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Abstract: An algorithmic framework for numerically approximating multi-
parametric nonlinear programming (mp-NLP) solutions is given, along with a
method that uses mp-NLP for evaluating the adequacy of the nominal model used
in Implicit Optimization. The mp-NLP algorithm builds on numerical methods
for single parameter nonlinear programming and for the approximation of implicit
manifolds. An example problem is presented.
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1. INTRODUCTION

A multi-parametric nonlinear program (mp-NLP)
is a nonlinear program whose solution is a function
of some finite number of uncertain model param-
eters. In particular, let u ∈ Rn be the vector of
variables to be minimized over and α ∈ Rd be the
set of uncertain parameters. Then the mp-NLP
problem is to find

u∗ (α) = arg





min
u

f (u, α)

s.t.
h (u, α) = 0
g (u, α) ≤ 0





, (1)

where

f ∈ C2 : Rn × Rd → R,

h ∈ C2 : Rn × Rd → Rq,

and g ∈ C2 : Rn × Rd → Rp.

(2)

1 Supported by the American Association of University
Women, the University of Texas at Austin, and the Na-
tional Science Foundation.

No numerical methods for solving this problem
have been given in the literature, however, meth-
ods for solving various simplifications of this prob-
lem have, see for example (Gal and Nedoma,
1972; Tøndel et al., 2003; Guddat et al., 1990).
This work extends the predictor-corrector meth-
ods given for single parameter nonlinear pro-
gramming (Lundberg and Poore, 1993; Guddat et
al., 1990) to mp-NLP using the multi-dimensional
predictor-corrector algorithm for general parame-
terized nonlinear equations described by Rhein-
boldt and Brodzik (Rheinboldt, 1988; Brodzik,
1996).

There are many applications for which having a
solution to the problem given in Equation 1 would
be quite useful. For example, extending Tøndel’s
work, nonlinear MPC problems can be thought of
in this light, with the initial state as the set of un-
certain parameters. Then an mp-NLP algorithm
would make it possible to do the bulk of the cal-
culations necessary to implement nonlinear MPC
offline, and in a manner that is more likely to be
able to deal with the complications introduced by



non-convexity. Also, process synthesis problems
often contain highly uncertain parameters such
that one might want to look at the whole space of
possible solutions, and multi-objective optimiza-
tion problems can be considered by introducing
parameters that indicate the relative importance
of the various objectives. This work, however,
concentrates on the application of mp-NLP to the
question of whether or not a process model is
accurate enough for use in Implicit Optimization.

Implicit Optimization is a method for optimizing
batch processes proposed by Srinivasan, Bonvin,
and their colleagues in a recent paper (Srinivasan
et al., 2003). The assumption that must be sat-
isfied in order for this method to be successful is
that the optimum of the nominal model of the
process, as compared to the actual process opti-
mum, must be qualitatively correct. Specifically,
a qualitative optimum is defined by parsing the
nominal optimum into a sequence of sets of active
constraints, and is implemented in the plant via
control loops that are designed to follow these
constraints and/or set-points, switching at prede-
termined times which are updated using run-to-
run control. The method is appealing in its online
simplicity and potential to be robust to plant-
model mismatch. However, one question looms:
how does one know if the nominal model is close
enough to the actual process to produce the cor-
rect qualitative optimum?

A three step process for answering this question is
proposed. First, the nominal model is augmented
with a) any structural elements that are not in
the nominal model, but are suspected of being
present and significant in the actual process and
b) a list of uncertain model parameters. The pa-
rameter list should include parameters directly
related to whether or not each of the structural
elements in a) are present. Secondly, the paramet-
ric programming problem that results from using
the augmented model in the original optimization
problem is solved via discretization of any ODE’s
and the algorithm discussed in this paper. Thirdly,
the region in the parameter space where the nom-
inal qualitative optimum is valid is identified by
inspection, and the likelihood of the process being
in this region is assessed using process knowledge
and data.

Sections 2 and 3 of this paper provide some
background and outline a method for solving
multi-parametric nonlinear programming (mp-
NLP) problems. The fourth section then discusses
the three part process for validating an Implicit
Optimization result using an example problem.
Finally, conclusions and future work are given.

