
DYNAMIC OPTIMIZATION OF PROCESSING
SYSTEMS WITH MIXED DEGREES OF FREEDOM

Olaf Stursberg

Process Control Laboratory (BCI-AST)
University of Dortmund, D-44221 Dortmund, Germany

Email: olaf.stursberg@uni-dortmund.de

Abstract: Procedures like start-up, product change-over, or shutdown of processing
systems usually involve the manipulation of continuous and discrete controls. To
optimize such procedures, the use of hybrid models is often appropriate to account for
the change of dynamics during the transition. Some recently developed approaches
for hybrid system optimization are based on mixed-integer linear programming. Ap-
plications reveal that the complexity inherent to these approaches considerably limits
the applicability to industrial-size problems. This paper suggests as an alternative a
tailor-made algorithm that optimizes the discrete and continuous degrees of freedom
in a two-stage procedure. While the discrete controls are selected by a graph search
algorithm, the continuous controls are obtained by embedded nonlinear programming.
The method is illustrated for the start-up of a CSTR.

Keywords: Automata, Hybrid Systems, Integer Programming, Nonlinear
Programming, Dynamic Optimization.

1. INTRODUCTION

It is certainly the majority of processing systems
for which the operation is determined by the
combination of continuous and discrete controls.
While the continuous inputs are usually set by
standard feedback control loops, discrete controls
(like on-off actors occurring in form of valves,
pumps, heaters, etc.) are determined predomi-
nantly by logic controllers. Traditionally, the con-
trol tasks that involve logical decisions and those
which establish continuous regulation are sepa-
rated and not designed in conjunction. For op-
erations like start-up, shutdown, product change-
over, or also the sequential operation of batch
processes, the simultaneous consideration of both
types of controls seems necessary. This is true in
particular for the optimization of above-named
procedures, since a separated design can not ac-
count for potentially opposing effects of both con-
trol components. This paper thus advocates a si-
multaneous optimization of both types of controls.

An important effect in model-based optimization
of the considered procedures is that the process
dynamics usually changes significantly. Is is often
not possible to obtain one model that is suffi-
ciently accurate for the complete procedure, but a
set of models is required to represent the variation
of the dynamics. Hybrid dynamic models have
been identified in recent years as a suitable means
to account for dynamic-dependent transitions be-
tween different models and for the combination of
continuous as well as discrete (switching) inputs,
see e. g. (Lynch et al., 2003).

The task addressed in this paper is to model the
process dynamics as a hybrid dynamic system, to
formulate the transition procedure as an optimiza-
tion problem, and – most importantly – to develop
an algorithm to efficiently compute the (optimal)
control inputs. The cost to be minimized can be
the transition time in the simplest case, or more
complex cost functions which depend on the state
and input variables. Different approaches to the

optimization of hybrid systems have been pub-
lished in recent years, ranging from rather generic
formulations to tailor-made methods for certain
subtypes of hybrid systems, see e.g. (Branicky
et al., 1998; Avraam et al., 1998; Broucke et
al., 2000; Gokbayrak and Cassandras, 2000; Hed-
lund and Rantzer, 2002; Barton and Lee, 2002;
Shaikh and Caines, 2003; Oldenburg et al., 2003).
One branch of methods follows the idea of trans-
forming the hybrid dynamics into a set of alge-
braic (in-)equalities that serve as constraints for
a mixed-integer program (Bemporad and Morari,
1999; Stursberg et al., 2002). If all constraints are
written in linear form, mixed-integer linear (or
quadratic) programming (MILP, MIQP) can be
used for solution, i.e., standard solvers that em-
ploy branch-and-bound strategies, where bounds
are obtained from linear relaxations, can be used.
In (Till et al., 2003) it has been shown exemplarily
for the approach in (Stursberg et al., 2002) that
a drawback is the somewhat limited applicability
when it comes to efficient solution for large-scale
systems. The investigation allows the conclusion
that one reason for the complexity is the fact that
the MILP method does not restrict the search for
the optimum to the true degrees of freedom (the
model inputs) but has to cope with a large number
of auxiliary integer variables and constraints in-
troduced to map logical into algebraic constraints.

