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Abstract: Activated sludge is a complex ecosystem constituted mainly of bacteria and protozoa.
Filamentous bulking, a phenomenon when the filamentous organisms dominate the activated
sludge is still a widespread problem in the operation of activated sludge processes. Image
analysis offers promising perspectives for early detection of filamentous bulking because the
morphology parameters of the activated sludge react very fast to changing process conditions.
This paper is aimed at identifying dynamic ARX and state space models as a function of
organic loading and digital image analysis information (such as the total filament length per
image and some representative mean floc shape parameters) to describe the evolution of the
Sludge Volume Index (SVI). Their performances are compared based on an adequate quality
performance criterion.
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1. INTRODUCTION

Activated sludge systems encompass biodegrada-
tion and sedimentation processes which take place
in the aeration and sedimentation tanks, respec-
tively. The performance of the activated sludge
process is, however, to a large extent dictated by
the ability of the sedimentation tank to separate
and concentrate the biomass from the treated ef-
fluent. Since the effluent from the secondary clar-
ifier is most often not treated any further, a good
separation in the settler is critical for the whole
plant to meet the effluent standards. Apart from
bad operating strategies or poorly designed clari-
fiers, settling failures can be mainly attributed to
filamentous bulking. As a general guideline, fila-
mentous bulking is said to occur when the Sludge
Volume Index 1 (SVI) is greater than 150mLg−1,
regardless of its cause. Apart from the physico-
chemical parameters, biological parameters are
also increasingly consulted through microscopic
observation. However, microscopic observation is
not only subjective (i.e., operator dependent) but
also time consuming, often leaving insufficient
time for corrective interventions. Image analysis, a
computer assisted procedure through which anal-
ysis of digital images is performed, could provide
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an objective means to assist the operator’s de-
cision making. Furthermore, mathematical mod-
els, capable of predicting the evolution of, e.g.,
the SVI value, will be indispensable for the de-
velopment of early warning and detection tools.
Although filamentous bulking has been studied
intensively during the last decades (Jenkins et
al., 1993), the phenomenon is so complex (i.e.,
influenced by so many different factors) that a
first principles model is still lacking. The identi-
fication of a model to predict in real-time - with
reasonable accuracy - the appearance of sludge
bulking is therefore of great importance, in view of
the potential for improvement in plant efficiency
and cost saving (Novotny et al., 1990). This paper
aspires to identify ARX and state space type mod-
els which can predict the settling characteristic
SVI as a function of either organic loading (Q)
and/or digital image analysis information as will
be explained later on. The model performances
are compared based on a quality performance
criterion. Since static (instantaneous) correlation
models, as reported by, e.g., da Motta and cowork-
ers (da Motta et al., 2002) cannot provide future
SVI predictions nor take into account the system’s
delay, we will focus on dynamic models. In other
words, we focus on how the past input data,
i.e., in this case organic loading and/or digital
image analysis information, affect(s) the future



output data, i.e., the SVI. In a first approach
linear models (ARX and state space models) have
been preferred over nonlinear ones in modeling
the filamentous bulking phenomena although the
latter could be characterized by nonlinear behav-
ior (since living organisms are involved). Linear
model identification is however a much more ma-
ture field.

2. MATERIALS AND METHODS

This study relies on results obtained from two lab-
oratory wastewater treatment experiments. Both
systems are operated under more or less similar
conditions so as to mimic a large-scale contin-
uous system. However, it is worth mentioning
that for both experiments, conditions were chosen
to favor filamentous bulking outbreaks (Jenné et
al., 2003; Banadda et al., 2003).

2.1 Lab-scale activated sludge system

The laboratory set-up is a continuous type acti-
vated sludge system in a classic configuration: an
aeration tank (5.5 L) followed by a sedimentation
tank (3 L) and sludge recycle (Figure 1).

Fig. 1. Left: lab-scale activated sludge system.
Right: microscope (Olympus BX51) and
video camera (Sony DXC-950P) used for
daily capturing of activated sludge images.

This system was inoculated with activated sludge
from a domestic wastewater treatment plant at
Huldenberg (Belgium). The influent was synthetic
wastewater, nevertheless, different feed regimes
and carbon sources were administered (Figure
2), i.e., the use of glucose in the second experi-
ment as opposed to sodium acetate (first experi-
ment) aimed at inducing earlier filamentous bulk-
ing outbreaks. Quantitative information which in-
cludes analytical results of the effluent quality are
recorded: organic matter, measured as Chemical
Oxygen Demand (COD), the settleability mea-
sured as Sludge Volume Index (SVI), the acti-
vated sludge concentration measured as the Mixed
Liquor Suspended Solids (MLSS) and the effluent
Suspended Solids (SS). Also, digital image anal-
ysis is performed on a daily basis on 50 images
per sample as reported in previous studies (Jenné
et al., 2002). The first experiment lasted 70 days
while the second lasted 38 days (see Figure 2).
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Fig. 2. Evolution of the SVI (- - -) and influent
COD feed regime (—) for (a) the first exper-
iment and (b) the second experiment.

