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Abstract: This paper presents a new approach for determining sensor locations for 
nonlinear dynamic systems. The method uses empirical observability gramians for 
observability analysis and combines the information from this investigation with 
observability measures which have been previously proposed in the literature. This 
approach offers the advantage over other methods in that it is directly applicable to 
nonlinear systems without resorting to linearization of the model. The presented 
procedure has been applied to a binary distillation column model. Additionally, the effect 
of scaling of a model for sensor placement has been examined as well as the conclusions 
which can be drawn from different observability measures.  Copyright © 2003 IFAC  
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1.0 INTRODUCTION 
 
The chemical industry has gone through significant 
changes over the last few decades. Today, the 
emphasis is on running plants in the most optimal 
manner with due consideration to the safety aspects, 
rather than just achieving the design throughput. To 
meet these goals, information about a number of 
process variables and parameters is required. While it 
is possible to install additional sensors to monitor 
many of the aspects of a plant’s operation, this can be 
expensive both in terms of the initial as well as the 
maintenance costs. In order to overcome this 
problem, model-based state estimation techniques 
can be used. By strategically measuring some key 
variables of the process, it is possible to compute 
many other variables and process parameters by 
using an observer. However, in order to gain the 
maximum benefit from this technique, the sensors 
have to be placed at “optimal” locations.  This paper 
presents a method that allows computing such 
optimal sensor locations for plants described by 

nonlinear dynamic systems. Past research related to 
optimal sensor location has mainly been confined to 
linear or linearized systems (Dochain et al., 1997; 
Waldruff et al., 1998; Van der Berg et al., 2000, 
Muske, 2002). However, most chemical, 
petrochemical, or biochemical processes are 
accurately described by nonlinear dynamic systems 
and a linearized model may not represent the actual 
dynamics of the process over the entire region of 
operation. Due to this limitation, it is possible that 
different conclusions could be reached depending 
upon the operating point chosen for linearization. 
Therefore, it is desirable to use techniques, which 
will not have to resort to linearizing the model. The 
empirical gramians introduced by Lall et al. (2002) 
can form one piece of this investigation, because they 
can be used for determining 
observability/controllability of nonlinear systems 
over a specified operating region. Hahn and Edgar 
(2001) have shown that this new technique does 
provide a better representation of the input to state 
and state to output behavior of a nonlinear system 



 

over an operating region than the observability 
gramian of the linearized system. In this paper an 
approach for sensor placement based upon empirical 
observability gramians is presented. This is achieved 
by combining the results obtained from observability 
analysis via empirical gramians with measures, 
representing the degree of observability of a system. 
However, instead of proposing new measures for 
quantifying the degree of observability, existing 
measures have been used and adapted for the case 
where the observability analysis is based on 
empirical gramians. The advantage that such a 
technique has over other methods is that it does not 
resort to linearizing the system, while it can still be 
applied to nonlinear systems of significant 
complexity. Additionally, the results for different 
proposed measures are compared and the effect of 
scaling on this investigation is discussed.  The 
methodology is applied to a distillation column 
separating a binary mixture.  
 
 

2.0 PRELIMINARIES 
 
 
2.1 Observability 
 
Observability refers to the property of a system that 
allows the reconstruction of the values of the state 
variables given the outputs. For linear time invariant 
systems of the form 
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can be computed in order to determine observability 
of the system. If the observability gramian is a matrix 
of full rank then the system is observable. However, 
if the gramian is rank deficient then the system will 
not be observable and some of the states (or 
directions in state space) cannot be reconstructed 
from the output data. 
 