2. MATHEMATICAL FOUNDATIONS

2.1 mp-NLP Problem Formulation

This work solves the mp-NLP problem using the
Fritz-John first-order necessary conditions com-
bined with an active set strategy (Lundberg and
Poore, 1993; Guddat et al., 1990). In particular,
once the set, A, of active inequality constraint
indices is defined:

A = {i : gi (u, α) = 0} , (3)

solving the mp-NLP problem (Equation 1) is
equivalent to solving the following set of parame-
terized nonlinear equations combined with appro-
priate active set switching:

FA (z, α) =




∇uL (z, α)
h (u, α)

gi (u, α) , ∀i ∈ A

λT λ + µT µ + λ2
0 − β2

0


 (4)

where L is the Lagrangian (Mangasarian and
Fromovitz, 1967):

L (z, α) = λ0f (u, α)+λT h (u, α)+µT g (u, α) (5)

and
z = (u, λ, µ, λ0) . (6)

2.2 Implicit Manifolds

Parameterized nonlinear equations of the form

F (z, α) = 0

F : RN × Rd → RN
(7)

have been studied quite extensively in their own
right. In this setting, a point

x = (z, α) (8)

is regular if DF (x) (= (∇F (x))T ) has maximal
rank N . Then, given sufficient smoothness of F ,
the set

M = {x : x is regular and F (x) = 0} (9)

is an implicit, d-dimensional differentiable mani-
fold (Brodzik, 1996). Also, Sard’s theorem tells us
that if F ∈ Ck, k > d then almost all (in the sense
of Lebesgue measure) points are regular (Guddat
et al., 1990); therefore M encompasses almost all
solutions of F (x) = 0.

Numerical methods for approximating the mani-
fold M are based on local parameterizations and
tangent spaces. Given a regular point x0 ∈ M ,
the tangent space of x0, Tx0M , is a d-dimensional
linear subspace, is naturally associated with the
function F :

Tx0M = kerDF (x0) ,

=
{
y ∈ RN+d : DF (x0) y = 0

}
,

(10)

and intuitively represents the directions one can
travel from x0 and expect to remain close to



the solution manifold M . The tangent space of
x0 also induces a local parameterization once an
orthonormal basis for Tx0M has been introduced.
Let U be a (N + d) × d matrix whose columns
form such an orthonormal basis. Then, within an
open neighborhood of x0, U2, all points on M are
uniquely identified with coordinates in this basis,
t, that are within a given open neighborhood of
the origin, U1:

M ∩ U2 ={
x : x = x0 + Ut + (DF (x0))

T Φ(t)
, t ∈ U1}

(11)

where
Φ : Rd ⊃ U1 → RN (12)

is a unique, smooth function (Fink and Rhein-
boldt, 1987).

2.3 Triangulations

An approximation of M can be obtained using
the above ideas by considering a neighborhood
of the origin of TxcM , which has coordinates in
Rd and known point xc at its origin. New points,
ti’s, are predicted in this space, and then pro-
jected onto M using Equation 11 and a nonlinear
equation solver to approximate (DF (x0))

T Φ(t).
The overall structure of M is easier to analyze,
however, if connectivity is defined between these
approximating points, such that a piecewise linear
approximation of M is obtained. In this work, that
connectivity is defined for the ti’s in relation to the
origin of TxcM and other relevant points using a
triangulation.

A triangulation is a set of simplices. In Rd, a
simplex is the convex hull of d+1 points, which are
called vertices or nodes of the simplex. Therefore,
if d = 1, a simplex is a line segment, if d = 2,
a simplex is a triangle, if d = 3, a simplex is
a tetrahedron, etc. Also, the convex hull of any
number of vertices of a simplex is a face and the
convex hull of d vertices is a facet.

Besides being a set of simplices, a triangulation of
some set of distinct points, P, also satisfies several
additional properties (Lawson, 1986):

(1) All vertices of the simplices are members of
P.

(2) The interiors of the simplices are pairwise
disjoint.

(3) Each facet of a simplex is either on the
boundary of the convex hull of P or is a
common facet of exactly two simplices.

(4) Each simplex contains no points of P other
than its vertices.

(5) The union of the simplices in the triangula-
tion is the convex hull of P.

