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Abstract:  This paper addresses the problem of identifying interaction dynamics that exist 
between units operating in a decentralized control scheme.  Identification of such 
interaction relationships is crucial to the deployment of coordinated decentralized control 
schemes. The proposed methodology is based  on (i) the use of partial correlation analysis 
to identify the interacting channels in closed loop, and (ii) closed loop identification of the  
concerned dynamics using data obtained from suitable dithering. Alternative 
identification schemes relevant for this scenario are briefly analyzed in this paper and 
validation studies on a representative system is presented.. Copyright © 2004 IFAC 
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1. INTRODUCTION 

Centralized control schemes that are based on a 
complete description of the cause and effect 
relationships are known to yield optimized control 
performance for multivariable systems. However, for 
optimization and control of large-scale systems, 
partitioning and decentralized control schemes have 
been eminently recommended over centralized 
approaches (Siljak, 1996). This choice is due to a 
number of factors. Firstly, the computational 
intensity for control is known to grow quire rapidly 
than size. Therefore, it is practical to design and 
implement control schemes for smaller sub-systems 
by looking at their local cause and effect 
relationships and the effect of interactions from other 
subsystems.  The second and perhaps more important 
limitation for centralized control of large-scale 
systems is from a modeling and identification 
perspective. It is widely recognized that 
identification of cause-effect relationships in large-
scale systems is a relatively difficult task.  While 
such relationships are identified easily at a local 
level, for example at a unit level in a chemical or 
power generation plant, the interaction between such 
levels is usually associated with a lot of uncertainty.  
Often times, such interactions are also not 
perceivable during direct modeling, but manifest 
when the local control loops are closed.  
Identification of such interaction dynamics is a 
critical requirement for implementing coordinated 
decentralized schemes, which are known to yield 

closed loop performance that approaches that of a 
centralized control scheme.  

As indicated earlier, the interacting dynamics are
often not easily characterized, unless all available
control inputs for the large scale system are perturbed 
for identification. Therefore, such dynamics are best 
identified under closed loop conditions, wherein the 
large-scale system is partitioned into smaller sub-
systems with local controllers. Having identified 
these interactions, co-ordinated and decentralized 
control can then be achieved with these local 
controllers by implementing a higher-level co-
ordinator or a peer-level communication (Mesarovic 
et al. 1970, Katebi and Johnson (1997)). These co-
ordination mechanisms thus require knowledge of the 
interaction to achieve the desired level of co-
ordination. This interaction thus needs to be 
identified under controlled conditions using closed-
loop identification methodologies.  

Closed-loop identification strategies have been 
extensively proposed in the literature and an 
excellent review of the state of the art can be found in 
Forssell and Ljung (1999). The primary motivation in 
these strategies has been towards identifying direct 
models between the inputs and outputs using closed 
loop data, when for example, the plant is open loop 
unstable or there are inherent feedback mechanisms 
implemented for safety reasons. Another important 
reason for identifying such direct models has been 
towards obtaining reduced order models with a view 



to achieve better control( Gevers and Ljung, 1986).
Broadly, three different approaches to closed loop
identification of the direct dynamics, viz (i) the 
direct, (ii) the indirect and (iii) the joint input-output 
methods, have been proposed. These methods differ
in terms of apriori knowledge assumed about the
nature of the controller and the assumptions made
regarding the noise models. The relative merits of
these strategies, in terms of consistency of estimates
and the applicability of these methods (depending on
the accuracy of the noise models) are discussed in 
Ljung (1999), Forssell and  Ljung (1999). 

The identification problem considered in this paper
involves the characterization of the interaction
dynamics between decentralized control loops. The 
challenges encountered are somewhat similar to what
one would expect for identification of the direct plant
in closed loop, discussed in the earlier paragraph.
However, some key differences exist. Firstly, as is
the case with closed loop identification, lack of
informative data for identification is a key problem.
This problem is overcome in regular closed loop
identification, via the use of a dither signal applied
either at the controller output or at the setpoint.
However, for the case of identification of interaction
involving several decentralized loops, dithering of 
each of the controller outputs is not practical. A more
systematic method to prune down this set of 
variables is necessary.  Secondly, in regular closed
loop identification, the direct method (i.e. ignoring
the presence of feedback) has been recommended in
view of its optimal statistical properties. For the case
of interaction identification, the direct method is not
applicable because (as will be shown later) the inter-
relationships between any two interacting
decentralized loops also involves the individual loop 
sensitivities. Thus, one has to resort to other closed
loop identification methods to first explicitly 
estimate the individual loop properties and then
factor them out.  Finally, a recognized drawback of
the indirect method of closed loop identification is
that it requires knowledge of the feedback controller
mechanisms. In the identification problem
considered in this paper,  each of the individual 
decentralized controllers is multivariable and
perhaps constrained in nature, and therefore the use
of the indirect method is precluded. Also, in view of
the multivariable nature of the concerned loops and 
the interacting dynamics, the use of subspace based
state-space identification methods (Verdult and 
Verhaegen (2002)) greatly facilitates the 
identification procedure. 