 
2.2 Empirical observability gramian 
 
While the observability gramian can be used for 
determining observability of linear systems, it may 
not result in sufficient information if the system is 
nonlinear. Extensive efforts have been undertaken in 
the last two decades to derive conditions for 
observability of nonlinear systems (Isidori, 1995). 
However, the results derived from these conditions 
are usually too complex to be interpreted for all but 
very simple systems. One alternative is to use the 
relatively new concept of empirical gramians that 
have been introduced by Lall et al. (2002). In order 
to present the definition of the empirical 
observability gramian the following quantities need 
to be defined:  
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where r is the number of matrices for perturbation 
directions, s the number of different perturbation 
sizes for each direction, and n the number of states of 
the system. The empirical observability gramian can 
be computed for general nonlinear systems 
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and its definition is given by  
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the system corresponding to the initial condition 

ssilm xeTcx +=)0( and ssy is the steady state output 
of the system. 
 
Empirical gramian can be computed for linear as 
well as nonlinear systems and reduces to the linear 
gramian (2) if the system is linear (Lall et al., 2002).  
 
 
2.3 Measures for the degree of observability 
 
While the rank of the observability gramian can be 
used in order to determine if a system is observable, 
this information is not sufficient for determining 
optimal sensor locations for a process. In order to 
address this problem, measures have been defined 
that quantify the degree of observability either of the 
entire system or of specific parts of the system. A 
wide variety of different measures for linear systems 
have been introduced over the last few decades and 
an overview over several of these is presented below.  
 
Muller and Weber (1972) have outlined three 
candidates for measuring the degree of observability 
of a system based upon the linear observability 
gramian.  
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Larger values of each of these measures imply an 
increased degree of observability of the system. 
However, these measures are mainly influenced by 
the smallest singular values of the observability 
gramian.                                           
Dochain (1997) made use of the condition number                          
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for the observability analysis  of  a fixed bed 
bioreactor. The s  refer to singular values of the 
observability gramian matrix. A smaller value of the 



 

condition number generally implies increased 
observability of a system. Waldruff (1998) made use 
of the minimum singular value of the observability 
matrix  

                    )().(. min oo WWSN σ=                       (7)  
as one of the measures for determining sensor 
locations in tubular reactors. This method is similar 
to the measures based on the smallest eigenvalue 
given by Muller and Weber (1972). It serves as an 
indicator of how far the system is from being 
unobservable. Higher values of this criterion imply 
an increased degree of observability. All the above 
measures are strongly influenced by the minimum 
singular value of the system. Other approaches are 
based upon the maximal response which can be 
observed in sensor readings or upon the sum of the 
observability of all states. Van der Berg (2000) 
suggested two measures based upon these ideas. The 
first measure is the spectral radius  

                       )()( max OO WW σρ =                     (8) 
which corresponds to the largest singular value. A 
large value of the measure indicates that the 
dominant direction in the observability gramian can 
be easily observed. The second measure is based on 
the trace of the observability gramian:    
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The trace can be interpreted as the sum of the 
singular values of the matrix. Larger values of the 
trace correspond to an increase in the overall 
observability of a system. 
 
Summarizing, the presented measures can be put into 
two categories: measures which are mainly (or even 
exclusively) based upon the least observable 
direction in state space and measures which are 
predominantly influenced by the largest eigenvalue 
of the observability gramian. These findings are 
summarized in Table 1: 
 

Table1: Measures for degree of observability 
 

  Smallest eigenvalue               Largest eigenvalue             
  Measure      Equation            Measure      Equation 
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2.4 Observability analysis and sensor placement 
 
Sensor locations are often determined in order to be 
able to directly measure certain states to reconstruct 
required information of a system. As a minimum 
requirement, the controlled variables need to be 
measured for feedback control. However, other 
considerations, e.g. safety or product quality may 

result in a need for additional measurement locations. 
Observability analysis can be performed in order to 
maximize the amount of information gained from the 
available measurements.  Thereby, it is possible to 
determine sensor location in order to either 
• get the most information from a certain number 

of measurements 
• use as small a number of measurements as 

possible in order to obtain a required amount of 
information about the system. 

The following procedure is usually applied for 
determining optimal sensor locations for linear 
systems: observability gramians are computed for a 
variety of combinations of sensors at different 
locations. Scalar measures are computed from the 
gramians in order to compare the degree of 
observability of various locations for the sensor 
placement. A sensor configuration corresponding to 
the largest value of an observability measure 
indicates a good candidate for optimal sensor 
location. 
 