2.2 Image analysis procedure

Images of activated sludge samples were recorded
by means of a light microscope (Olympus BX51)
with phase contrast equipped with a 3CCD color
video camera (Sony DXC-950P), shown in Figure
1. The magnification of the microscope objective
used was 10 × 10 times. A fully automatic im-
age analysis method for recognition and charac-
terization of flocs and filaments in an activated
sludge sample has been developed in previous
work (Jenné et al., 2002; Jenné et al., 2003), and
is applied to all colored phase contrast images.

2.3 Measurements

The principal aim of the image processing proce-
dure is the extraction of certain information from
the digital images. Once the objects in the image
(i.e., the flocs and the filaments) are distinguished
from the background, several size and shape re-
lated parameters can be computed.
Filament measurement. The filament length
per image (F) describes the total length of the
filament skeleton.
Floc size measurement. The size of the sludge
flocs is an important parameter with respect to
the settling properties (Ganczarczyk, 1994). The
size of the flocs is expressed as the equivalent circle
diameter Deq, calculated from the real projected
area A:

Deq = 2
√

A/π (1)

Floc shape measurements. It is mentioned in
the literature (Eriksson and Hardin, 1984) that
the shape of sludge flocs is related to the settling
properties. Many shape quantifying parameters
can be measured by means of image analysis. Four
parameters are considered in this study.

• The form factor (FF) is particularly sensitive
to the roughness of the boundaries. A circle
has an FF value equal to one.

FF = 4π
area

perimeter2
(2)



• The aspect ratio (AR) is mainly influenced
by the elongation of an object. It varies
between 1 and infinity. A circle has an AR
value equal to one.

AR = 1 +
4 · (Length-width)

π.width
(3)

• The roundness (R) is also mainly influenced
by the elongation of an object. It varies
between 0 and 1. A circle has an R value
equal to one.

R =
4 · area

π.length2 (4)

• The reduced radius of gyration (RG) is also
influenced by the elongation of an object. A
more elongated floc will have a larger RG. A

circle has an RG value equal to
√

2
2 .

RG =

√

M2x + M2y

Deq

2

(5)

M2x and M2y are second order moments.

3. EXPERIMENTAL RESULTS AND
DISCUSSION

Previous studies by Jenné et al (2003), have
shown that a reasonably good correlation exists
between the digital image analysis information
and the SVI. In this paper, new model inputs
in addition to those mentioned in (Banadda et
al., 2003), are investigated. Data collected during
the two experimental periods are used to identify
ARX and state space models that describe the
SVI evolution, i.e., the model output, based on
either (i) information gathered with the image
analysis procedure (i.e., F, FF, Deq, R, RG)
and/or (ii) the organic loading (Q) profile as the
model inputs. Afterwards the identified models
from one experiment are cross-validated on the
data of the other experiment.

3.1 Optimization criterion

The criterion to be maximized is the R-squared
adjusted (R2

adj) value, which is often expressed
in percent (Equation (6)). The values obtained
from the criterion reflect the percentage of output
variation explained by the model (i.e., yh(t)).
Moreover, the R2

adj criterion takes into account
both the number of data points N and the model
parameters (degrees of freedom) DF .

R2

adj
= 100 ·

(

1−

(N − 1) ·
∑N

t=1
(y(t) − yh(t))2

(N − DF ) ·
∑N

t=1
(y(t) − mean(y(t)))2

)

(6)

with y(t) the measured output at discrete time t,
yh(t) the model output at discrete time t.

3.2 ARX models

Procedure. ARX models relate the current out-
put y(t) to a finite number of past outputs y(t−k)
and inputs u(t − k).

y(t) + a1y(t − 1) + (· · · ) + anay(t − na) = b1u(t − nk)+

b2u(t − nk − 1) + (· · · ) + bnbu(t − nk − nb + 1) + e(t)
(7)

with y(t) equal to the output response at discrete
time t, u(t) the input at discrete time t, na the
number of poles, nb the number of zeros, nk the
pure time-delay (the dead-time) in the system and
e(t) a white noise signal. ai and bj are model
parameters, with i = 1 ... na and j = 1 ... nb. The
model structure is entirely defined by the three
integers na, nb, and nk.