This paper analyzes the above mentioned problems
encountered in identifying the interaction dynamics
in large scale systems, with a view to achieving co-
ordinated decentralized control. The approach 
proposed here to identify the interaction is based on
using closed loop data. As mentioned before,
dithering all the control inputs regardless of whether
they contribute to interaction is perhaps not practical.
The interaction between loops in large scale systems

is generally sparse. Therefore, towards isolating the
channels that contribute to interaction and minimize
the number of control inputs that need to be dithered,
we propose the use of partial correlation analysis.
Having dithered a smaller set of relevant
manipulative variables and generated sufficiently rich
closed loop data, the problem of identifying the
interacting dynamics needs to be addressed. Towards
this end, we present and analyze three methods for 
identification of the interacting dynamics from the
viewpoints of apriori knowledge necessary as well as 
their applicability in the constrained controller case.
The proposed identification strategies have been 
validated on representative examples taken from the
literature.

2. PROBLEM DEFINITION 

The identification problem that we seek to address in 
the paper is shown in Figure 1.  For purposes of 
explanation, we consider the case of two 
decentralized loops and seek to identify the
interacting dynamics Gdj(q) between them.
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Figure 1: Schematic of interacting multivariable 
controllers

Each of the individual loop outputs is assumed to be 
affected by noise and unmeasured disturbances .
Each of the individual controllers are assumed to be 
multivariable in nature. For purposes of explanation
again, we assume that the controllers involved with
loop I and loop II are multivariable and of size n x n. 
These controllers are designed based on the local
dynamics G1(q)  and G2(q), which are assumed to be 
known.  We further assume that the interaction
dynamics Gd is sparse. This is a realistic assumption
because if the structure was full, one could deploy a 
centralized (rather than decentralized) scheme that is
based on the complete enumeration of all the cause
and effect relationships. In general, no other apriori
knowledge is assumed about the interactions and the
channels in which they could exist. We seek to
estimate the interacting dynamics Gd(q) under closed
loop conditions. The intent is to then use knowledge 
of the interacting dynamics in co-ordinated control
schemes so as to achieve centralized performance but
using decentralized control structures as shown
above.

In general, closed loop data is known to be less
informative from an identification viewpoint. Hence 



Figure 2: Signals associated with a single loop.

3. PARTIAL CORRELATION ANALYSIS 

onsider the block diagram shown in Figure 2.
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a dither signal d at the controller output is commonly
employed. Figure 2 shows the block diagram of a 
single decentralized loop with the introduction of the 
dither signal

C
During normal plant operation, the dither signal dI is 
zero and therefore the signals in the vectors x and u
are the same.  Routine operating data is collected on
each of the variables in u and y . We seek to use this
routine operating data to assess the existence of
interaction, i.e. we test the correlation between any
signal p in xI and a set of signals q, s and t (say) in 
xII. Since we would like to test this correlation in a 
dynamic sense, (i.e. the cause and effect relationships
are dynamic in nature, rather than static, with at least 
a single lag due to zero order hold), we consider a 
dynamic map of these signals. Let Y denote the
vector of measured observations of p and X denote
the matrix of measured and lagged observations of 
signals q,s and t, with n being the number of lags in
each of the latter signals. In other words, the kth  row
of Y would then consist of p(k) and that of X would
contain [q(k-1) … q(k-n), s(k-1), …s(k-n), t(k-1)…t(k-
n)]. A regular correlation analysis based on the
evaluation of the Spearman correlation coefficient 
(Draper and Smith(1981), would essentially look at a
matrix Z=[Y X] and evaluate the correlation
coefficients in terms of the covariance of Z . These
coefficients would then be tested for significance 
using the t-test. However, due to the possibility of
the variables in X being correlated, we propose to
use the partial correlation analysis. The partial
correlation coefficient analysis can be used to
suppress the effect of correlation and clearly
discriminate the influence of correlated causal
variables in X on the effect variable in Y.