As an alternative, this paper suggest a method
with the following characteristics: (a) the discrete
degrees of freedom are determined by a tree search
algorithm with tailor-made heuristics to deter-
mine the optimal discrete control sequence with
low effort, (b) the continuous degrees of freedom
are obtained from solving embedded (nonlinear)
programming problems, (c) the cost function is
evaluated by hybrid simulation which takes care
of the state-dependent structural changes of the
model.

2. HYBRID SYSTEM OPTIMIZATION

The type of model used to represent the dynamics
to be considered for the transition procedure is
first defined precisely. As argued in (Stursberg
and Engell, 2002), the following type of hybrid
automaton is suited for this purpose since it
accounts for different nonlinear dynamics assigned
to certain regions of the continuous state space
(or different modes of operation), and for the
combination of continuous and discrete inputs.
The latter are useful to model, e.g., actuators with
an ’on/off’-type of behavior.

Definition 2.1. Hybrid Automaton A
The hybrid automaton A = (X,U, V, Z, inv, T, g,
r, f) consists of the following components:

• the continuous state space X ⊆ R
nx on which

the state vector x is defined 1 ;
• the continuous input space U = [u−

1 , u+
1] ×

. . . [u−
nu

, u+
nu

] with u−
j , u+

j ∈ R and the continu-
ous inputs u ∈ U ;

• the finite discrete input space V = {v1, . . . , vnd
}

with discrete inputs v ∈ V for which vj ∈ R
nv ;

• the finite set of locations Z = {z1, . . . , znz
};

• a mapping inv : Z → 2X which assigns a
non-empty invariant of the form inv(zj) =
{x | ∃ npj

∈ N, Cj ∈ R
npj

×nx , dj ∈ R
npj , x ∈

X : Cj · x ≤ dj} to each location zj ∈ Z;
• the set of transitions Θ ⊆ Z × Z, where a

transition from z1 ∈ Z into z2 ∈ Z is denoted
by (z1, z2);

• a mapping g : Θ → 2X that associates a
guard g((z1, z2)) ⊆ X with each (z1, z2) ∈
Θ such that: g((z1, z2)j) = {x | ∃ ngj

∈

N, Cj ∈ R
ngj

×nx , dj ∈ R
ngj : Cj · x ≤ dj}.

Given a state z1 ∈ Z, it is required for all
pairs of transitions originating from z1 that the
corresponding guards are disjoint;

• a reset function r : Θ × X → X which assigns
an updated state x′ ∈ X to each (z1, z2) ∈ Θ
and x ∈ g((z1, z2));

• a flow function f : Z × X × U × V → R
n that

defines a continuous vector field ẋ = f(z, x, u, v)
for each location z ∈ Z.

Semantics: Let T = {t0, t1, t2, . . .} be an ordered
set of time points tk ∈ R

≥0 which contains the
initial time t0, and all points of time at which an
input change or a transition occurs. The states
xk := x(tk), zk := z(tk) and the inputs uk =
u(tk), vk = v(tk) are defined on T , i.e. their values
are piecewise constant on intervals [tk, tk+1[, k ∈
N ∪ {0}. For given input sequences u(tk) and
v(tk), a feasible run φσ of A is then defined as a
sequence: φσ = (σ(t0), σ(t1), σ(t2), . . .) of hybrid
states σk := σ(tk) = (zk, xk) such that:

• Initialization: σ(t0) is initialized to a given
z0 = z(t0) ∈ Z and x0 = x(t0) ∈ X with
x0 ∈ inv(z0), x0 /∈ g((z0, •)) for any (z0, •) ∈ Θ.

