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Abstract: A novel methodological and computatiorieamework for the

guantitative assessment of the effects of cell [adjon heterogeneity on the
dynamics of cell populations is presented. We foonspopulations of cells
carrying an artificial genetic network, consistinfja system of two promoter-
repressor pairs. Detailed numerical simulationscate that taking into account
cell population heterogeneity leads to agreemetit experimental data, while
neglecting it results in significant qualitativedaguantitative differences both
transiently and at balanced grow@opyright © 2003 IFAC
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1. INTRODUCTION the purposes and specific objectives of the study,
these considerations lead us to define a biological
Biological systems are undoubtedly complex. Theirsystem as a system consisting of a cell population
complexity originates from a variety of sourcessEi  rather than one comprised of an individual cell &sd
the DNA of organisms is comprised of a large components.
number of genes, which, depending on the
intracellular state, maybe on or off or have Such a biotechnologically meaningful definition
intermediate expression levels. This, in turn gnies  necessitates the consideration of an extra level of
to a huge number of possible gene states. In additi complexity originating from the fact that cell
cells contain a large variety of chemical composgent populations aréneterogeneousystems in the sense
including ribonucleic acids, lipids, amino-acids, that cellular properties are unevenly distributed
proteins, and metabolites of many different cheiica amongst the cells of a population. Thus, at angmyiv
compositions. These cellular components participatgoint in time, cells of an isogenic cell population
in many different processes, including signal contain different amounts of DNA, mRNA, proteins,
transduction, DNA transcription, DNA replication, metabolites etc. In short, cell population
translation of mRNA into proteins, transport betwwee heterogeneity can be defined as phenotypic
different cellular compartments or between the cellvariability amongst the cells of an isogenic cell
and the extracellular space, as well as transfaomat population. This biological fact has been knowndor
of chemical compounds into metabolic products.long time. As early as 1945, Delbrick showed
Furthermore, products of one set of processesignificant variations in phage burst sizes (Dedbri
typically affect (inhibit or enhance) the rates of 1945). Moreover, cell population heterogeneity has
another set of processes, leading to highly noatine been observed in cell division times (Powell, 1956)
interactions. Finally, intracellular processes a@cati  the lysogenic states of phage-infected cells (P&sh
multiple, vastly different time scales. For example 1987), the tumbling and smooth-swimming states of
cell proliferation may occur at the time scale of flagellated bacteria (Spudich and Koshland, 1976),
minutes or hours or days depending on the strain oflagellar phases (Stocker, 1949), induction or
cell type, the media, and the environmentalrepression states of bacterial differentiation @eus
conditions. However, regulation molecules typically Marie, et al., 1993), sporulating culturesBfsubtilis
exert their influence in the time scale of seconds. containing fusions between sporulation genes and
lacZz (Chung and Stephanopoulos, 1995), while
All of the aforementioned sources of complexity are population heterogeneity Brgalactosidase activities
related to events at tisingle-cell levelHowever, the  of cell populations expressing the lac operon genes
majority of the powerful experimental techniqueatth has been demonstrated in various systems (Novick
are available today (e.g. DNA arrays, 2-D gels, LC-and Weiner, 1957). Recently, through an elegant set
MS etc), collect measurements from enticell of experiments, the inherently heterogeneous nature
populations instead of individual cells. In addition, of various isogenic E. coli strains was also
the objective of most biotechnological applicatid®s established using two different fluorescent prateia
to maximize the productivity of products formeddy reporters (Elowitz, et al., 2002).
population of cells instead of maximizing the
production in an individual cell. Since, in systems The phenotype of each cell depends on the type and
engineering, the definition of a system depends omumber of genes that are expressed at any given poi



