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Abstract: It is commonly believed that for SISO systems, well tuned PID controllers work
as well as model-based controllers and that PID controllers are more robust to model
errors. In this paper we present a novel offset-free constrained LQ controller for SISO
systems, which is implemented in an efficient way so that the total controller execution
time is similar to that of a PID. The proposed controller has three modules: a state and
disturbance estimator, a target calculation, and a constrained dynamic optimization. It
is shown that the proposed controller outperforms PID both in setpoint changes and
disturbance rejection, it is robust to model errors, it is insensitive to measurement noise,
it handles constraints much better than common anti-windup PID. Tuning the proposed
controller is simple. In principle, there are three tuning parameters to choose, but in all
examples presented only one was actually varied, obtaining a clear and intuitive effect on
the closed-loop performance.Copyright c© 2004 IFAC.
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1. INTRODUCTION

Digital PID control for single-input single-output
(SISO) systems shows up everywhere in chemical pro-
cess applications and process control education. Tun-
ing rules are presented in numerous texts and, surpris-
ingly, remain a topic of current control research (Chen
and Seborg, 2001; Skogestad, 2003). In this paper we
would like to raise the issue of whether this popularity
is due to any concrete, technological advantage of
digital PID controllers, or whether PID’s continuing
popularity is simply a historical accident stemming
from the success of analog PID controllers. The main
technical advantages ascribed to PID control are: PID
is simple, fast, and easy to implement in hardware and
software; it is easy to tune; it provides good nominal
control performance; and it is robust to model errors.
Model-based control methods, such as model predic-
tive control (MPC) of constrained systems, on the
other hand, are regarded by many in process control as
complex to implement and tune. MPC has become the
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advanced controller of choice by industry mainly for
the economically important, large-scale, multivariable
processes in the plant. The rationale for MPC in these
applications is that the complexity of implementing
MPC is justified only for the important loops with
large payoffs.
To address this perception of complexity, we propose
a constrained, SISO linear quadratic controller (CLQ)
with the following features: it is essentially as fast to
execute as PID (within a factor of five regardless of
system order), it is easy to implement in software and
hardware, and it displays both higher performance and
better robustness than PID controllers.
Other researchers have explored the following, related
topics. A SISO model predictive controller based on a
first-order plus time delay model, with input horizon
of one, is proposed by Mukati and Ogunnaike (2004).
Soroush and Muske (2000) show that a particular
MPC algorithm with input horizon of one, has PI or
PID form when the system is first order or second
order (without delay), respectively.



2. OFFSET-FREE CONSTRAINED LQ
CONTROLLER FOR SISO SYSTEMS

As most tuning rules for PID controllers require sim-
ple transfer function process models, we assume such
a model is available. The offset-free constrained lin-
ear quadratic (CLQ) control algorithm has three main
modules that use a state-space model of the system:
a state and disturbance estimator, a constrained target
calculation, and a constrained dynamic optimization.

2.1 Model and estimator

We assume that a state-space discrete-time model of
the system to be regulated is known:

xk+1 = Axk +Buk−m

yk = Cxk ,
(1)

in which x∈ Rn is the state vector,u∈ R is the input,
y∈R is the output andm is a non-negative integer, the
time delay.

Assumption 1.(General). The pair(A,B) is control-
lable, the pair(C,A) is observable and

rank

[
I −A −B

C 0

]
= n+1 . (2)

The inputu is assumed to be constrained as follows:

umin ≤ u≤ umax , (3)

in whichumin < umax.

In order to guarantee offset-free control ofy in the
presence of plant/model mismatch and/or unmeasured
nonzero disturbances, the system model (1) is aug-
mented with an integrating disturbance according to
the general methodology proposed in (Pannocchia and
Rawlings, 2003). In this work we choose the so-called
“input disturbance model”, i.e. we add an integrating
stated that enters the system at the same place as the
inputu. The resulting augmented system is:[

x
d

]
k+1

=
[
A B
0 1

][
x
d

]
k
+

[
B
0

]
uk−m

yk = [C 0]
[

x
d

]
k

.