• Progress: σ(tk+1) results from σ(tk) by:
(i) continuous evolution: χ : [0, τ] → X,

τ ∈ R
>0 where χ(t0) = xk, χ̇(t) =

f(zk, χ(t), uk, vk) with an existing unique
solution for t ∈ [0, τ], and χ(t) ∈ inv(zk)
but for all g(zk, •) ∈ Θ and t ∈ [0, τ [:
χ(t) /∈ g(zk, •);

(ii) followed by a transition: (zk, zk+1) ∈ Θ,
χ(τ) ∈ g(zk, zk+1), and xk+1 = r((zk, zk+1),
χ(τ)) ∈ inv(zk+1). �

For the procedure developed in the next section it
is important to note that a run of A is determin-
istic for given input trajectories. In particular, a
transition is taken immediately if the correspond-

1 For all parameters n• in Def. 2.1 applies n• ∈ N.

ing unique guard condition is met. Compared to
the model used before in this context (Stursberg
and Engell, 2002), the automaton in Def. 2.1 com-
prises two extensions: (a) the invariants inv(z) do
not necessarily establish a partition of the state
space X, but can possibly overlap, such that dif-
ferent dynamics can be valid for the same region
of X if different operating conditions apply; (b) if
a transition is taken, the continuous state can be
updated by the reset function r.

The objective of optimizing transition procedures
of processing systems is now cast into a minimiza-
tion problem employing the model according to
Def. 2.1 as constraints. To be optimized is the
procedure of driving the system from an initial
state σ(t0) into a set of hybrid target states, de-
fined as Σtar = (ztar,Xtar) with ztar ∈ Z and
Xtar ⊂ inv(ztar). An additional requirement for
the transition procedure is that a set of forbidden
regions F = {F1, . . . , FnF

} is never entered, where
each region Fj = (zF,j ,XF,j) is a hybrid state set
with XF,j ⊂ inv(zF,j). These regions are suitable
to model the exclusion of undesired operating con-
ditions, e.g., the concentration ranges of explosive
mixtures.

The task is then to find the input trajectories that
minimize a given cost functional Ω for the tran-
sition procedure. For simplicity of notation, φu =
(u0, u1, . . . , uf) is written for a continuous input
trajectory on a finite time set T = {t0, . . . , tf}
and Φu for the set of all input trajectories of this
length; likewise, φv = (v0, v1, . . . , vf) is a discrete
input trajectory and Φv contains all φv. Given
the sets Φu and Φv, the set of all corresponding
feasible runs 2 is denoted by Φσ. The objective
is to determine the input trajectories φ∗

u, φ∗
v that

lead to a feasible run φ∗
σ which minimizes the cost

function according to:

min
φu∈Φu,φv∈Φv

Ω(tf , φσ, φu, φv) (1)

s.t. φσ = (σ0, . . . , σf) with: σ0 = (z0, x0),

σf := (z(tf), x(tf)) ∈ Σtar, and for φσ

applies in each phase of cont. evolution

(Def. 2.1) : χ(t) /∈ Fj ∀ Fj ∈ F, ∀ t ∈ [0, τ].

A slightly simplified version of this problem has
been tackled in (Stursberg and Engell, 2002;
Stursberg et al., 2002) by an approach comprising
the following steps: (a) the flow functions are
approximated by discrete-time and linear models,
(b) all logical parts of the model are reformulated
in algebraic linear form such that a mixed-integer
linear program results, (c) the optimization prob-
lem is solved in an MPC-like fashion where mixed-
integer linear programming (MILP) is applied on
a limited look-ahead horizon in each step.

2 Of course, some combinations of φu and φv do not lead

to feasible runs.

It has been identified as a drawback of this
technique that the transformation into algebraic
form requires a large set of auxiliary integer vari-
ables (and auxiliary constraints). When apply-
ing branch-and-bound techniques for MILP, the
search tree encoding the discrete alternatives thus
is considerably larger than one would expect from
the true set of discrete degrees of freedom (i.e.,
the cardinality of V for each time point in T).
As a consequence for larger systems, the method
could be applied only for rather short prediction
horizons. This is the motivation for an alternative
procedure that does not use a completely alge-
braic formulation of the transition dynamics of A.