 

3.0 OPTIMAL SENSOR LOCATION FOR 
NONLINEAR SYSTEMS 

 
Since all systems in nature are nonlinear to a certain 
degree, a gramian of the linearized system will not 
always result in a good description of the state to 
output behavior if the operating conditions of a 
process can vary significantly. Due to this, it can 
happen that observability analysis based upon linear 
gramians may result in contradictory information 
depending upon the point of linearization of a 
system. In order to address these deficiencies, this 
work determines sensor locations by performing 
observability analysis of the nonlinear system via 
empirical gramians. This has the advantage that it 
can result in a more accurate description of the state 
to output behavior than if the gramian of the 
linearized system is used (Hahn and Edgar, 2002) 
and at the same time, it is computationally much less 
expensive than if Lie-algebra-based approaches 
(Isidori, 1995) would be used for observability 
analysis of nonlinear systems. While the empirical 
observability gramian is used for observability 
analysis, some of the measures that have originally 
been proposed for quantification of the degree of 
observability of linear/linearized systems can still be 
incorporated into this procedure: the measures need 
to be computed for the empirical observability 
gramian instead of the observability gramian of the 
linearized system. This is possible because the 
empirical gramian is an n-by-n, symmetric, and 
positive semi-definite matrix, similar to the gramian 
of a linear system. However, unlike the measures 
based upon linear gramians, these measures will 
make direct use of the nonlinear model without 
resorting to linearization. The procedure for 
computing optimal sensor locations by this approach 
is summarized in Figure 1. 



 

3.1 Measuring observability of specific states  
 
During process operations it is often required to have 
precise information about a particular state for 
process control or quality control of the product. In 
these cases, the values of specific states are of greater 
importance than the overall observability of a 
process. Many plants have requirements for both of 
these cases: certain states need to be exactly known 
and measured, whereas other measurements are used 
as an indicator of overall plant performance or safety. 
However, it is possible to take both of these 
situations into account with the proposed sensor 
placement framework. The observability of a specific 
state can be determined by analyzing the diagonal 
entry of the empirical observability gramian matrix 
corresponding to this state. The larger the magnitude 
of this entry, the easier it will be to reconstruct the 
value of this state from the available measurements. 
It should be pointed out that such an analysis is not 
always trivial. For example, if one is interested in the 
temperature at a specific location then this 
temperature should be directly measured. However, 
if the concentration of a product needs to be exactly 
known, then it is not always feasible to directly 
measure its value. Oftentimes, the value needs to be 
computed from measurements of other properties 
closely related to the state of interest. The presented 
sensor location framework can serve as an indicator 
which properties should be measured as well as 
where the measurements should be taken. 
 
 
3.2 Effect of scaling on the optimal sensor location.  
 
Most methods for determining optimal sensor 
locations are influenced by the magnitude of the 
singular values of the observability gramian.  
However, singular value decomposition is dependent 
upon scaling of the model, thereby possibly 
influencing sensor location decisions. A process 
model is generally scaled so that it reflects the 
sensitivity of the problem. That is, if a particular state 
is nearly unobservable then the scaled model should 
reflect poor response in the output for the 
perturbations in that state. The other reason to scale a 
model is to minimize the effect of round-off errors. 
Therefore, it would seem appropriate to perform 
scaling on all variables prior to the computation of 
the empirical gramian. However, scaling, though 
beneficial in most situations, can be a problem if the 
scaling factors are poorly chosen. In the past some 
authors have expressed their concern about bad-
scaling choices. According to Paige (1981), a model 
should be well scaled so that it represents the actual 
physical picture. Waller and coworkers (1995) have 
stated that a bad choice of variable scaling may 
provide results that are not representative of the 
characteristics of the plant. Scaling of variables, 
which is essential in many cases for accurate 
physical interpretation and numerical stability of 
process model, represents an important part of 

Generating state trajectories by recording the simulation data
obtained by perturbing each state individually.