(4)

Several studies have pointed out that such a dis-
turbance model is an appropriate choice for reject-
ing unmeasured disturbances efficiently (Muske and
Badgwell, 2002), and it provides good robustness to
plant/model mismatch (Pannocchia, 2003).
The statex and the disturbanced are estimated from
the plant measurementy by means of a steady-state
Kalman filter. At each sampling time, an estimate of
the state ˆxk|k−1 and of the disturbancêdk|k−1 based on
previous measurements and inputs are available. Thus,
the current filtered state and disturbance are:

x̂k|k = x̂k|k−1 +Lx(yk−Cx̂k|k−1)

d̂k|k = d̂k|k−1 +Ld(yk−Cx̂k|k−1) ,
(5)

in which the filter gainsLx ∈ Rn and Ld ∈ R are
computed offline as described later in this paragraph.
Given the inputuk−m (stored ifm > 0, or computed

as described in the next paragraph, ifm= 0), the state
and disturbance estimates for the next sampling time
are:

x̂k+1|k = Ax̂k|k +Buk−m+Bd̂k|k

d̂k+1|k = d̂k|k .
(6)

In order to compute the filter gainsLx andLd, let

Â =
[
A B
0 1

]
, Q̂ =

[
qxIn 0
0 1

]
, Ĉ = [C 0] ,

in which qx is a non-negative scalar. Also letRv be
a positive scalar that represents the output noise vari-
ance. Then, the estimator steady-state Riccati equation
is

Π = Q̂+ ÂΠÂT − ÂΠĈT (
ĈΠĈT +Rv

)−1
ĈΠÂT ,

in whichΠ∈R(n+1)×(n+1) is symmetric semi-definite.
Finally, the filter gain is:

L =
[

Lx
Ld

]
= ΠĈT (

ĈΠĈT +Rv
)−1

. (7)

Strictly speaking,qx andRv should be regarded as the
estimator tuning parameters and more details about
their effect are discussed in (Pannocchiaet al., 2003).
In this paper, fixed values forqx (0.05) andRv (0.01)
are used for all examples.

2.2 Constrained target calculation

At each sampling time, given the current disturbance
estimated̂k|k, we compute the steady-state targets for
input and state such that the output ultimately reaches
the setpoint. If the input were unconstrained, these
targets would simply be the solution to the following
square system:[

I −A −B
C 0

][
x̄k
ūk

]
=

[
Bd̂k|k

ȳ

]
, (8)

which exists and is unique because of Assumption 1.
However, the solution to (8) may be such that the
input target ¯uk violates (3). Moreover, for integrating
processes it is possible that a steady state does not
exist because of (3). For these reasons, we compute
(x̄k, ūk) from the following QP:

(x̄k, ūk) = argmin
(x̄,ū)

(Cx̄− ȳ)2+

η
∥∥(I −A)x̄−B(ū+ d̂k|k)

∥∥2

2
(9a)

subject to:
umin ≤ ū≤ umax , (9b)

in which η is a large positive number.

2.3 Constrained dynamic optimization problem: case
of reachable setpoint

Given the current state and disturbance estimates, and
given the current steady-state targets(x̄k, ūk), for the
cases in which the desired setpoint is reachable, i.e.
Cx̄k = ȳ, we compute the control input by means of the



following constrained dynamic optimization problem:

min
{v j}N−1

j=0

{
N−1

∑
j=0

wT
j Qwj +s(v j −v j−1)2

}
+

[
wN

vN−1

]T

P

[
wN

vN−1

]
, (10a)

subject to:

w0 = x̂k+m|k− x̄k, v−1 = uk−1− ūk , (10b)

w j+1 = Awj +Bvj , (10c)
umin− ūk ≤ v j ≤ umax− ūk , (10d)

in which N is a positive integer,s a positive scalar
andQ = CTC. The matrixP∈ R(n+1)×(n+1) is chosen
as the positive semidefinite solution of the Riccati
equation:

P = Q̃+ ÃTPÃ− ÃTPB̃(B̃TPB̃+s)−1B̃PÃ , (11)

in which

Ã =
[
A B
0 1

]
, B̃ =

[
B
1

]
, Q̃ =

[
Q 0
0 0

]
. (12)

Letv := (v0,v1, . . . ,vN−1) be a column vector of length
N. We can write (10) as a strictly convex QP:

min
v

1
2

vTHv+vT c̃ (13a)

subject to:

1· (umin− ūk)≤ v≤ 1· (umax− ūk) , (13b)

in which

H =BTQB+DTRD , c̃=BTQA w0+DTRC v−1
(14)

and the constant matricesA , B, C , D , Q, R are not
shown the sake of space (Pannocchiaet al., 2003). Let
v∗ =(v∗0, . . . ,v

∗
N−1) denote the optimal solution to (13).

