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Abstract: In the control of batch distillation columns, one of the problems is the
difficulty of monitoring the compositions. This problem can be handled by
estimating the compositions from readily available online temperature
measurements using a state estimator. In this study, an extended Kalman Filter
(EKF) and an Adaptive Neuro-Fuzzy Inference System (ANFIS) state estimators
that infer the product composition in a multicomponent batch distillation column
(MBDC) from the temperature measurements are designed and tested using a batch
column simulation. The designed EKF and ANFIS estimators are successfully used
in the composition – feedback inferential control of MBDC operated under variable
reflux-ratio policy with an acceptable deviation from the desired purity level of the
products. Copyright © 2004 IFAC
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1. INTRODUCTION
 
“Batch distillation is generally used as a separation
unit in the fine speciality chemicals,
pharmaceuticals, biochemical and food industries.
The demand and the uncertainty in specifications
for these chemicals have increased recently, which
increased the popularity of the use of batch
distillation” (Barolo, M. and Cengio, P.D., 2001).
Instead of using many continuous columns in
series, multiple products can be obtained from a
single batch distillation column during a single
batch run. Moreover, batch distillation processes
can easily handle variations both in the product
specifications and in the feed compositions. This
flexibility of batch distillation processes provides
the ability to cope with a market characterized by
short product life times and strict specification
requirements.

In batch distillation, the operation of the column
with optimized operation scenario; including reflux

ratio policy, switching times, and method of
recycling, is required to be realized in a convenient 
control system. However, in order to employ the
operation scenario; the designed controller will
require continuous information flow from the
column, including the compositions throughout the
column or temperatures reflecting the composition
knowledge. The reason for this requirement is that, 
the value of reflux ratio and switching between
product and slop cut distillations are optimized
which are subject to the composition profile along
the column and obtained as a function of it.
Therefore, the need for knowledge of current
composition in the column becomes obvious.

This composition knowledge can be generated by
means of direct composition analyzers. Although
there is a great development in the technology of
online composition analyzers, such as gas
chromatography, they bring large measurement
delays and high investment and maintenance costs
(Mejdell, T. and Skogestad, S., 1991;
Venkateswarlu, C. and Avantika, S., 2001). The



most popular alternative to the composition
controllers utilizing analyzers is standard
temperature feedback controllers. Although,
temperature measurements are inexpensive and
have negligible measurement delays, they are not
accurate indicators of composition (Mejdell, T. and
Skogestad, S., 1991). Another alternative is
inferential control systems incorporating state
estimators which use secondary temperature
measurements.

State estimation can be defined as the process of
extracting information from data which contain
valuable information about a system and state
estimator is the tool responsible for gathering
valuable measurements to infer the desired
information. Modern estimators also use known
relationships in computing the desired information;
taking into account the measurement errors, the
effects of disturbances and control actions on the
system, and prior knowledge about the system and
measuring devices. While gathering these elements,
they make use of some error criteria and try to
minimize errors in some respect. The criteria and
the method of minimization characterize the
method of estimation and the use of minimization
makes the estimate (extracted information)
“optimal”. If this optimality is realized statistically, 
the estimator type becomes stochastic; if
deterministically it becomes deterministic. One of
the estimators used in this work falls in the
stochastic category and it is named as Kalman
Filter.

However, if the sufficient input-output information
is generated from the process, artificial intelligence
methods that use this collected information can also
be used to design a state estimator. ANFIS is one of 
the examples of these methods in which a fuzzy
inference system is implemented in the framework
of adaptive networks. It constructs an input-output
mapping based both on human knowledge (in the
form of fuzzy if-then rules) and on generated input 
output data pairs by using a hybrid algorithm that is 
the combination of the gradient descent and least
square estimates (Jang 1993).

In this study, the aim is to design state estimators
that infer the component concentrations of the
multicomponent batch distillation column from the
measured tray temperatures. The designed
estimator is further tested using a rigorous column
simulation to find its performance. The extended
Kalman Filter (EKF) and the Adaptive Neuro-
Fuzzy Inference System (ANFIS) are selected as
the state estimators. Because it is based on the
linear dynamic model of the process, the rigorous
model used in the simulation is adapted to the EKF 
estimator algorithm mainly by simplifying the
equilibrium model and by means of linearization.
ANFIS estimator is designed using the data sets
including temperature values and corresponding
composition values obtained from the rigorous
model. The performances of the developed
estimators are tested by using the rigorous column

simulation and discrete measurements of the top
product compositions.

