussion of dynamic program-
ming in cell space. The nonlinear CSTR is employed
for a simulation example.

2. OPTIMAL CONTROL

A typical optimal control problem of dynamic systems
is defined as follows: for a fixed time horizont ∈
[0, t f ], find the control signal policyu(t) such that a
performance indexJ, is maximized (or minimized),

J(x(0), t f ) = φ(x(t f ))+

Z t f

0
ψ(x(t),u(t)) dt (1)

whereφ is the arrival performance index andψ is the
incremental performance index. The optimization is
typically subject to system equation in the form of
a nonlinear ODE, initial condition and constraints as
shown below,

dx
dt

= f (x,u) (2)

x(0) = x0 (3)

h(x,u) = 0 (4)

g(x,u)≥ 0 (5)

wherex is the state vector andu is the control signal
vector, both of which may be subjected to additional
upper and lower bounds.

3. CELL-TO-CELL MAPPING

Consider the nonlinear dynamic system in Eq. (2). If
the control signal is assumed constant, for a trajectory
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Fig. 1. Simple Cell Mapping (SCM)

emanating from the initial conditionx(t), the arrival
point after a time∆t is uniquely determined by

x(t +∆t) = x(t)+
Z t+∆t

t
f (x,u) dτ (6)

In principle, the system equation may be integrated
to define a point mapping in the state space for in-
vestigating the system dynamics parameterized by the
mapping time step∆t. The discretization of time or the
independent variable is commonly used for numerical
procedures and also to reconcile with discretely ob-
served systems. Eq. (6) may be written as a discrete
system,

xk+1 = F(xk,uk,k) (7)

wherek = t/∆t.

Consider a finite regionR ⊂ R
n, where the system

dynamics, subject to constraints and bounds, are likely
to be observed. LetR be partitioned into a collection
of finite number of connected sets called cells,{zi , i =
1,2, . . . ,N}. State space outside the region of interest
is a single infinite sized cell called the sink cellz0.
The continuous state spaceR

n is approximated by the
discrete cell spaceZ = {zi}N

i=0, andZ→R
n asN→∞.

Bounds automatically defineRand constraint surfaces
further limit the likely regions ofR. The inclusion
of constraints and bounds on state variables actually
helps in defining a smaller cell space than otherwise is
necessary.

Cell-to-cell mapping considers the system evolution
in discrete time as a mapping among the cells. State
transitions from point to point described by (7) possess
analogous cell transitions in cell space. Transitions
from cells {zi , i = 1,2, . . . ,N} into the sink cellz0,
are considered terminal. Simple Cell Mapping (SCM)
uses a single point (usually the geometric center) of
a cell to represent the entire volume of the cell (Hsu,
1980). The departure from a given cellzj is evaluated
by Eq. (7) to locate the arrival point in cellzi , known
as the image cell. The cell mapping function is defined
as

zi = C(zj ,∆t) (8)

which is Eq. (7) invoked at cell center.

Figure 1 illustrates the concept of SCM. The state
space trajectories from four integrations from four cell



centers are shown in dotted curves. The resulting cell
trajectory isz1 → z2, z2 → z4, z4 → z3 andz3 → z3.
In SCM terminology, a cell is classified as aperiodic
cell if it maps into itself inp mapping steps orp×∆t
time period. For example, cellz3 is a periodic cell with
p = 1 containing a steady-state. Periodicity is used to
identify steady-states and limit cycles in state space.
The sink cell is a periodic cell with period equal to
one.

Each group of periodic cells (called an attractor) has a
set oftransientcells, forming the domain of attraction,
which map into the attractor withinr mapping steps.
For example cellsz1, z2 and z4 form the domain of
attraction for cellz3.

Consider the control vectoru as a discrete representa-
tion U = {ui}M

i=1. Thus, the allowable control moves
are limited to the setU and are executed as step func-
tions at time intervalsk∆t. A similar representation is
used in Model Predictive Control (MPC).

For a constantui , the state space, partitioned intoN
cells, is perturbed for one mapping step by evaluating
N integrations fromN cell centers. The location of the
end points of a trajectory assigns an image cell to each
cell. The general control databaseΩ, consists of SCM
implementations for all allowable controls inU , i.e.,
N×M mappings.

4. OPTIMAL CONTROL TABLE

The discrete version of the performance index is rep-
resented as follows,

J(x0,H) = φ(xH)+
H

∑
k=1

ψ(xk,uk−1) (9)

whereH = t f /∆t. The terminal performance indexφ
is evaluated at the center of the cell containingx(t f )
and the incremental performance indexψ is similarly
evaluated at the centers of the respective cells and the
corresponding control vectors.

The incremental performance index databaseΛ, con-
tains the values of the incremental performance in-
dex for all possible cells and the allowable controls,
which is the general control databaseΩ. The optimal
control policy is achieved by maximizing the sum of
the terminal performance index and the accumulative
performance index, which is simply the sum of the
incremental performance index at discrete times.

According to the principle of optimality (Bellman and
Kalaba, 1965): “an optimal policy has the property
that whatever the initial state and the initial decision
are, the remaining decisions must constitute an opti-
mal policy with regard to the state resulting from the
first decision.”