3. A GRAPH SEARCH ALGORITHM

The key idea is to separate the optimization of
the continuous and discrete degrees of freedom
in the following sense: The discrete choices (i. e.,
the input trajectories φv) are determined by a
graph search algorithm resembling the well-known
principle of shortest-path search. For each node
contained in the search graph, an embedded op-
timization for the continuous degrees of freedom
(and optionally for relaxed discrete degrees of
freedom for future steps) is carried out. Within
this embedded nonlinear programming, numerical
simulation is employed to evaluate the hybrid
dynamics of A, leading to a cost evaluation for
the referring system evolution. These costs are
used in the graph search to apply a branch-and-
bound strategy, i.e., upper (and lower) bounds
on the optimal costs for the transition procedure
are iteratively computed to prune branches of the
search tree as soon as possible.

In detail, the algorithm operates on a directed
acyclic graph in which the nodes represent a sys-
tem state at a time tk for the case that a discrete
input v ∈ V has been applied in the previous
step. As illustrated in Fig. 1, the graph can be
understood as a representation for the hybrid
states reachable over the time set T if all possible
discrete input trajectories are applied. Clearly,
the size of the graph grows exponentially with
the number of discrete decisions, i.e. according to
|V ||T |−1 – hence, an objective of the optimization
algorithm is to prune branches as quickly as pos-
sible. The information stored with each node is a
structure n = (φσ, φu, φv, ca, cp), i.e. it contains
the hybrid state trajectory φσ up to the current
state (zk, xk), the input trajectories φu and φv

that led to this state, as well as the costs ca accu-
mulated on the path into (zk, xk), and (optionally)
a prediction cp for the costs encountered on the
remaining path into the target.

For a state trajectory φσ that leads from the initial
state to the target, a solution is defined as a tuple

t0

n0

v1

v1

v2

v2

n1 n2

n3 n4

t1

t2

Fig. 1. Graph encoding the discrete choices for
V = {v1, v2}.

φsol = (φσ, φu, φv, ca), and Φsol as the set of all
found solutions. If, furthermore, the initial node is
specified as n0 = (σ0,−,−, 0,∞) and nmax as the
number of nodes to be explored maximally, the
algorithm can be written as shown in Fig. 3: The
set N denotes the set of all feasible nodes explored
during the algorithm, L is the set of live nodes
starting from which the system evolution still has
to be investigated further, G is the set of nodes
generated in the last iteration, and S are the nodes
selected from L or G in the current iteration. This
selection is realized by a function select which
returns S depending on a chosen search mode.
In an implementation of the algorithm the modes
breadth-first (S := L), depth-first (S := {nbest},
where nbest is the node from G with minimum
cost), and best-first (S := {nbest} with nbest as the
best node from L) can be chosen. In experiments

N = L = G := {n0};
S := ∅; Φsol := ∅;
WHILE (L 6= ∅) ∧ (|N | < nmax) DO {

S := select(L,G);
G := ∅;
FOR ALL (n ∈ S) DO {
IF (n.ca ≤ ub):
FOR ALL (v ∈ V) DO {

(σ, u, φ̂x, φ̂u, φ̂v) = extend(n, v);
φσ := (φσ, σ);
φu := (φu, u);
φv := (φv, v);
ca = history(φσ, φu, φv);

cp = future(φ̂σ, φ̂u, φ̂v);
nnew = (φσ, φu, φv, ca, cp);
IF (nnew /∈ N) ∧ (feasible(σ)):
IF (σ ∈ Σtar):

N := N ∪ {nnew};
Φsol := Φsol ∪ {(φσ, φu, φv, ca)};
IF (ca < ub): ub := ca; END

ELSE:
IF (ca < ub):

N := N∪{nnew}; G := G∪{nnew};
END

END

END }
END }

L := (L ∪ G) \ S; }
φ∗

sol = min
φsol∈Φsol

φsol.ca

Fig. 2. The optimization algorithm.

for different examples the following strategy has
been found to be efficient: (a) the depth-first mode
is applied first to find a feasible solution quickly
(and thus start the pruning over upper bounds, see
below), and then the procedure continues with the
best-first or breadth-first mode; (b) the selection
of nbest in both modes is based on the notion of a
minimum distance of the current state σk to Σtar.
These costs include, e.g., a Euclidean distance in
X and a distance in Z defined as the number of
transitions in Θ to be taken in order to reach ztar.