2. PROCESS DESCRIPTION
 
The case column for simulation is the one which
was simulated by Mujtaba, I.M. and Macchietto, S., 
1993 in their study on the subject of optimal
operation of MBDC. The column is used to
separate the mixture of cyclo-hexane, n-heptane
and toluene. 

The batch distillation column is under the perfect 
control of reflux-drum level and has two degrees -
of-freedom for manipulation which are reboiler
heat load, Q1 and reflux-ratio, R. In this study, the 
reboiler heat load, Q1 is kept at its maximum value 
given by design while the reflux-ratio, R is used as 
manipulated variable in order to realize the optimal 
operation policy recommended by Mujtaba, I.M.
and Macchietto, S., 1993. This optimal operation
policy is used to yield two product-cuts with the 
desired purity levels of 0.9 and 0.8 from the
mixture of cyclo-hexane, n-heptane and toluene
with the composition of (0.407, 0.394, 0.199). In
the simulations, this optimal reflux ratio profile is
employed.

There are many different rigorous models of batch
distillation columns. They use the same basic
strategy in the simulation model development
which was used initially by the first studies on
rigorous modelling of distillation columns. In batch
column modelling, this common strategy was
initiated by Meadows, E.L., 1963 and Distefano,
G.P., 1968 which were followed by Stewart et al., 
1973. The rigorous model used in this study is
based on the study of Distefano, G.P., 1968 and its 
details are given by Yildiz (2002).
 

3. EKF ESTIMATOR
 
The Extended Kalman Filter (EKF) is defined as
“optimal recursive data processing algorithm”
(Maybeck, P.S., 1979), handling the estimation
issues in the nonlinear system theory. EKF uses the 
nonlinear model of the system given by Eq.(1)

( ) ( ( ), ( ), ) ( ) ( )x t f x t u t t G t w t= +& (1)

where f is the vector of the nonlinear system
functions and the noise process, w(t) is modelled as 
white Gaussian noise with statistics
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and the nonlinear measurement model written as
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where h  is the vector of the nonlinear

measurement functions and noise process, ( )kv t  is
modelled as white Gaussian noise with statistics
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Moreover, EKF algorithm needs the linearized
versions of these two models, specified by the
Jacobian matrices and for the system it is given by 
Eq. (7)  and for the measurement process by Eq. (8)
.
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The extended Kalman Filter has a two-step
recursive calculation algorithm. The first named as
the propagation stage is responsible to calculate
the prediction of the state at the current time using
the best state estimate at the previous time step.
The second is named as the update stage and
updates the prediction found in the first stage using
the measurements taken from the actual process
and calculates the best state estimate. The
propagation stage integrates the state and error
covariance derivatives from the previous time step

1kt −  to the current time kt and uses the best state

estimate 1ˆ ( )kx t+
−  and its error covariance 1( )kP t+

−

at the previous time step 1kt − , in order to calculate

the prediction of the state,
ˆ ( )kx t−

and its error

covariance
( )kP t−

at the current time step kt . The 
update stage inovates the prediction of the state
ˆ ( )kx t−

 and its error covariance ( )kP t−

 at the

current timestep kt . In order to initiate the Kalman 
Filter algorithm, the initial conditions incorporating

the initial state, 00
ˆ ˆ( )x t x=  and its error covariance,

00( )P t P=  are required. At the initialization time
step, when the first measurement is taken,
requirements of the best state estimate,

1 1ˆ ˆ( ) ( )kx t x t+ +
− −=  and it error covariance,

1 1( ) ( )kP t P t+ +
− −=

 at the time step 1t−  are supplied 

by replacing with the initial state 0x̂  and its error 

covariance 0P .

The technique of EKF estimation will be applied to
MBDC in order to infer the column compositions
from the tem perature measurements. At first, the
observability of a multicomponent batch distillation
column, which is a must to be able to estimate the
system states, is to be analyzed. Employing a

degree-of-freedom concept, Yu, c.C. and Luyben,
W.L., 1987 found that a distillation column is
observable if the number of measurements is at
least (NC-1). The study of Quintero-Marmol et al., 
1991, dealing with the design of an extended
Luenberger Observer for MBDC, concluded that
even though the linear observer in theory needs
only (NC-1) temperature measurements to be
observable, the nonlinear observer needed at least
(NC) thermocouples to be effective. In addition, to 
improve the convergence without affecting the
robustness, the use of (NC+2) measurements is
recommended by Quintero-Marmol et al., 1991.