Then, the current control input is defined by using a
receding horizon implementation, that is:

uk = ūk +v∗0 . (15)

2.4 Constrained dynamic optimization problem: case
of unreachable setpoint

When the setpoint is not reachable, i.e. when

ȳk = Cx̄k 6= ȳ , (16)

the optimization problem (10) needs to be modified
because the corresponding optimal input would drive
the controlled variable to the reachable target ¯yk as
quickly as possible. There are important cases in
which this behavior is undesirable. These situations
occur when a “large” disturbance enters the system,
and the input constraints are such that the input will
asymptotically saturate without rejecting completely
the disturbance, and hence offset will occur. It is clear
that, if the disturbance keeps affecting the system,
steady-state offset is unavoidable but even in such
cases it is desirable to keep the controlled variable
close to the desired setpoint ¯y as long as possible. This
goal can be achieved by modifying the optimization

problem (10) with a linear penalty (Bonnéet al., 2003)

min
{v j}N−1

j=0

{
N−1

∑
j=0

wT
j (Qwj +2q)+s(v j −v j−1)2

}

+
[

wN
vN−1

]T (
P

[
wN

vN−1

]
+2p

)
, (17a)

subject to (10b)–(10d), (17b)
in whichP is given in (11) and

q=CT(ȳk− ȳ), p=
(
I − (Ã+ B̃K̃)T)−1

[
q
0

]
, (18)

and K̃ = −(s+ B̃TPB̃)−1B̃TPÃ. It is important to
remark that if ¯yk = ȳ (i.e. the setpoint is reachable),
we obtain the same formulation as in (10).
Letv := (v0,v1, . . . ,vN−1) be a column vector of length
N. We can write (17) as the same strictly convex
quadratic program (QP) in (13) in whichH is still
given in (14) while ˜c is:

c̃ = BTQA w0 +BTP +DTRC v−1 , (19)

in whichP =
[
qT · · · qT pT

]T
. Letv∗ =(v∗0, . . . ,v

∗
N−1)

denote the optimal solution to (13) with ˜c given in
(19). Then, the current control input is still defined by
(15).

3. PROPERTIES AND IMPLEMENTATION

If constraints are not present, the proposed controller
reduces to an infinite horizon LQ controller with target
calculation and origin “shifting”. Hence, it is easy to
show that it is nominally stable for any choice of the
tuning parameters. It is also possible to derive a simple
sufficiency test for nominal constrained stability using
ellipsoid invariant set theory. The details are omitted
for the sake of brevity (Pannocchiaet al., 2003).
This test can be used online to detect if the terminal
state is not in the output admissible set and to flag
a warning for the operator. If one wishes to have a
guarantee of nominal stability, we can easily formulate
the regulator with the terminal constraintwN = 0. But
sinceN is chosen fairly small for computational speed,
we find the terminal state constraint controller not as
robust as the one presented here, and therefore do not
recommend it for industrial practice.
Another important property of CLQ is that it guaran-
tees offset-free control whenever the closed-loop sys-
tem reaches a steady state in which the input is not sat-
urated. This property holds independently of the plant
dynamics, and is due to the presence of the integrating
stated in (4) (Pannocchia and Rawlings, 2003, Th.1).
Unlike PID, the proposed controller does not integrate
the tracking error (i.e. ¯y−yk). In fact from (5) and (6),
one can write

d̂k+1|k = d̂k|k−1 +Ld(yk−Cx̂k|k−1) ,

from which it is clear that there is integration of the
prediction error (i.e.yk −Cx̂k|k−1). This approach is
significantly different from integration of the tracking
error as in PID control, and it does not require any
anti-windup strategy when the input saturates.
Furthermore, unlike PID control, CLQ is a “two-
degree of freedom” controller and it can provide both