Let us assume that the X matrix has
columns and therefore a reduced rank. Consider the
problem of assessing the correlation between any
column variable xi with the variable Y.  Let matrix
XR contain all variable xj (j i). We first find a vector

ixe that contains the negation of the effect of all

er variables on xi.. To do this, we first consider
the regression problem between xi and XR. Assuming
a linear relationship, the regression can be written as, 
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This regression problem can and can be solved for 1

using the simple Moore-Penrose inverse as,
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We now evaluate the prediction errors for the above
model as, 
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In the next step, the influence of XR on Y is again
estimated using a regression model. The relevant
equations can be written as, 
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and the prediction errors for y can be estimated as,

YXXXXye T
RR

T
RRy

1)(  (6) 

In the above equations, and can be assumed to 

consist of those components of x1 and Y that are 
independent of XR. These quantities can be used to
check for the partial correlation of x1 with y. This
partial correlation can therefore be written as a 

regular correlation between e  and  as, 
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It can be seen that, if X is full rank, i.e. if xi is 
completely uncorrelated with all columns in XR; then
the predictions in Equations 3 will be white and so

will be equal to x1 itself. Similarly, e  will 

contain only the effect of x1 on y (i.e. the effect of XR

on y will be suppressed). The partial correlation can
thus give an assessment of the existence of a linear 
dependence between the cause and effect variables in 
the presence of correlated cause variables. 

ixe y

Remark 1: It must be mentioned since we use lagged
variables in X, the resulting indices would indicate
the existence of a linear, dynamic relationship
between the signals in xII (i.e. q, s and t) and p in xI.
For the variables amongst q,s and t  that are 
correlated with p, one would obtain symmetric
blocks of non-zero correlation indices of size n, 
which would indicate the evidence of a non-zero 
interacting dynamics in Gd for the assumed pair of
signals.

Remark 2: It is possible that the reduced signals

and might also reflect the effect of 

unmeasured disturbances that routinely affect the 
loop. These effects would corrupt the interpretation
from the above analysis. However, if there is any
evidence of such disturbances affecting the loop, then
the regression  problems posed in Equation (1) and 
(4) may be solved using more sophisticated methods
such as the PEM or the instrumental variables (IV) 

ixe ye



method, rather than the simple Moore-Penrose
method as indicated above. 

Remark 3: If the matrix X contains perfectly
correlated variables (i.e.  if the signals q, s and t are
perfectly correlated), the above method would still 
not be able to discriminate between signals that have 
a dependent relationship from those that do not.
However, perfect correlation is difficult to exist/
obtain in practice. Even an uncorrelatedness in the
measurement noise associated with the signals q, s
and t could be adequate to discriminate between
these signals.

4. CLOSED LOOP IDENTIFICATION 

Having isolated the channels in which interaction
exists, we now focus on the problem of identifying
the interacting dynamics. For purposes of
explanation we consider that only one signal p in xII

affects the loop I (see Figure 2) through some
disturbance dynamics, which needs to be estimated
using closed loop identification methods. It is now
assumed that the signal p can be perturbed as a dither
signal at the output of controller II (MVC2) (see 
Figure 1), in a way that is uncorrelated with loop I
set-point changes. As well, through regular target
specifications by the upper LP layer in a typical
MPC setting (Shah et al. (2002)), it is assumed that
sufficient excitation exists at the set-point for Loop I.

For loop I, the relationship between the two
independent, deterministic signals p and rI and the
dependent signals can be written xI and yI as,
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In the above equations, the effect of stochastic and
unknown noise elements can also be added in the
above equation but are omitted for brevity. Also, it is
important to note that the loop sensitivities
associated with the loop are different for the general
multivariable case and are related by the equation,

11 )()( IIIIII CGICCGCI (10)

As mentioned before, in regular closed loop
identification using the direct method, the effect of
feedback is ignored and the signals yI and uI are used 
to estimate the transfer function GI.using Equation 9. 
In the above problem, we seek to estimate Gd and in
this case the direct method of closed loop
identification is not really an option. This is because 
the direct method based on the signals p and y  (or xI)
will only yield the product of Gd and one of the loop
sensitivities;  it is therefore necessary to explicitly 
estimate and factor out the sensitivity dynamics to
generate an estimate of Gd. In earlier approaches 
(Van den Hof and Schrama (1993), Huang and Shah
(1997)), an alternative two step, indirect method of 
closed loop identification of GI was proposed with
some of its theoretical properties being reviewed
subsequently by Gevers et al. (2001). Here we 
propose to use both single step as well as two step

methods for the identification of the interacting
dynamics Gd assuming that the plant dynamics GI is 
known. This latter assumption is valid considering
that cause and effect relationships can more easily be 
characterized in smaller decomposed sub-systems.
The methods for closed loop identification can be 
presented as follows:

Method 1: Single Step Method: Consider that the
closed loop system is simultaneously perturbed both
at the set-point rI and at the output of CII for signal p
in an uncorrelated fashion.  The dither input dI is 
assumed to be zero in Figure 2. Using Equation (8), it
can be seen that this results in a multi-input single 
output, open-loop identification problem in the
variables rI  and p as inputs and xI as the output.
This identification problem can be solved in the
presence of stochastic disturbances affecting loop I, 
using the prediction error method (PEM) to generate
unbiased estimates of the dynamics Gcl=(I+CIGI)-1CI

and the Gd,cl=(I+CIGI)-1CIGd . Having obtained an 
estimate of these dynamics, the interacting dynamics
can be obtained as, 

cldcld GGG ,
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An important aspect that must be recognized towards
realization of Gd  as above is that Loops I and II are 
multivariable in nature and could involve a good 
number of manipulated and controlled variables.
Towards ease of parameterization of the dynamics in
Gcl and Gd,cl during identification, it is more suitable
to use appropriate order state space models, identify 
them using suitable sub-space methods and then 
realize the transfer function representations of Gd, if
necessary as indicated by Equation 11 above.
However, as will be seen in the next section, inverses
are also easily realizable in state space forms.

Method 2: Two step method
Equation 8 is again the starting point for the two step
method. Again considering that the dither dI is zero, 
routine plant data involving the variables rI and xI can 
be collected. This routine plant data would contain
the effect of interactions from Loop II through signal
p as well as effect of other stochastic disturbances. In 
the first step of the two step identification method,
the dynamics Gcl can be estimated by considering the 
signals rI and xI and by using the output-error method
(OEM) which is a variant of the PEM method. The
OEM  is a special case of the PEM method with
noise parameterized as unity, and it has been shown 
(Soderstrom and Stoica (1989)) that (i) if the true
dynamics belongs to the model set, and (ii) the
driving signals are orthogonal to the noise, unbiased
estimates of the concerned dynamics can be obtained.
Thus an unbiased estimate of the dynamics in state
space form of Gcl can be obtained in the first step,
using a suitable sub-space method. Some theoretical
considerations related to analysis of bias in the
estimates of Gcl in the presence of interacting 
dynamics Gd is presented in Gudi and Rawlings
(2003).

In the second step, the dither at the set-point rI  is set 
to zero and the signal p is dithered. The signals xI and 



p can now be used to estimate Gd. Towards this end,
a new signal xI

f is generated as a filtered version of xI

as given by,
IIII

f
I xCGCIx 11 }){( (12)

This filtered signal xI
f  is then used along with the

measurements of p to generate an estimate of the 
interacting dynamics Gd using the OEM or the PEM
methodology. A critical step in the above filtering is 
the realization of the inverse of Gcl=(I+CIGI)-1CI  as 
required in Equation 12. In this context as well,
parameterization of state space models for capturing 
the dynamics is more desirable, as state space 
representations are relatively easier to invert than
transfer function representations. It can be shown 
that the relationship between the state space matrices
A,B,C,D of any forward model are related to the
state space matrices , , Ci  and Di of the inverse
model as given  by the relationships,

It is also possible to show that for the identification
of the loop sensitivities, the inverse of D always
exists and so these transformations are realizable. 

Method 3: Direct Method: Constrained controller 
case
In the presence of constraints, it is well-known
(Zafiriou (1990)) that the controller dynamics and
hence the loop sensitivities are no longer linear. In
such a case, it is inappropriate to use the methods
proposed in the earlier sub-sections, which inherently
are based on the assumption of linearity. In such a
case, it is important to exploit the fact that the plant
dynamics GI is well characterized. Defining the
prediction error,  = yI-GI

mxI, where Gm
I is the model

of the plant GI, one can write the closed loop
relationships between and the independent
deterministic loop inputs as, 
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In the above equation, ,

 and and it can 

be shown that for Gm
I= GI, the deterministic

relationship between  and p can be written as,
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Thus, in the presence of stochastic disturbances
affecting at the output, a prediction error method
based on the measured signals  and p can be used to
estimate the dynamics Gd.