As a result, the nonlinear models for the system
and for the temperature measurements are to be
developed in the form required for EKF algorithm.
However, the model developed for rigorous
simulation of the batch column is not suitable for
realistic situation in order to be implemented in
EKF algorithm. The complexity of the simulation
model requires high computational time and
memory. Therefore, the rigorous column model for
simulation is to be simplified and then the obtained
nonlinear model is to be linearzed to achieve the
Jacobian matrix both for the system and the
measurement processes.

Some additional assumptions are needed for the
simplification of the rigorous simulation model of
MBDC. These assumptions are constant molar
holdup on trays, neglecting the energy dynamics in 
the column, ideal trays, and use of Raoult’s Law 
with Antoine’s vapor pressure correlation for VLE
description. As a result, the vapor flowrates
throughout the column become equal as well as the 
liquid flowrates. The simplified model equations
for MBDC are given by Yildiz (2002).

Lastly, the general forms of the linear system
matrix
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and the linear measurement matrix
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are evaluated analytically. Their expanded forms
and the details of the derivation are given by Yildiz 
(2002).

Consequently, all the information required for EKF
estimator has been obtained. This information
incorporates nonlinear and linearized models for
the system of MBDC and the measurement process 
given respectively by , , ,f h F H′ ′ .

4. ANFIS ESTIMATOR
 
In ANFIS, Takagi-Sugeno (TS) fuzzy model is
used. A simple example of ANFIS with two TS



type fuzzy rules is given in Figure 1. The output of 
each rule can be a linear combination of input
variables plus a constant term or can be only a
constant term. The final output is the weighted
average of each rule’s output. 
 
Rule1: If x is A 1 and y is B1, then

1111 ryqxpf ++=
Rule2: If x is A 2 and y is B2, then 2222 ryqxpf ++=

The node functions in the same layer are the same
as described below:
 
Layer 1: Every node i in this layer is an adaptive
node with a node function as: 
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where x is the input to node i, and Ai (or Bi-2 ) is a 
membership function (MF) associated with this
node. Parameters in this layer are the MF’s
parameters.
 
Layer 2: Every node in this layer is a fixed node
labeled as Π, whose output is the product of all
incoming signals: 

( ) ( ) 2,1,0 ,2 === iy
B

x
A

w
ii

ii µµ (12)

 
Each node output represents the firing strength of a 
fuzzy rule.
 
Layer 3: Every node in this layer is a fixed node
labeled N. The ith node calculates the ratio of the
rule’s firing strength to the sum of all rules’ firing
strengths:
 

( ) 2,1,/0 21,3 =+== iwwww iii (13)

Outputs of this layer are called “normalized firing
strengths”.
 
Layer 4: Every node i  in this layer is an adaptive
node with a node function as:
 

( )iiiiiii ryqxpwfw ++==,40 (14)

where iw  is a normalized firing strength from

layer 3 and { }iii rqp ,,  is the parameter set of this 

node.
 
Layer 5: The single node in this layer is a fixed
node labeled Σ  that computes the overall output as
the summation of all incoming signals:
 

05,
w fi ioverall output w fi ii wii i

∑= = =∑ ∑
         (15)

The computation of parameters is facilitated by a
gradient vector, which provides a measure of how

well the ANFIS is modeling the input output data 
for a given parameter set. Once the gradient vector
is obtained, backpropagation or hybrid learning
algorithm, combination of the gradient descent and
least square estimates, can be applied in order to
adjust the parameters (Jang 1993). Detailed design
procedure for the ANFIS estimator can be found in 
the study of Güner (2003).
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Fig. 1 Simple ANFIS architecture
 

5. RESULTS AND DISCUSSION
 
The EKF estimator implementation is performed in 
three phases. First, an extended Kalman Filter for
the estimation of product compositions for a
MBDC from temperature measurements is
designed. Then the designed EKF is implemented
on the case MBDC to check the performance of the 
EKF. In the third phase the designed EKF is
utilized for control purposes in the MBDC.

After designing the EKF state estimator, several
simulation test runs are done to obtain the optimum 
values of the tuning parameters by selecting the
integral absolute error (IAE) as the performance
criteria reflecting the fitness of the EKF design
parameters. The tuning parameters for EKF are the 
diagonal terms of process noise covariance matrix,
q, and the diagonal terms of measurement model
noise covariance matrix, r. Also, the effect of
number of measurement points and measurement
period,

mt∆  have been considered. 