In this work, local triangulations in TxcM will sat-
isfy all of these properties, but the d-dimensional
triangular approximation of M only satisfies the
first four properties and only if “convex hull of
P”in Property 3 is replaced by “current approxi-
mation of M”.

2.4 Singular Points and Qualitative Solutions

The developments in the previous two subsections
provide the basis for numerically approximating
M (Equation 9) as defined by FA (Equation 4).
However, our real desire is to elucidate important
qualitative features of this manifold. With respect
to our optimization problem, this means identify-
ing when the sought optimum is no longer near
the neighborhood of M being considered, which
happens when the need to change active sets is
detected or the classification of the current opti-
mum (minimum, maximum, or saddle) changes.
Regions within such boundaries are considered
to have the same qualitative solution, and the
adjacent qualitative solutions are found by either
changing A (and therefore FA) or by looking
at another region on M which has the correct
classification and values of α. Poore et al. have
shown and exploited the connection between the
boundaries of qualitative solutions and properties
of solutions of FA (x) = 0 with active set switch-
ing, however, to present the main theorem that
demonstrates this connection, some additional no-
tation is needed.

First of all, Equation 4 can be written without
using the active set strategy:

F (z, α) =




∇uL (z, α)
h (u, α)

µigi (u, α) , ∀i
λT λ + µT µ + λ2

0 − β2
0


 = 0. (13)

This is the original form of the Fritz-John neces-
sary conditions (still leaving off the sign conditions
on µ, g and λ0), but includes the non-smooth
complementarity conditions µigi = 0, which are
difficult to solve numerically.

Secondly, we will use the concept of the eigen-
values of a matrix restricted to a subspace. In
particular, let B ∈ Rn×n be a square matrix,
and V be a k-dimensional subspace of Rn. Then
if Z ∈ Rn×k is an orthonormal basis for V , the
eigenvalues of B restricted to V , λ (B|V ) are just
the eigenvalues of ZT BZ, and B|V is singular if
and only if zero is an eigenvalue of ZT BZ.

Now we present the theorem of interest without
proof (Lundberg and Poore, 1993):

Theorem 1. Let (z0, α0) = (u0, λ0, µ0, λ00, α0) be
a solution to Equation 13. Assume that f , g
and h ∈ C2, the original definition of the set A



(Equation 3) holds, and define a tangent space T
as:

T = {y ∈ Rn : Duhi (u0, α0) y = 0, ∀i
Dugj (u0, α0) y = 0, ∀j ∈ A} (14)

Then DzF (z0, α0) is nonsingular if and only if
the following three conditions hold:

(i) ∀j ∈ A, µj 6= 0;

(ii) S := {∇uhi (u0, α0)}∀i ∪ {∇ugj (u0, α0)}∀j∈A

is a linearly independent collection of q + |A|
vectors;

(iii) The Hessian of the Lagrangian restricted to
tangent space T , ∇2

uL
∣∣
T

(z0, α0), is nonsingular.

Therefore, detecting the transition from one qual-
itative solution to another is equivalent to moni-
toring the signs of µ and g (the active set), and
detecting singularities in DzFA, since the char-
acterization of non-singular points is completely
based on the active set, the signs of the active µi’s,
and the signs of the eigenvalues of ∇2

uL
∣∣
T

(z0, α0)
(Guddat et al., 1990).

3. A MULTI-PARAMETRIC NONLINEAR
PROGRAMMING ALGORITHM

An algorithmic framework for solving mp-NLP
problems is now given. The basic structure is
taken from Brodzik’s work on approximating im-
plicitly defined manifolds (of any finite dimension)
(Brodzik, 1996), the contributions of this work
being the customization of Brodzik’s algortihm
to the mp-NLP problem (largely using the re-
sults of Lundberg and Poore), and the addition of
auto-scaling, adaptive step-size adjustment, and
parameter bounds following. The algorithm cur-
rently does not switch active sets, but that feature
is forthcoming. (Switching active sets is related
to singularity detection, approximation, and fol-
lowing, as indicated by Theorem 1. The current
algorithm only detects singularities.) I will now
give an overview of the entire algorithm. Details
are excluded due to space constraints.