in time, as well as on the subsequent, numerounaccurate predictions of the dynamics of the
intracellular reactions comprising what is simply average.
known as metabolism. The outcome of these cellular
processes is greatly influenced by the extracellula Such a restrictive assumption is not present ircétie
environmental conditions, while, intracellularlifese  population balance (CPB) modeling approach
processes are tightly controlled byegulatory  (Ramkrishna, 2000). These models describe the
molecules. Due to the instrumental role thatdynamics of the entire cell property distributidimis
regulatory molecules play in the determination of naturally accounting for the heterogeneous natéire o
single-cell phenotype, phenotypic variability among cellular processes, nutrient uptake and product
the cells of a population is tightly related to formation. Furthermore, they can accommodate all
regulation of gene expression and, hence, thehe information contained in continuum models on
architecture and dynamics of single-cell regulatorythe reaction kinetics occurring at the single-tmikl.
networks. The astonishing recent progress in genomiln addition, they explicitly incorporate in their
research has offered the exciting capability offormulation the division process, as well as the
synthesizing artificial genetic networks with pre- mechanism by which dividing cells partition their
specified, tunable functions. This, in turn, présen material into two daughter cells. Thus, one of the
the revolutionary opportunity to engineer desirablefundamental sources of cell population heteroggneit
cellular properties by building the organism’s gene is explicitty accounted for in the mathematical
regulatory architecture from appropriate, formulation. However, CPB models consist of first-
interconnected genetic blocks with well-defined order, hyperbolic, partial integro-differential
regulatory functions. However, before embarking equations describing the time evolution of the cell
into the exciting challenge of building the organs property distribution, which are typically, nonlamgy
regulatory architecture (Guet, et al., 2002), itofs coupled with integro-ordinary differential equatson
fundamental importance to understand how eachdescribing the dynamics of the extracellular
specific  gene-regulatory module affects the environment. Such formulations are characterized by
phenotype of the entire cell population. significant mathematical complexity and their
numerical simulation represents a challenging task.
Based on these considerations, the naturalThis mathematical complexity in turn results in
fundamental question for the Systems Biologistadditional difficulties in developing control and
becomes: “How does one accurately describe theptimization strategies for biological systems
dynamics of cell populations?” The traditional described by CPB models.
approach consists of formulating chemically
structured continuum models. These are ordinaryin this work we present a novel methodological
differential equation (ODE) models describing the framework that isolates the quantitative effectseif
dynamics of population average intracellular  population heterogeneity for a given set of
concentrations and their coupling with the dynamicsbiomolecular reactions occurring at the single-cell
of the nutrients and extracellular environmentallevel by combining the chemically-structured
conditions, in general. Models of this type contain continuum with the cell population balance modeling
significant amount of biological detail on processe approaches. In section 2 we present the derivation
that occur at the single-cell level. Moreover, tlaeg  this framework, and we sketch the general
rather easy to formulate and simulate. In addition,computational algorithm that was developed in order
there exist well-developed, general, theoretical an to quantitatively assess the effects of cell pajputa
computational tools, which utilize ODE models for heterogeneity on the dynamics of cell populations.
process design, control and optimization. Finally, Finally, in section 3 we apply the presented
there exists a variety of advanced parametemathematical/computational framework to a well-
estimation techniques allowing the routine known artificial gene switching network, known as
determination of parameters that appear in suchhe genetic toggle (Gardner et al., 2000).
models from appropriate experimental data.
However, chemically-structured continuum models
are characterized by fundamental limitations. First 2. METHODOLOGICAL FRAMEWORK
by construction, they do not describe how moments
of the cell property distribution higher than thestt =~ Motivated by the natural way that CPB models
evolve with time, hence providing only a limited account for population heterogeneity, we develaped
view of the biological system of interest. One ntigh general modeling and computational framework
argue that in many instances, knowledge of just thaiming at: a) quantitatively assessing the effafts
population average dynamics is sufficient. However,population heterogeneity on the dynamics of cell
in order to obtain closure in deriving a set of populations for a given single-cell gene-regulatory
equations describing just the first moments ofdlé  network and b) accurately predicting the entird cel
property distribution, continuum models inherently property distribution dynamics.
assume that a cell population is a homogeneous
system. More specifically, it is assumed that d cel To achieve our aim, we observe that the fundamental
population behaves like a lumped biophase, whére adifference between chemically-structured continuum
cells behave exactly like the average populatidh ce models and CPB models is that the former models
Such an assumption obviously neglects the effects cassume that all cells in the population behave
cell population heterogeneity and might lead toidentically to the average cell, while the lattee a
more general and do not make this restrictive