The optimum value of the diagonal terms of
process noise covariance matrix, q and the diagonal 
terms of measurement model noise covariance
matrix, r are searched in the range where the EKF 
estimator is stable. Performing some trial runs, the
stability region of the estimator is found where the 
value of q and r are in the range of 50 - 1x10-7 and 
0.5 - 5x108, respectively. The best result (i.e. one
having the lowest IAE sum) is obtained for the
diagonal terms of process noise covariance matrix,
q=5000 and for the diagonal terms of measurement 
model noise covariance mat rix, r=0.00001. The
best result is obtained for three measurement points 
and for the measurement location set with reboiler, 
4th and top trays. The effect of measurement
period, mt∆  on IAE scores is also investigated.

Although, the measurement period selected in this 
simulation study is the integration time step (i.e.
the minimum possible value), in real-time
estimation problems, the value of

mt∆  is to be

chosen considering the limits of the computational
power. The measurement periods of 3 min. even 5 



min. can satisfactorily be used without much
change in EKF performance. Given this optimum
set of the tuning parameters, the actual and
estimated reflux-drum composition profiles are
shown in Figure 2 for the case column under the
open-loop control actions. 

Fig.2. Actual and estimated reflux-drum
composition profiles for the optimum values of the
tuning parameters under open-loop control.

In last phase of the study, it is aimed to analyze the 
performance of the EKF estimator for a MBDC
system in a composition-feedback inferential
control structure which realizes an actual
scheduling policy explained previously. In the
simulation of this control structure, the
compositions can be obtained directly from the
process simulation or from the EKF estimator.
Firstly, to create a reference point, a simulation is
done, taking the composition knowledge directly
from the column as the feedback information to the 
controller. The response of this reference run in
terms of the liquid compositions, both in the reflux-
drum and the reboiler are given in Fig.3.

Fig.3. Actual and estimated reflux-drum
composition profiles for the optimum values of the
tuning parameters under open-loop control.
 
To see the performance of EKF, secondly the same 
simulation is realized using the estimated
compositions as the feedback to the controller. For 
the design parameters of the EKF estimator,
previously obtained optimum values are used.

Actual and estimated compositions of the reflux-
drum are shown in Fig.4. Thus, this batch
distillation column can be controlled satisfactorily
for variable reflux ratio policy by the use of EKF
estimator utilizing a simplified model.

Fig.4. Actual and estimated reflux-drum
composition profiles for the optimum values of the 
tuning parameters under closed-loop control.

The ANFIS estimator design is performed in three
phases. First, input process variables which are in
operational range are changed and output variables
are obtained from rigorus model simulations. Then,
training data sets are generated using these input -
output data and different ANFIS architectures are
trained with these data sets. Finally, trained
architectures are implemented on the case MBDC 
to check the performance of the estimators. The
structure that gives the minimum IAE score after
the simulations is selected as an ANFIS estimator.
Fig.5 shows the performance of the selected
ANFIS state estimator. It can be seen from the Fig. 
5 that ANFIS estimator performance is very good. 
It can also be seen from the Fig.6. that performance 
of the ANFIS estimator is better than the EKF state 
estimator.
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6. CONCLUSION
 
The study is aimed to estimate the compositions in
the multicomponent batch distillation column from
temperature measurements using EKF and ANFIS
estimators, separately. It is found that, the most
important part of the modelling affecting the
performance of the EKF estimator is the selection
of the VLE formulation. EKF parameters of the
diagonal terms of process noise covariance matrix
and the diagonal terms of measurement model
noise covariance matrix are selected basing on the
least sum of individual IAE scores for the reflux-
drum and the reboiler composition estimates. From
the input -output data of the rigorous plant
simulation ANFIS estimator is trained and from
several simulation runs for different architectures
of ANFIS estimator the estimator performance is
optimized. The designed EKF and ANFIS
estimators are implemented in the open-loop
control of the MBDC. It is seen that ANFIS
estimator performs more accurate estimations of
the reflux-drum compositions than the EKF does.
The superior performance of the ANFIS is due to
having the information directly taken from the
input -output data of the simulated plant. However, 
the EKF estimator incorporates the simplified
model and its linearized version of the plant
causing plant-model mismatches.
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