Initializing sensor location,

where    represents the state where sensor is to be placed

Computing empirical observability gramians for the nonlinear system from data which is
collected from system trajectories.

     in the above equation is chosen such that the system attains steady state for   perturbation
in the states.      is the maximum step size required to capture the entire nonlinear behavior of
the system.
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Fig. 1: Flowsheet for optimal sensor location. 
 
computing measures for observability analysis. In 
order to address the scaling issue, the results from 
sensor location for the original model and for a 
scaled version of the model are compared in this 
work. Each variable, in the scaled model, is 
normalized by dividing it by its steady state value. 
 
 

4.0 CASE STUDY 
 

The presented sensor selection procedure will be 
applied to a specific example in this section. Since 
several different aspects will be investigated, the case 
study is limited to determining the optimal location if 
a single sensor is used. However, if the influence of 
placing a sensor on one part of the model has only a 
minor effect on the observability of other parts of the 
model, then conclusions can be drawn about 
subsequent placement of several sensors. The reader 
is referred to Hahn and Edgar (2002) for details on 
the calculation of the empirical gramians. 
  
 
4.1 Distillation column model 
 
For the analysis, a distillation column model with 30 
trays for the separation of a binary mixture is 
considered (Hahn and Edgar, 2002). The column has 
32 states and is assumed to have a constant relative 
volatility of 1.6. The feed is introduced in the middle 
compartment (17th tray) as a saturated liquid. The 
feed stream has a composition of xf=0.5, distillate 
and bottom product purities are xd=0.935 and 
xb=0.065, respectively. The reflux ratio is held at a 
constant value of 3.0. 



 

4.2 Measuring product observability 
 
In practice, composition sensors are generally placed 
at the top  or bottom of the distillation column. The 
rationale behind this is to place the sensor close to 
the product for optimal product observability 
(Luyben, 1992). For the distillation column, the top 
and bottom products are given by the first and the 
last stat e of the model. Similarly, the first and the last 
diagonal entries of the empirical observability 
gramian correspond to the variance of the 
measurements that is caused by changes in these 
states. In order to gain as much information as 
possible about the product concentrations, it is 
desirable to determine sensor locations that 
maximize these two diagonal entries. Figure 2 shows 
a plot of the diagonal entries as the sensor location is 
varied along the height of the column for the original 
model and for the scaled system. It can be concluded 
from the figure that the most information about the 
bottom product can be obtained by directly 
measuring this product. However, contradictory 
conclusions could be drawn for the top product when 
comparing the results obtained for the scaled and the 
original model. The original model indicates that 
measuring the state corresponding to the top product 
will give the most information about this product. 
Additionally, the further the measurement is moved 
away from the top the harder it becomes to observe 
the top product. While the scaled model also 
indicates that measuring the top product is the best 
method for determining its value, the trend of 
decreasing “observability” of the top product as the 
measurement is moved away from this location does 
not hold for the scaled model. Instead, the scaled 
model could lead to the conclusion that measuring 
the bottom product may give more information about 
the top product than some states near the top product. 
These results are surprising at first glance, because 
they clearly indicate that scaling a model can have a 
negative effect on sensor selection by leading to 
conclusions that have no physical interpretation. The 
reason for this behavior is that all states in this model 
correspond to concentrations of the same component.  
 

                                 
Fig. 2: Top and bottom product observability with 

sensor location at different trays for the original 
model (top left for top product and bottom left for 
bottom product) and scaled model (top right for top 
product and bottom right for bottom product) 

Thereby, if a scaled model is used then a slight 
increase in the absolute value of the molar flow in 
one of the product streams can lead to a significant 
change of this value on a percentage basis. Due to 
this, the observability of the scaled model is skewed 
towards the states with lower concentrations (in this 
case towards the bottom of the column). While 
scaling in general may be an important part of this 
analysis, it can be concluded that  at least for this 
specific case, it would result in misleading 
information. 
 