The purpose of this section is to identify which im-
age analysis parameters characterize the SVI evo-
lution via dynamic ARX models. This is done by
simulating the ARX models with organic loading
(Q) and/or digital image analysis information pa-
rameters and analyzing prediction system perfor-
mance based on the chosen criterion, R2

adj. ARX
models are identified by using the arx command in
the System Identification Toolbox 5.0.1 in MAT-
LAB (The Mathworks, Inc., Natick), which allows
to specify a specific focus during model iden-
tification. Three different options are available,
i.e., a focus on prediction, simulation or stability.
Prediction means that the model is determined
by minimizing the prediction errors. With focus
on simulation, the model approximation is such
that the model will produce as good simulations
as possible, when applied to inputs with the same
spectra as used for the estimation. A stable model
is guaranteed. Finally, a stability focus implies
that the algorithm is modified so that a stable
model is guaranteed, but the weighting still corre-
sponds to prediction. Previous studies (Banadda
et al., 2003), have shown that the performance
of the optimal models with focus on prediction
in combination with our own stability check is
as good and sometimes even better than that
of the models resulting from the stability focus.
Therefore, identification results of the latter are
omitted.

Space does not allow to show all the identification
and validation results but both Tables 1 and 2
give a representative view on the identification
and validation outcomes for ARX and state space
models, respectively. Optimal combinations (or-
ganic loading and image analysis information)



were sought in the range of 1 to 5 for the number
of poles (na) and zeros (nb) (with nb smaller than
or equal to na) at fixed delays nk of 0, 1 and 2.
The maximum value for na is deliberately kept
low to avoid overfitting.

Identification and validation results.

One input case. F as a single input performs
best in both identification and validation although
other inputs such as Q can be reasonable in identi-
fication (e.g., for the first experiment) but validate
badly. This result encourages the use of image
analysis as an activated sludge monitoring tool.
Two input case. The input F in combination
with another input is reasonable in identification
and validation (except the validation with [F Q]
in the first experiment). Excluding F as an input
has a severe (negative) impact on the validation
quality of the model. Overall, a combination of F
and Deq is a satisfying input combination.
Remarkably, the nk value is always equal to zero
for F in the first experiment. For the second
experiment, this nk value can deviate from zero
but only in the multi-input case in combination
with the input Q. These models are only a tenth
of a percent better in identification but validate
obviously rather bad on the first experiment.
Therefore, in the search for optimal models for
the data of the second experiment, the nk value
corresponding to F is restricted to zero.
Three input case. No positive validation results
are recorded except in the case of the [F Deq

Q] input combination for the second experiment
model on the first experiment data. Relatively,
good validation results are noted when F is one
of the inputs. In general, [F Deq Q] is a well
performing input combination. Figure 3 shows
the performance of the ARX models in identifi-
cation (R2

adj = 78.87%, second experiment) and

validation (R2
adj = 85.00%, first experiment) as

compared to the measured SVI.
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Fig. 3. Measured SVI (—) and modeled SVI (-
- -) with the optimal 1st-order ARX model
and 3 model inputs [F Deq Q] during (a)
identification and (b) validation.

3.3 State space models

Procedure. Apart from ARX models, also state
space models have been explored. In discrete time,
a state space model has the following form

x(t + 1) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) + e(t) (8)

with x(t) equal to the state vector at discrete
time t, y(t) equal to the output response, u(t)
the input, e(t) a white noise signal, and A, B, C,
D and K the state space matrices of appropriate
dimensions.

In this section, state space models are identified by
means of the n4sid command in the System Iden-
tification Toolbox 5.0.1 in MATLAB (The Math-
works, Inc., Natick), which allows, similar to the
ARX command, to choose a specific focus during
model identification. n4sid is a subspace-based
method that does not use iterative search. As
for ARX modeling, optimal combinations of the
organic loading and image analysis information
(state space model inputs) for both the first and
the second experiment were sought in the order
range of 1 to 4 and their performance evaluated
based on the R2

adj criterion (Equations (6)).

Identification and validation results.

One input case. As for ARX modeling, again
F as a single input performs best in identification
and validation while other inputs such as Q show
relatively lower identification values and validate
badly.
Two input case. For the first experiment, no
positive validation results are obtained. As for the
second experiment, F must be in it; [F Deq] or [F
Q] are appropriate input combinations.
Three input case. For the first experiment,
no positive validation results are noted. For the
second experiment, F must be in it and this
in combination with Q or Deq, with [F Deq Q]
giving the highest validation results on the first
experiment. Figure 4 elucidates the performance
of the state space models in identification (R2

adj =

69.56%, second experiment) and validation (R2
adj

= 80.29%, first experiment) as compared to the
measured SVI.