assumption. We also note that, by construction,growth At this state, N{;t) reaches a time-invariant
continuum models can only predict the dynamics ofshape, while cells continue to proliferate. Takihg
average cellular properties, and none of the atbr  first moment of eq. (3) and applying conservatién o
distribution characteristics. Therefore, for a give mass for each cellular component at cell division,
reaction network, in order to isolate the effecfs o leads to a set of equations describing the dynaafics
extrinsic population heterogeneity, it suffices to 4 average intracellular concentrations ;(: i
develop a framework for comparing the predictions:1 f):
for the average cellular property dynamics mada by 7
CPB model with those made by its corresponding —
continuum model. The question that naturally arisesﬂzj‘r (x,S)n(x t)ok_jﬁj‘r(x S)n(x, 9 & (4)
is the following: Given a CPB model, what is its dt &' ’ ' ’
corresponding continuum formulatidn

G

Notice that the dynamics of the average intracalul
The starting point of our approach for addressimg t concentrations are coupled with those of the number
question is the generalized CPB model subject tojensity function (eq. (3)). To derive the
regularity boundary conditions (Ramkrishna, 2000): corresponding continuum model, it suffices to apply

to eq. (4), the fundamental assumption of continuum

ON(x, 1) models, namely, that all cells in the population
T+Vx'[r (X S)N(x, ) ]+ T (x,S) N(x, 1) behave exactly like the average cell. This can be
(1) mathematically captured by representing,t)(as a
:ZJF(y,S) p(x.yS) N(y,t - DN(x, 9 product of delta functions centered around the
¢ average intracellular states:
Ve T (X, S)N(x,t)|dx=0 ) ' _
J; [ ] n(x,t):HS(xi—xi(t)) (5)
i=1

where x is an r-dimensional vector describing the o ) . i
cellular state; G is the space of admissible st&tés ~ Substitution of (5) into (4) yields the continuum
a p-dimensional vector with the extracellular model, which corresponds to the CPB model:
substrate concentrations; D is the dilution rate in _
continuous bioreactors; Kf)dx is the number of dxi
cells which at time t, have a state betweeiand dt
x+dx; r(x,9), I'(x,S), and pk,y,S) describe single-

cell, state dependent processes. They represenfie difference in the predictions of equationsadd
respectively, the r-dimensional vector with the net(g) constitutes the basis for quantitatively assess
reaction rates, the scalar division rate and thepe effects of population heterogeneity for a given
partition probability density function. The latter piomolecular network. Notice that both sets contain
describes the mechanism by which a mother cell okpe same parameters. The only difference is that eq
state y partitions its cellular material into two (4) account for the heterogeneous nature of cell
daughter cells of state andy-x. We note that the  growth, while egs. (6) do not. A careful inspectiafn
integro-partial differential equation (1) is, inrgeal, egs (4) and (6) reveals that the effects of pojmmiat
nonlinearly coupled with a set of integro-ordinary heterogeneity can safely be neglected when the
differential equations describing the dynamicst& t = gingle-cell division and reaction rates are eittate-
p substrate$ (not shown). Moreover, in the case of & jngependent or depend linearly on the cellularestat
batch reactor with excess substrates and in thg, || other cases, differences between the two
absence of cell death, tistate distribution function approaches are expected. Finally, notice that the
N(x,t) does not reach a steady state as the cell§ioposed framework is bidirectional: Given a CPB
continue to grow in the exponential phase.gone can derive the corresponding continuum model
Manipulation of egs. (1) and (2), as well as propsr a5 described. Similarly, given a continuum model
of p(xy.S), leads to the equation describing the gescribing the dynamics of a certain network, the
dynamics of thenumber density functiom(x,),  corresponding CPB model can be derived, by
which is defined as the ratio of () over the cell  (gjaxing the homogeneity assumption captured in eq.
density N, (t)sz(x,t)dx: (5). One also needs to model the partitioning
G mechanism. However, x§,S) affects the dynamics
of the average only indirectly, since it does not

=1 (%.8)-T(x,S)x (i=1,..0 (6)

on(x,t) explicitly appear in the equations describing the
o v, [r(xS)n(x,)]+I(x,S) n(x, population average dynamics (egs. (4)).
=2[T(y.S)p(xy S)ny.) ¢ (3)