 
4.3 Determining optimal sensor locations  
 
Product measurement sensitivity is not the only 
factor when sensor locations are investigated. It is 
just as important to place sensors at locations where 
the most information about the state of the process 
can be gained. When analyzing the results obtained 
for sensor location by using the spectral norm and the 
trace of the empirical observability gramian, both 
measures return the same optimal location. However, 
when comparing the results for the scaled model and 
the original model (Figure 3), major difference 
between these two approaches can again be seen. For 
the original model the 6th state seems to be the best 
location and the 25th state would be the second best 
option, if one is interested in placing an additional 
sensor in the stripping section. For the scaled model, 
the bottom-most state in the stripping section (32nd 
state) would seem to be the best option. However, the 
sensitivity at the very top and bottom is at a 
minimum for most columns as the driving force for 
mass transfer is small compared to rest of the column 
(Luyben, 1992). Hence, the best sensor location 
should be at a certain distance from either end of the 
column. The results for the original model are in line 
with this physical knowledge, but the results for the 
scaled model would lead to contradicting 
conclusions. This investigation can serve as another 
indicator that special attention has to be paid when 
considering the use of scaling for sensor location. At 
least for this type of investigation, scaling should be 
avoided. Another conclusion that can be drawn from 
the results is that the feed tray is not a good choice 
for placing a sensor. This conclusion is based upon 
observations using both types of measures for the 
scaled and the original model. This seems physically  

     
Fig. 3: Sensor location with trace/norm measure for 

original model (left) and scaled model (right) 



 

justified as the feed tray is affected by the feed 
composition and is least sensitive to perturbations 
around its nominal point. In order to corroborate 
these findings, the location of the feed tray has been 
varied. Figure 4 shows the measures for a feed 
located at the 10th and the 25th tray. In both cases , the 
feed tray seems to be the worst location for placing a 
sensor. However, it should be pointed out that 
measuring the feed concentration, but not the 
concentration on the feed tray, can have beneficial 
effects if feedforward control strategies are to be 
applied. Another observation from this case study is 
that the measures based on the smallest singular 
value do not provide any relevant results for sensor 
placement.   

 
Fig. 4: Sensor location with 10th tray as feed tray 

(left) and 25th tray as feed tray (right) 
 
 

5. CONCLUSION 
 

This paper investigated a technique for computing 
optimal sensor locations for nonlinear dynamic 
systems. This has been achieved by first computing 
the empirical observability gramian for the nonlinear 
system over a pre-specified operating region and then 
determining observability measures based upon the 
empirical gramian. This method has the advantage 
over other techniques in that it does not resort to 
linearization of the model while at the same time it is 
computationally tractable. In addition it is possible to 
automate the presented procedure enabling 
computation of optimal sensor locations by 
formulating and solving an optimization problem. 
 
When analyzing the various observability measures 
used for sensor location it can be concluded that for 
systems where the number of states far exceeds the 
number of measurements, as in the presented case 
study, methods based on maximal response energy 
provide better results than methods based upon 
maximizing observability of the least observable 
direction as the magnitude of the smallest singular 
value is often very close to zero. Spectral norm and 
trace of the empirical gramian are measures that can 
result in more accurate information, especially if 
some of the singular values are close to zero. In the 
presented case study, the measures indicate that there 
is one location in the stripping and one location in 

the rectifying section which are optimal for sensor 
placement.  
 
Another important aspect of this work was 
investigation of the effect  of scaling on the sensor 
placement. While scaling would seem to be a natural 
choice when computing gramians, it can lead to false 
conclusions in this investigation. The results indicate 
that scaling may not result in appropriate information 
if all the variables are representing the same type of 
physical property, i.e. concentrations for this case. 
The effect that scaling has on the computation of 
gramians when different types of variables are 
present, e.g. temperature and concentration variables, 
will be investigated in future work.   
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