efficient setpoint tracking and disturbance rejection
simultaneously. This feature is due to the use of the
state and disturbance estimator, which can also be
designed to be insensitive to measurement noise.
Two modules of CLQ – the target calculation and
the constrained dynamic optimization – require one
to solve a quadratic program at each sampling time.
In order for the proposed method to be applicable
to simple hardware and programming languages, we
have developed an efficient method for solving these
QPs (Pannocchiaet al., 2003). For space limitations
details are omitted, but it is worth remarking that
the proposed method for solving the constrained dy-
namic optimization problem (13) differs from the
well known explicit LQR solutions (Bemporadet al.,
2002), and it is specifically tailored to SISO systems
with input bound constraints only. This new method
allows one to efficiently solve (13) on-line without
using a “proper” QP solver, and also without using
LP and QP solvers in the offline table generation as
in (Bemporadet al., 2002). Unlike previous research,
the dimension of the state vector has no influence
on the size of the stored solution table in this new
method. Only the control horizon has an effect. This
new method has two basic steps:
(1) The offline generation of a solution table using

H, umin andumax: this step involves some matrix
inversions, multiplication and sums.

(2) The online table scanning given the current value
of c: this step only involves multiplications and
sums and checking conditionals. These same op-
erations are required in PID control.

4. ILLUSTRATIVE EXAMPLES

In this section we present a number of examples of
common processes to show that the proposed CLQ
controller is simpler to tune than a PID controller,
is robust to model errors, insensitive to noise mea-
surements and guarantees superior performance both
for setpoint changes and disturbance rejections. Since
constraints are present, the common anti-windup “ve-
locity” algorithm for PID is used (Ogunnaike and
Ray, 1994). Also notice that ifTd 6= 0, the derivative
action is suppressed when a setpoint change occurs,
which is the common industrial practice to avoid the
“derivative kick”.

4.1 FOPTD system

The first example is a first order plus time delay
(FOPTD) system:

G1(s) =
e−2s

10s+1
,

sampled withTs = 0.25. The input is constrained:
|u| ≤ 1.5, a horizon ofN = 4 is used, and in all sim-
ulations the setpoint is changed from 0 to 1 at time
zero. At time 25 a load disturbance of magnitude -
0.25 enters the system; then at time 50 the disturbance
magnitude becomes -1 (which makes the setpoint 1
unreachable); finally at time 75 the disturbance magni-
tude becomes -0.25 again. Fig. 1 shows the simulation
results in the nominal case for two CLQ controllers
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Fig. 1. FOPTD system: nominal case.

and two PID controllers. CLQ 1 uses a regulator in-
put penalty ofs = 1, while CLQ 2 usess = 10. The
tuning parameters for PID 1 are chosen according to
Luyben’s rules (Luyben and Luyben, 1997, p. 97):
Kc = 2.51, Ti = 17.3, Td = 0. The tuning parameters
for PID 2 are chosen according to Skogestad’s IMC
rules (Skogestad, 2003):Kc = 2.35, Ti = 10, Td = 0.
Fig. 2 shows the simulation results for CLQ 1 and
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Fig. 2. FOPTD system: noisy case.

PID 1 in the presence of random output noise (with
varianceσ2 = 0.001). Fig. 3 shows a comparison of
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Fig. 3. FOPTD system: effect of plant/model mis-
match.

the performance indexΦ = ∑∞
k=0(yk − ȳ)2 + (uk −

uk−1)2 vsthe gain and delay relative plant/model mis-
match, respectively, for CLQ 1 and PID 1.