The principle of optimality suggests that the search
for minimizing or maximizing the performance index
must proceed backwards in time fromH to 1 (Lapidus

and Luus, 1967). For instance, the optimal value of the
performance index carried throughH steps is

J∗(x0,H) = max

{

φ(xH)+
H

∑
k=1

ψ(xk,uk−1)

}

(10)

which may also be written as

J∗(x0,H) = max{ψ(x1,u0)}

+max

{

φ(xH)+
H

∑
k=2

ψ(xk,uk−1)

}

(11)

Thus, we reveal the fundamental recurrent nature of
dynamic programming,

J∗(x0,H) = max{ψ(x1,u0)+J∗(x1,H −1)} (12)

Going backwards in time, ifH − 1 optimal controls
have been determined, the next optimal control may
be determined by considering the new step plus the
already computed policy for the previousH −1 steps.

The backward search algorithm in cell space over
the general control databaseΩ and the incremental
performance index databaseΛ can be summarized
now. LetS∗ denote the cells representing the optimal
target value of the state vector andV∗ denote the
corresponding set of optimal control vectors. At the
last stageH, the setS∗ contains the cell representing
the valuexH .

Starting at stepH, initialize the cumulative perfor-
mance indexJ∗ = φ(xH) and an intermediate target set
S= S∗,

(1) Locate the cells in the general control database
Ω, which possess the elements ofS as image
cells.

(2) Look up the value of the incremental per-
formance index from the performance index
databaseΛ, for all the maps found.

(3) Compute the accumulative performance index
for each map and locate the maximum to update
J∗.

(4) Expand the setS∗ and V∗ with the respective
cells corresponding toJ∗.

(5) ReinitializeSwith the newest entry ofS∗.

The backward search yields the optimal control table
for all cells in the cell space. For a particular case of
x0, the initial cellz0 is identified and the corresponding
J∗ is identified and thus the optimal controlu0 and
optimal cellz1 are located from the table. Continuing
forward, we eventually recover the optimal control
policy V∗.

5. SIMULATION EXAMPLE

We consider the optimal control of a nonlinear CSTR.
The dimensionless model is the following set of ODEs
(Lapidus and Luus, 1967),
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Fig. 2. Locus of steady-state points.

dT
dt

=−(T +0.25)+(C+0.5)e(
25T
T+2)

−u(T +0.25) (13)
dC
dt

= 0.5−C− (C+0.5)e(
25T
T+2) (14)

whereu is the control signal with a maximum of 2
(fully cooled) and a minimum of 0 (adiabatic), and
T andC are deviations from steady-state dimension-
less temperature and concentration respectively. The
model does not exhibit steady-state multiplicity, Fig-
ure 2 shows the locus of steady-state points.

Under proportional control, the control signal is given
by u= 1+KcT, whereKc is the proportional gain. It is
desired to find an optimal control policy so that when
the reactor is started atT = 0.05 andC = 0, the origin
T = 0 andC = 0 is reached in a fixed time horizon
t f = 2 at a minimal cost defined as follows,

J =
Z t f

0
T2 +C2 +u2 dt (15)

The state spaceT ∈ [−0.1,0.1] andC ∈ [−0.1,0.1] is
discretized into 51 intervals on each dimension for a
cell spaceZ, comprising 2,602 cells including the sink
cell. A mapping time step of∆t = 0.1 is employed.
The control signal is discretized into intervals of 0.5
over u ∈ [0,2] to define the allowable control setU
comprising five elements.

The general control databaseΩ is computed using
SCM. The mapping is performed by the fourth or-
der Runge-Kutta integration scheme. The computa-
tion time required to perform 10,305 mappings is 2.5
secs on a Pentium 600 MHz machine using compiled
code. The incremental performance index database
is also computed in the same step. The storage re-
quirement for the databases is approximately 256 KB.
The backward search algorithm consumes 0.15 sec of
CPU time. The computational demand and memory
requirements are deemed fairly minimal for practical
applications.

Figure 3 shows the results of the optimal control pol-
icy. The first two panels show the profiles of temper-
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Fig. 3. Optimal control of CSTR along with propor-
tional control.

ature and concentration respectively, while the third
panel displays the control signal. The optimal trajec-
tories of T and C in response to the control signal
are shown in squares, which represent the optimal
cell trajectories. Results of proportional control with
Kc = 17 are also superimposed in solid curves. The
optimal policy reaches the set point in nine steps.

6. CONCLUSIONS

A numerical procedure to solve optimal control prob-
lems for nonlinear systems using Bellman’s princi-
ple of optimality in discrete time and space is pre-
sented. The point evolution of the system in state space
is approximated as coarse grained dynamics of cell
mappings in discretized cell space. The Simple Cell
Mapping method is used to compile a general con-
trol database for all allowable controls in a discrete
set. The approach bears close resemblance to state
and control variable discretization schemes proposed
in mid 1960s for dynamic programming. In contrast,
the cell mapping approach avoids the difficulties of
interpolations necessary therein. The accuracy of the
solution in cell space is directly linked to the cell
size and mapping time step size. Fine discretization
is generally desired to minimize the approximation
errors resulting from the center point method. How-
ever, it comes with added expense in computation
and storage. Long mapping steps are detrimental since
they may cause overshoots in the controlled response,
which is a direct consequence of discrete control ac-
tion. Application to a nonlinear CSTR shows promis-
ing results in terms of computational cost and con-
troller performance.
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