The algorithm proceeds with computing succes-
sors for each v ∈ V for all those nodes n in S,
for which the costs n.ca accumulated along the
path from n0 to n do not exceed an upper bound
ub for the costs for the complete path from n0 to
the target. Branches with n.ca > ub are pruned
at this point. The computation of successors is
accomplished by the function extend. It performs
for the node n (reached at time tk) and the corre-
sponding input vk the following optimization for
an ordered time set T ′ = {tk, . . . , tp} with p > k:

min
φ̂u,φ̂v

Ω(tp, φ̂σ, φ̂u, φ̂v) (2)

where φ̂u = (uk, uk+1, . . . , up−1) and φ̂v =
(vk+1, . . . , vp−1). It is important for the compo-

nents of the trajectory φ̂v that they are not re-
stricted to the set V , but each component of
the vector v is relaxed to the range between the
minimum and maximum value that occurs in V
for the respective component. The optimization in
Eq. 2 does then not contain any discrete degrees of
freedom anymore, and can be solved by standard
techniques for nonlinear programming. During
this optimization, the solver computes the state
trajectory φ̂x = (xk, xk+1, . . . , xp) that belongs to

a guess for φ̂u and φ̂v. This task can be solved
by numerical simulation of the corresponding run
of A and involves the following steps: (a) evalu-
ating the continuous evolution, (b) detecting that
a guard condition is satisfied, and (c) executing
the transition with the associated reset function.
The values of φ̂x, φ̂u, and φ̂v determine the costs
Ω(tp, φ̂σ, φ̂u, φ̂v). As a result of the optimization,
the function extend returns a hybrid successor
state σk+1, the continuous input uk to get there,
and the predicted trajectories over the complete
prediction horizon T ′.

The function history determines the accumulated
costs ca from the initial state to the new hybrid
state. A function future, on the other hand, com-
putes future costs cp over the predicted trajec-

tories φ̂x, φ̂u, and φ̂v. In the simplest case, cp

can just encode the distance of the last state in
φ̂x to the target, i.e., it represents an estimation
of how close the system can get to the target
within the horizon T ′. cp is used by select to steer
the exploration of the graph. The values cp and

ca together with the extended state and input
trajectories determine the new node nnew.

If nnew was not contained in N before and if it
is feasible, i.e., σk+1 is within X but not in any
forbidden region, it is considered for inclusion in
N . If, in addition, σk+1 is in the target, a new
solution has been found and is included in Φsol. If
the accumulated cost of nnew is below the current
value of ub, this bound is updated. If on the other
hand σk+1 /∈ Σtar and the accumulated costs
nnew.ca are still below ub, the node is included
in N and G. If nnew.ca ≥ ub, this path is not
further considered. At the end of an iteration the
set L of live nodes is updated. The loop continues
until L is empty, or the maximum number of nodes
nmax is exceeded. If, at this stage, the set Φsol

is non-empty, the element φ∗
sol with the smallest

accumulated costs is the best solution found.

Two extensions of the algorithm are currently
investigated: (i) A second important criterion for
efficiently pruning the search graph is the use of
lower bounds lb for the costs of the complete tran-
sition procedure: If the predicted state trajectory
φ̂σ ends in Σtar, the associated costs cp are a lower
bound for the costs of the remaining path into
Σtar (since the discrete degrees of freedom are
relaxed to continuous ones). Hence, if the sum of
ca and cp for a node is greater than the current
value of ub, the node can not be an element of the
optimal path, and the branch of the graph can
be pruned. For certain cost functions (as, e. g.,
time-optimality of the transition procedure) this

pruning can be applied even if φ̂σ does not end
in Σtar. This means that the criterion is applica-
ble also if the embedded nonlinear programming
leads to solutions only for rather short prediction
horizons T ′. (ii) Another use of the result of the

function extend is to take φ̂v as a heuristics for
further exploring the subgraph emerging from the
current node. As an obvious choice, one would first
follow that sequence of discrete inputs φv in which
the components are nearest to the relaxed input
values of φ̂v.