A relative assessment of the above three methods of 
identifying the interacting dynamics can be presented
as follows: In the presence of a perfect model Gm

I,
one would always prefer Method 3 as it is a single
step, direct method  that accommodates the most
general constrained controller case. It does not
require any other knowledge of the controller
mechanisms or the loop sensitivities and as such is a 
parallel counterpart to the Direct Identification
scheme proposed for identifying direct models in
closed loop. However, it is based on the key
assumption of a perfect plant model. If this

assumption cannot be justified, one would then
choose amongst the first two methods. The merits of
the first method is that it is a one step method that
just uses closed loop data to simultaneously identify
the concerned dynamics in a MISO framework.
However, the drawback is that sufficiently strong and 
uncorrelated dither has to be applied simultaneously
at both the set-point and at the manipulated variables,
to generate unbiased models. This may pose
problems in terms of the acceptance of this strategy 
at the plant level. The second method on the other
hand is a two step method which involves the
identification of the loop sensitivities in the first step. 
This identification may be done without strong
dithering at the set-point. Regular set-point updating
by the upper LP layers could be sufficient to provide
the necessary excitation. The identification could be
performed using data collected over extended periods
of time; for the closed loop case, availability of such
data is not a constraint. After this first step, regular
dithering of the manipulated variables of the other
controllers over a short period of time is adequate to
generate the excitation necessary of identification of
the interacting dynamics. Thus, the second method
would be preferable when dithering at the setpoint is
not permissible.

11

11

;

;

DDCDC

BDCBDA

ii

5. CASE STUDY 

We consider the following 3 x 3 transfer function and 
choose to partition the system for decentralized 
control as shown below:
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The input-ouput pair {y1,y2 – u1,u2} forms a 
decentralized sub-system which is controlled by two 
PI controllers (Kc=0.47 and I = 3.26 for y1-u1 pairing
and  Kc=-0.09 and I = 9.35 for the y2-u2 pairing)
with decouplers. The pair y3-u3 forms another 
decentralized sub-system that is also regulated by a
PI controller with Kc=0.09  and I = 10. The two
decentralized loops were assumed to be corrupted  at 
the output with random noise having variance of 0.1.
It was proposed to first evaluate the partial
correlation analysis for identifying the interactions
for zero and non-zero values of the parameter Ki (see
the yi-u3 dynamics). For closed loop identification,
the set-points and the controller outputs were
dithered using random signals having variance 0.3.
These were designed to be uncorrelated whenever 
necessary, as for example in Method 1. For method
2, simple step like set-point changes were introduced
in the first step to estimate the sensitivities. For
method 3, the controller outputs were clipped using
an appropriate saturation block, to simulate



constrained controller action. The canonical variate 
analysis (CVA) based sub-space method was used 
for the identification of the state space models using 
closed loop data. The model order for the state space 
models were selected based on the Akaike 
Information Criteria and the models identified were 
cross-validated using closed loop data. 

Isolating interacting channels
The partial correlation analysis  was used to assess 
the existence of interaction between the two sub-
systems. Towards this end, K2 was deliberately set to 
zero in the plant and K1 and K3 were set to 1. Closed 
loop data for u3 and u1, u2 was used along with partial 
correlation analysis to infer the presence of 
interaction. A total of 10 sets of data consisting of 
1000 points (sampling time of one time unit) was 
used to perform both the regular and partial 
correlation analysis.

It was found that the Spearman correlation 
coefficient based on the regular correlation analysis 
was not able to differentiate the two channels u1-u3

(interaction exists) and u2-u3 (absence of interaction) 
in the closed loop for a majority of the sets. This was 
obviously because both u1 and u2 were correlated 
amongst themselves. In fact, the  Spearman 
correlation coefficient for the pair u1 and u2 was 
consistently above 0.8 for most of the sets indicating 
a strong correlation between these variables. 
However, partial correlation analysis was able to 
remove the correlation between these variables and 
consistently assess the underlying closed loop 
correlation between u3 and u1,u2.

Estimating interacting dynamics 
Both the single step and two step methods were able 
to accurately identify the interacting dynamics
between u1 and y3. For method 2, the slower set-point  
excitation in the first step did require a larger data set 
to provide consistent estimates of the sensitivities. As 
mentioned before, this requirement of a larger data 
set is not a drawback in closed loop.  However, in 
both the methods, the identified loop sensitivities  as 
well as the interaction dynamics matched quite 
closely with the true values.  The direct method 
(Method 3) was a simple open loop identification 
problem because of the assumption of a perfect 
model. The interaction model between u1 and y3 was 
also accurately estimated as expected. However, in 
terms of applicability this requirement of a perfect 
model is a constraint. 

6. CONCLUSIONS 

The focus of this paper was on the identification of 
interacting dynamics in large decentralized
multivariable controllers. Partial correlation analysis 
was proposed to isolate the interacting channels and 
three methods of closed loop identification was 
proposed. A representative case study was presented 
to highlight the practicality of the proposed 
methodology. 
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