3.4 Discussion

Several interesting general remarks remain to be
stated. They are listed below.

• The validation performance of the single in-
put model with F is as good as, or at times
better than that of some given multi-input
models but the latter are most often better
in identification. However, from a prediction



Table 1. Optimal ARX model output with 1, 2 or 3 model input(s) for the first
experiment and the second experiment.

Focus Model R2

adj (%) R2

adj (%)

on inputs na nb nk ARX1 ARX1−2 na nb nk ARX2 ARX2−1

Prediction F 5 1 0 79.89 54.49 1 1 0 67.85 84.29
Q 1 1 2 62.04 -51.28e+01 5 1 0 12.55 -56.52e-01
F, Q 5 [1 5] [0 2] 82.66 -70.93 1 [1 1] [0 2] 72.27 86.00
F, AR 5 [1 1] [0 2] 79.04 52.02 1 [1 1] [0 0] 71.55 75.15
F, Deq 5 [1 1] [0 1] 79.57 53.09 1 [1 1] [0 0] 71.81 76.20
Q, Deq 5 [2 5] [1 2] 78.34 -86.93e+01 5 [2 1] [0 2] 32.33 -18.43
AR, Deq 5 [1 5] [2 1] 63.92 -18.31e+02 3 [1 1] [0 0] 48.87 79.50e-01
F, Deq , Q 5 [3 5 2] [0 2 1] 91.23 -61.06e+01 1 [1 1 1] [0 0 2] 78.87 85.00
F, FF, R 5 [3 5 2] [0 2 0] 88.80 -11.78e+02 3 [3 1 1] [0 0 0] 78.84 -79.71
F, FF, RG 4 [3 2 1] [0 1 2] 87.25 -77.57e+01 2 [2 1 1] [0 0 0] 74.06 -10.94
F, FF, AR 5 [3 5 2] [0 2 1] 88.42 -15.63e+02 4 [1 3 2] [0 1 2] 77.08 -80.86e-01

Simulation F 4 4 0 83.83 57.59 2 1 0 67.48 82.36
Q 1 1 2 64.58 -42.83e+01 2 1 0 26.30 38.25e-01
F, Q 4 [3 2] [0 0] 92.57 -12.30e+01 5 [1 4] [0 1] 75.63 78.76
F, AR 3 [3 2] [0 2] 85.03 58.74 1 [1 1] [0 0] 73.52 33.89
F, Deq 3 [3 1] [0 2] 83.60 46.04 1 [1 1] [0 0] 71.99 66.58
Q, Deq 3 [3 3] [2 2] 90.58 -10.80e+02 5 [1 2] [0 2] 74.79 -14.58
AR, Deq 4 [1 2] [2 0] 86.77 -61.42e+02 1 [1 1] [0 1] 55.17 16.87
F, Deq , Q 3 [3 3 2] [0 2 0] 94.74 -45.62e+01 1 [1 1 1] [0 0 2] 79.47 81.63
F, FF, R 4 [4 4 4] [0 2 2] 95.85 -89.23e+01 3 [3 1 1] [0 0 0] 79.50 -85.03
F, FF, RG 5 [3 5 5] [0 2 2] 96.16 -65.39e+01 3 [1 2 2] [0 0 0] 76.65 -82.60
F, FF, AR 5 [4 5 5] [0 2 2] 96.14 -13.59e+02 4 [1 2 3] [0 2 1] 77.21 -52.06
FF, R, AR 2 [2 1 2] [2 1 2] 94.21 -42.21e+02 3 [1 3 2] [0 0 1] 81.68 -16.50+01

ARX1−2: R2

adj
values of ARX models identified from the first experiment (ARX1) and validated on the second experiment.

ARX2−1: R2

adj
values of ARX models identified from the second experiment (ARX2) and validated on the first experiment.

Table 2. Optimal state space model output with 1, 2 or 3 model input(s) for the
first experiment and the second experiment.