4. APPLICATION TO A CSTR START-UP

The method is illustrated by using the exam-
ple of the start-up of a continuous stirred tank
reactor (CSTR), as described in (Stursberg and
Panek, 2002). The system consists of a tank
equipped with two inlets, a heating coil, a cool-
ing jacket, a stirrer, and one outlet (see Fig. 4).
The inlets feed the reactor with two dissolved
substances A and B which react exothermically
to form a product D. The inlet flows F1 and F2

(with temperatures T1 and T2) can be switched
discretely between two values each. The outlet
flow F3 is controlled continuously. In order to heat

F1

Substance
A

M

Product
D

Substance
B

Heating

Cooling

F3

F
C

F2

V

T

c

c

R

R

A

B

s
H

Fig. 3. Scheme of the CSTR.

up the reaction mixture to a desired temperature
range with a high reaction rate, the heating can
be switched on (denoted by a discrete variable
sH ∈ {0, 1}). The continuously controlled cooling
flow FC serves as a means to remove an excess
of heat once the reaction has started. It is the
objective for this system to determine the input
trajectories that drive the initially empty reactor
into a status of desired operation in which the
liquid volume VR, the temperature TR, and the
concentrations cA and cB have reached nominal
ranges. Additionally, regions with TR ≥ 360 and
VR ≥ 1.6 are forbidden.

To model the system, the state vector is defined
as x := (VR, TR, cA, cB)T, the continuous input
vector as u := (F3, FC)T, and the discrete input
vector as v := (F1, F2, sH)T. Depending on the
continuous state, the system dynamics can be
written as ẋ = f(z, x, u, v) where:

• for z1 with VR ∈ [0.1, 0.8] :

f I =

F1 + F2 − F3

(F1(T1 − TR) + F2(T2 − TR))/VR

+ FCk1(TC − TR)(k2/VR + k3) − k4q

(F1cA,1 − cA(F1 + F2))/VR + k9q

(F2cB,2 − cB(F1 + F2))/VR + k10q

• for z2 with VR ∈]0.8, 2.2] :

f II =
(

f I
1 , f I

2 + sHk6(TH − TR)(k7 −
k8

VR

), f I
3 , f I

4

)T

and q = cAc2
B exp(−k5/TR). The separation in

two VR-regions accounts for the fact that the
heating is only effective above VR = 0.8. The
initial state is x0 = (0.1, 300, 0, 0)T and the tar-
get is given by z2 and a hyper-ball with ra-
dius 0.1 around the continuous state xtar =
(1.5, 345, 0.4, 0.2)T. The optimization is run with
the cost criterion that the transition time for the
startup procedure is minimized. The strategy is
chosen that depth-first search is used until a so-
lution is found, then a breadth-first strategy is
applied. For selecting the nodes from L and G,
the criterion of minimum distance to the target is

selected. Figure 4 shows the best solution obtained
for a search with nmax = 400 nodes and with
|T ′| = 2. The result has been obtained within
125 seconds and is qualitatively comparable to the
one obtained in 13 minutes with the method in
(Stursberg et al., 2002).

0

0.5

1

1.5

2

300
310

320
330

340
350

0

0.2

0.4

0.6

0.8

1

V
R

T
R

c A

x
0

Target

Fig. 4. CSTR: The optimal x-trajectory (solid
line) is projected into the (VR, TR, ca)-space.
Explored nodes are marked by crosses.