4.2 Integrating system

The second example is an integrating system:

G2(s) =
e−2s

s
,

sampled withTs = 0.25. The same input constraints,
horizon, setpoint change and disturbances as in the
first example are considered. CLQ 1 uses a regulator
input penalty ofs= 500, while CLQ 2 usess= 5000.
The tuning parameters for PID 1 are chosen according
to Luyben’s rules:Kc = 0.23, Ti = 18.7, Td = 0. The
tuning parameters for PID 2 are chosen according to
Skogestad’s IMC rules:Kc = 0.23, Ti = 17, Td = 0.
Simulation results in the nominal case are reported
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Fig. 4. Integrating system: nominal case.

in Fig. 4, while Φ vs the gain and delay relative
plant/model mismatch is reported in Fig. 5.
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4.3 Under-damped system

The last example is a second order under-damped
system:

G3(s) =
K

τ2s2 +2τξs+1
,

sampled withTs = 0.25, and with nominal parame-
ters of K = 1, τ = 5 andξ = 0.2. The same input
constraints, horizon, setpoint change and disturbances
as in the first example are considered. CLQ 1 uses a
regulator input penalty ofs = 1, while CLQ 2 uses
s = 10. The tuning parameters for PID 1 are cho-
sen according to Luyben’s rules:Kc = 5.0, Ti = 16.8,
Td = 0. The tuning parameters for PID 2 are chosen
using the same IMC approach as in (Skogestad, 2003):
Kc = 0.4, Ti = 2, Td = 12.5. Simulation results for the
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Fig. 6. Under-damped system: nominal case.

nominal case are reported in Fig. 6, whileΦ vsthe gain
and damping factor relative uncertainties is reported in
Fig. 7.
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4.4 Discussion

The results presented in the previous paragraphs
clearly show that in all examples (as well as in several
others not shown for the sake of space) CLQ outper-
forms PID both for setpoint changes and disturbance
rejections. In the presence of constraints CLQ under-
stands much better than PID “when” and “for how
long” to saturate the input. Notice that CLQ does not
require any anti-windup strategy.
Tuning CLQ is simple: basically one has to choose
only the input penaltys, which trades off between
tracking error and input usage. The effect of this
tuning parameter is intuitive: the lowers the more
aggressive the controller. CLQ is robust to plant/model
mismatch: one can obtain high performance closed-
loop response in the nominal case and still have robust
performance and large stability margins. CLQ can
be easily designed to be insensitive to measurement
noise by adjusting the output noise varianceRv. If one
detects high frequency oscillations in the manipulated
variable it is sufficient to increaseRv to suppress this
undesirable behavior. In this way, it is not necessary to
“slow down” the controller’s setpoint response (i.e. to
increases) when the measurement is noisy.
Finally, it is important to remark that CLQ is efficient
and the computational burden is comparable to that of
PID. The average CPU time required to compute the
control input has been 0.22 ms for CLQ and 0.05 ms
for PID (on a 1.7 GHz Athlon PC running Octave2 ).
The maximum CPU time has been 0.55 ms for CLQ
and 0.10 ms for PID. The computational efficiency
comes about because only a small number of simple
operations (addition, multiplication and comparison)
are required at each sample time.

5. CONCLUSIONS

In this paper, a novel, offset-free, constrained, lin-
ear quadratic (CLQ) controller for SISO system was
presented. The purpose of this work was to propose
an alternative to digital PID controllers that are com-
monly available on the DCS. CLQ has three main
modules based on a state-space model of the system:
a state and disturbance estimator, a target calculation,
a constrained dynamic optimization. Each module is

2 Octave (http://www.octave.org ) is freely distributed un-
der the terms of the GNU General Public License.

implemented in an efficient way so that the overall
CLQ algorithm has little computational cost and can
be applied using simple hardware and software. As
shown, the proposed controller outperforms PID con-
trollers in all situations (setpoint changes or distur-
bance rejections, nominal case or in the presence of
relevant model errors, noise-free or noisy measure-
ments). Moreover, CLQ is much simpler to tune than
PID. Strictly speaking, there are two parameters to
choose for the estimator and one parameter for the
dynamic optimization module. However, as shown in
the examples, CLQ can achieve excellent results by
varying only this last parameter, whose effect on the
closed-loop performance is clear and intuitive. The
proposed controller is “scalable”, in the sense that
it can be extended to larger multivariable systems in
a straightforward fashion. Other possible extensions
are:
• the use of feed-forward to reject measured dis-

turbances even more efficiently,
• the coupling of several SISO CLQ controllers by

appropriate exchange of information.
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