Focus Model Optimal R2

adj (%) Optimal R2

adj (%)

on inputs order ss1 ss1−2 order ss2 ss2−1

Prediction F 3 73.05 40.81 1 59.75 79.68
Q 2 59.19 -704.47 1 0.20 1.34
F, Q 2 65.41 -48.43e+01 1 65.60 76.47
F, AR 2 55.25 -13.02 1 57.22 76.87
F, Deq 4 71.08 -20.63e–01 1 60.04 79.28
Q, Deq 1 74.92 -32.67e+01 3 33.25 -30.09
AR, Deq 2 73.26 -13.89e+02 3 54.82 15.07e-02
F, Deq , Q 2 75.41 -33.52e+01 1 69.56 80.29
F, FF, R 1 62.67 -64.26e+01 1 64.33 98.16e-01
F, FF, RG 1 63.89 -45.15e+01 1 60.36 21.91
F, FF, AR 1 66.49 -59.13e+01 1 64.55 -25.35
FF, R, AR 1 59.50 -54.32e+01 1 64.07 -11.44e+01

Simulation F 2 83.14 -12.64 1 61.47 80.03
Q 2 67.09 -2.41e+03 2 25.31 -13.08
F, Q 4 88.12 -24.11e+02 1 66.65 79.58
F, AR 3 83.35 -60.24e+01 1 61.91 73.17
F, Deq 2 83.01 -18.32 1 63.46 74.87
Q, Deq 3 92.18 -15.62e+02 3 48.35 -28.56
AR, Deq 2 83.37 -17.76e+02 3 57.26 26.54e-01
F, Deq , Q 2 89.03 -34.46e+01 1 70.54 79.95
F, FF, R 4 87.22 -32.47e+01 1 64.71 30.22e-01
F, FF, RG 4 88.78 -39.37e+01 1 62.61 51.46
F, FF, AR 3 88.11 -25.86e+01 1 65.85 -49.56e-01
FF, R, AR 2 94.30 -13.95e+02 2 66.71 -17.11e+01

ss1−2: R2

adj
values of state space models identified from the first experiment (ss1) and validated on the second experiment.

ss2−1: R2

adj
values of state space models identified from the second experiment (ss2) and validated on the first experiment.

point of view, the filament length input is less
suitable since the nk value is equal to zero,
indicating a change in the parameter at the
same time as the change in the SVI.

• Validation of the models identified on the
data of the first experiment is bad or non
existing. This could be due to the fact that
too much effort has been dedicated in identi-
fying the SVI jump, i.e., values in the range
of 250mLg−1 to 450mLg−1 during the first
experiment, a jump that is not present in the
second experiment.

• If the second experiment models validate well
on data of the first experiment, the R2

adj cri-
terion value is for yet unexplainable reasons
higher in validation than in identification.
This is also true for the R2 criterion that
does not compensate for the number of data
points and the number of degrees of freedom
(results not shown).

• Most often, combinations of F, FF, Q and
Deq with the floc elongation related parame-
ters R, RG or AR give rise to more or less
similar identification values, implying that
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Fig. 4. Measured SVI (—) and modeled SVI (-
- -) with the optimal 1st-order state space
model and 3 model inputs [F Deq Q] during
(a) identification and (b) validation.

probably only one of the roundness related
floc characteristics will be sufficient.

• A final remark is related to the MATLAB im-
plementation. Although not needed, we did
test the model stability when implementing
the simulation focus. We then noticed that
the System Identification Toolbox is rather
generous in assigning the stable label to a
model. Models, whose poles lie within a circle
of a radius of 1.01, are regarded as stable by
MATLAB.

4. CONCLUSIONS

In the quest for an early forecast tool for fila-
mentous bulking in activated sludge wastewater
treatment systems, organic loading and/or digital
image analysis information have been exploited
into dynamic black box models to predict the
Sludge Volume Index evolution based on a qual-
ity performance criterion, i.e., R2

adj. If the floc
and filament characteristics change before the SVI
reaches its critical limit, a dynamic model, taking
into account previous input and output values,
could aid in predicting filamentous bulking before
it really happens, which is not feasible with static,
instantaneous models. Therefore, ARX and state
space models were identified from two individual
data sets and afterwards cross-validated on the
data of the other experiment.

ARX models are better (higher criterion values) in
identification than state space models and as good
in validation. Previous studies have earmarked im-
age analysis information as a promising activated
sludge monitoring tool (Jenné et al., 2003). In this
paper this conclusion is confirmed. An interesting
observation is, e.g., that the total filament length
per image (F) could either be used as a single
input or in combination with other (floc related)
inputs, especially if good validation quality is to
be attained. The validation exercise with a single
input shows F as a strong candidate to model the
SVI behavior as compared to Q. [F Deq] and [F

Deq Q] come out as well performing multi-input
combinations though the validation results with
a single input F are equally good. The drawback
of the filament length as an input is the lack of
predictive power since the characteristic changes
occur at the same time as the change in the
SVI values. As additional experimental data and
other image analysis based model inputs become
available, re-identification and further validation
of ARX models will be performed.
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