5. CONCLUSIONS

Since space limitations exclude a detailed assess-
ment of the proposed algorithm (including a com-
parison to other techniques), only the main dif-
ferences to the approach in (Stursberg and En-
gell, 2002) are summarized briefly: (a) the method
introduced in this paper evaluates directly the
original hybrid model A and does not operate
with linearized dynamics; (b) the hybrid model is
extended with respect to the location invariants
and resets (whereas not relevant for the example
in Sec. 4); (c) the search is restricted to the true
degrees of freedom and does not have to cope with
auxiliary variables and constraints; (d) experi-
ments also for a scalable example treated in (Till
et al., 2003) have shown that the computation
times are by an order of magnitude smaller for
the majority of tested configurations, (e) unlike
the MPC-like approach in (Stursberg and En-
gell, 2002), which discards all but the best tra-
jectory in each iteration, the graph search stores
alternative paths in the set of live nodes for later
exploration.

The focus of the current work is to introduce
suitable heuristics to steer the graph search, to
develop a scheme for adapting the time steps
(rather than using constant sampling intervals),
and to use tailor-made modifications for the em-
bedded nonlinear programming to improve its
performance.

6. REFERENCES

Avraam, M. P., R. Shah and C. C. Pantelides
(1998). Modelling and optimisation of general
hybrid systems in the cont. time domain.
Comp. Chem. Eng. 22 (Suppl.), 221–228.

Barton, P.I. and C.K. Lee (2002). Modeling, sim-
ulation, sensitivity analysis and optimization
of hybrid systems. ACM Trans. Modeling and
Comp. Simulation 12(4), 256–289.

Bemporad, A. and M. Morari (1999). Control
of systems integrating logic, dynamics, and
constraints. Automatica 35(3), 407–427.

Branicky, M. S., V. S. Borkar and S. K. Mitter
(1998). A unified framework for hybrid con-
trol: Model and optimal control theory. IEEE
Trans. Automatic Control 43(1), 31–45.

Broucke, M., M.D. Di Benedetto, S. Di Gennaro
and A. Sangiovanni-Vincentelli (2000). The-
ory of optimal control using bisimulations.
In: Hybrid Systems: Comp. and Control. Vol.
1790 of LNCS. Springer. pp. 89–102.

Gokbayrak, K. and C. G. Cassandras (2000). Hy-
brid controllers for hierarchically decomposed
systems. In: Hybrid Systems. Vol. 1790 of
LNCS. Springer. pp. 117–129.

Hedlund, S. and A. Rantzer (2002). Convex
dynamic programming for hybrid systems.
IEEE TAC 47(9), 1539–1540.

Lynch, N., R. Segala and F. Vaandrager (2003).
Hybrid i/o automata. Information and Com-
putation 185(1), 105–157.

Oldenburg, J., W. Marquardt, D. Heinz and
D. Leineweber (2003). Mixed logic dynamic
optimization applied to batch distillation pro-
cess design. AICHE Journ. 49, 2900–2917.

Shaikh, M.S. and P.E. Caines (2003). On the
optimal control of hybrid systems. In: Hybrid
Systems: Comp. and Control. Vol. 2623 of
LNCS. Springer. pp. 466–481.

Stursberg, O. and S. Engell (2002). Optimal con-
trol of switched continuous systems using
mixed-integer programming. In: Proc. 15th

IFAC World Congr. on Automatic Control.
Vol. Th-A06-4.

Stursberg, O. and S. Panek (2002). Control of
switched hybrid systems based on disjunctive
formulations. In: Hybrid Systems. Vol. 2289
of LNCS. Springer. pp. 421–435.

Stursberg, O., S. Panek, J. Till and S. Engell
(2002). Generation of optimal control policies
for systems with switched hybrid dynamics.
In: Modelling, Analysis, and Design of Hy-
brid Systems. Vol. 279 of LNCIS. Springer.
pp. 337–352.

Till, J., S. Engell, S. Panek and O. Stursberg
(2003). Empirical complexity analysis of a
milp-approach for optimization of hybrid sys-
tems. In: IFAC Conf. Analysis and Design of
Hybrid Systems. pp. 159–164.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