The proposed algorithm is best described as
a multi-dimensional predictor-corrector. Given a
starting point x0 (which is a non-singular solution
of Equation 13), the active set A of x0 is deter-
mined, and the algorithm seeks to approximate
the manifold

M = {x : x is regular and FA (x) = 0} . (15)

To initialize the algorithm, a reference triangu-
lation of the origin in Rd, Tref , is calculated
using triangulations by reflections (Allgower and
Georg, 1978), x0 is placed at its origin, and for
each other vertex in the triangulation a new point

is predicted. This new point is considered to be in
Tx0M and is represented in the full space by

x0
i = x0 + hx0Uti, (16)

where U is an orthonormal basis for Tx0M , hx0 is
an initial step size, and ti is a point in Tref . These
points, x0

i , are then projected onto the solution
manifold, M , using a nonlinear equation solver to
solve the augmented equations

G (xi) =
[

FA (xi)
UT

(
xi − x0

i

)
]

= 0, (17)

characterize the new point with regards to the
optimization problem, and detect any singularities
in DzF (Lundberg and Poore, 1993). Finally, x0,
the new points and the triangulation structure
specified by Tref are stored in the database struc-
ture described in (Brodzik, 1998).

Once initialized, the algorithm enters the main
loop. The first step is to find, if it exists, the
next node in the database which is on the bound-
ary of the current approximation of M , is non-
singular, and is feasible. This node is labeled xc

(the center point), and analogous to the algorithm
initialization, xc becomes the origin of its tangent
space in Rd. Any points in the database which are
already in a simplex with xc are projected onto
this tangent space:

yj = UT (xj − xc) , (18)

with special note being made of points that are
on an open facet, which is a facet with only
one adjacent simplex. Then Tref is rotated such
that the direction of one of its vertices (from
the origin) lines up with one of the open facet
vertices’ directions, and any points in Tref lying
between the open facets and not too close to any
of them are used to predict new points in the
approximation. These new points, the yi’s on the
open facets, and the origin are then triangulated
using Joe’s algorithm (Joe, 1993). Finally, the new
points are projected onto the solution manifold
(using the same procedure as the initialization
phase), and the algorithm checks to see if any of
the new simplices overlap with any simplices that
are already in the database. If there is no overlap,
the new points, simplices and facets are added
to the database. Otherwise, this iteration of the
loop is ignored and xc is marked as temporarily
unusable as a center point. The main loop is
repeated as long as potential center nodes exist.

4. IMPLICIT OPTIMIZATION EXAMPLE

In order to demonstrate the three part process
for establishing Implicit Optimization model ade-
quacy discussed in the introduction, a hypothet-
ical scenario is considered. Imagine that an engi-



neer is charged with starting up a new reaction
process based on the following chemical reaction:

A → B, r1 = k1cA, k1 = 0.05s−1. (19)

Since this is the reaction that produces the prod-
uct, B, the chemists who studied it were thorough
and are sure that the reaction rate constant, k1, is
very accurate. However, they did not estimate the
rate constant of the following known side reaction
as precisely:

B → C, r2 = k2cB , k2 = α1k1, α1 ≈ 0.5, (20)

and suspect a second side reaction, but are not
sure if it is significant:

A → C, r3 = k3cA, k3 = α2k1, α2 ≈ 0. (21)

The reactions are to take place in a batch reactor
with capacity Vmax = 1000L that is equipped
with an automatic feed and emptying system,
with minimum and maximum flowrates Fmin =
0.01L/s and Fmax = 1L/s. The process objective
is to maximize the amount of product B produced
per unit time, where the total time of a batch is
the amount of time it takes to fill the reactor to
its initial volume, V0, plus the duration of the
batch, T , plus the amount of time it takes to
empty the reactor at the end of the batch. In order
to simplify the problem, we will assume that the
reactor will be operated in batch or semi-batch
mode. More specifically, the feed to the reactor
is pure A at a concentration of cA0 = 2M , and
the reaction is either started with the reactor full
of feed (V0 = Vmax), which is batch mode, or it
is started only partially full (V0 < Vmax), and is
filled the rest of the way during the first portion
of the batch, using a constant flowrate, F , until
time τ , when V (τ) = Vmax and the flow is shut
off, which is semi-batch mode. This process can
be modeled by two sets of differential equations,
one that is valid for t < τ (τ = 0 for batch mode
and τ = Vmax−V0

F for semi-batch mode):

dn̂A

dt
= cA0F − (1 + α2) k1n̂A, n̂A (0) = cA0V0

dn̂B

dt
= k1n̂A − α1k1n̂B , n̂B (0) = 0

dV̂

dt
= F, V̂ (0) = V0

(22)
and another that is valid for t ≥ τ :

dnA

dt
= − (1 + α2) k1nA, nA (τ) = n̂A (τ)

dnB

dt
= k1nA − α1k1nB , nB (τ) = n̂B (τ)

dV

dt
= 0, V (τ) = Vmax.

(23)

Let us assume that the Implicit Optimization
method is to be used to optimize this process. The
first step is to maximize the objective function

using the nominal model (α1 = 0.5 and α2 = 0),
and to characterize the resulting solution. That
optimization problem can be written as follows,
noting that the above differential equations are
simple enough that we can obtain an analytic
expression for the number of moles of B present
at the end of the batch, nB (V0, F, T ):

max
V0,F,T

nB (V0, F, T )
V0

Fmax
+ T + Vmax

Fmax

(24)

s.t.
0 ≤ V ≤ Vmax

Fmin ≤ F ≤ Fmax

τ ≤ T.

(In a more complex problem, the discretized
ODE’s would be equality constraints in the NLP.)
The solution to this problem is V0 = 978.7L,
F = 1L/s and T = 27.7s, which is characterized
by noting that V0 and T are at unconstrained
values and that F is at its upper bound. If we
implemented this Implicit Optimization solution
directly we would use the given values as a starting
point and adjust V0 and T online using run-to-run
control. However, it may very well be that this
qualitative optimum is incorrect since α1 and α2

are so uncertain. Therefore, the three-step method
outlined in the introduction should be used to
evaluate the likelihood that this qualitative op-
timum is correct.

Step one (augmenting the nominal model with
suspected structural elements and identifying un-
certain model parameters) was done implicitly
during the presentation of the problem. Specif-
ically, the nominal model does not include the
third reaction, Equation 21, and the uncertain
parameters are α1 and α2. We will allow fairly
wide bounds on these parameters for the purpose
of solving the mp-NLP, namely

0 ≤ α1, α2 ≤ 5.0. (25)

The second step is to solve the parametric opti-
mization problem

(V0 , F, T )∗ (α1, α2) =

arg





max
V0,F,T

nB (V0, F, T, α1, α2)
V0

Fmax
+ T + Vmax

Fmax

s.t.
0 ≤ V ≤ Vmax

Fmin ≤ F ≤ Fmax

τ ≤ T





(26)

using the method outlined in the second and third
sections of this paper. The corresponding numeri-
cal results are shown in Figure 4, which depicts the
approximation of M projected onto α1×α2× V0.
As you can see, the results show no qualitative
change in the solution in the region about x0, as
no singularities were detected, however, the algo-
rithm cannot yet fill in gaps that are left in order



to avoid overlap or follow singular paths. The
addition of these features should both speed up
the algorithm and allow more global exploration
of the solution manifold. As the results stand now,
there is no reason to believe that Implicit Opti-
mization will not be successful for values of α near
nominal, but the more global search forthcoming
in future work may find that a different solution
is the global optimum for some values of α near
enough to the nominal values that the alternative
solution(s) should be considered further.
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Fig. 1. Numerical results for the Implicit Opti-
mization example. All of the points shown are
feasible minimums.

5. CONCLUSIONS

Two novel methods have been presented: an al-
gorithm for solving multi-parametric nonlinear
programming (mp-NLP) problems, and a method
for evaluating the adequacy of the nominal model
used in Implicit Optimization (Srinivasan et al.,
2003), which relies heavily on solving an mp-
NLP problem. The mp-NLP algorithm is de-
signed to provide qualitative sensitivity informa-
tion about the underlying NLP problem, par-
ticularly by defining regions in the parameter
space where a single qualitative optimum holds.
This emphasis is particularly useful for evaluating
Implicit Optimization model adequacy since the
main crux of this method is its dependance on
the nominal optimum being qualitatively correct.
This paper presents preliminary results for both
of these methods, demonstrating their potential.
Improvements to the mp-NLP algorithm that will
allow more global exploration of the solution space
are forthcoming in future work.
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