G

2.1 Numerical Algorithm
—n(x,t)IF(x,S) n(x,t) &
G The computational challenge in applying this
theoretical framework lies in the necessity to solv
Due to the presence of the extra nonlinear termhe cell population balance model. To this end,
accounting for dilution due to cell proliferatiamx,t)  significant progress has been made in recent years

reaches a steady state, known assthee of balanced (Mantzaris, et al., 1999; Mantzaris et al., 200,b



The most efficient algorithms suggested in the dx, a,
literature share one common characteristic: they ot [ JV_XZ C)

discretize the cell population balance equatiorain n Xy
fixed domain. However, the upper bounds of the f([IPTG
physiological state space are typically known only
initially. Moreover, large differences in the time
scales involved in the time evolution of the cell
roperty distribution may | ven the m .
gff(i)fiznz g)f(:dl-jc;gr?”nain ?Ilgorieta?nse ti sigrenficagts t cooperative inhibition of the express.lon of eachege
inaccuracies. Motivated by the above considera,tionsby the gene PTOdUCt 9f the_ other; #([IPTG]) is a
we developed a moving boundary algorithm for thefunctlon describing thg induction process of thePt
solution of population balance models. The number? Promoter (controlling the expression of the
density function in the moving physiological state "ePressor) by the extracellular inducer isoprdpyd-
domain was expanded using a Galerkin spectrafhiogalactopyranoside (IPTG):
method with sinusoidal basis functions, since #ais
of basis functions requires a low number of modes i [|pTG] "
f((IPTG])=| 1+——=

where a & are the effective rates of synthesis of the
two genes;B, y are Hill coefficients describing

order to accurately capture the dynamics of the 9)
distribution. For the time integration of the systef
ODEs resulting after expansion of the distribution

function using a finite number of basis functiotie ~ The parameter values that were used in all
one-step, time explicit Runge-Kutta"4 order  Simulations are given in Table 1 and are identioal

algorithm was found to be the most efficient those used in the original work of Gardner and co-
(Mantzaris, et al., 2001b). This algorithm resiftsa ~ Workers (Gardner, et al., 2000).

more accurate and efficient simulation of the ) ] ]
population balance model, since at each time stepEquations (7) and (8) constitute the continuum
only the part of the physiological state space wher Model, which was used as the basis for the
cells exist is discretized. It simulated very effitly ~ development of the corresponding CPB model
different (cellular and non-cellular) processeseTh Presented earlier. We assumed that the divisian rat
details of the derivation and the performance tests depends on the repressor expression according to

presented elsewhere (Mantzaris, 2003). an expression of the form:
3. THE GENETIC TOGGLE SYSTEM X5
T(Xy,%,) = 5 = (10)
Motivated by the potential of artificial genetic _[ I X5n( Xy, X,, ) dx,
networks to tailor the phenotype of various strains o o

according to specific biotechnological needs, we

focus our attention on a specific artificial geneti where m is a parameter. Notice that the average

network, known as the pTAK genetic toggle. It was division rate obtained from eq. (10) is equal tanl,

constructed by Gardner and coworkers (Gardner eagreement with the average division rate giverhiey t

al., 2000) and consists of two promoter-repressoicontinuum model. Finally, we assumed that the

pairs. In particular, théacl repressor gene is under partitioning function is equal with respect to the

the control of theclts (phage) repressor) - repressed repressor and a symmetric beta distribution with

P.slcon promoter, while th@& repressor gene is respectto thé repressor:

under the control of thelacl-repressed, IPTG-

inducible Ptrc-2 promoter. The gfpmut3 gene - ) )

expressing fluorescent GFP serves as the reporder a p(x;,X,,2,2,) = 6( xl——lj-(—zj ( i 2) (11)

is placed after theclts gene. The population 2 Z

dynamics of cells carrying the genetic toggle were

well-characterized by Gardner and co-workers usingwvhere$ is the Dirac function; xx, and 7,z are the

flow cytometry (Gardner, et al., 2000). expression levels of the two genes in the daughter
and mother cells respectively, and g is a parameter

To predict the induction dynamics, the authors also

developed a two-state, chemically-structured  Table 1: Parameter values used in simulations

continuum model, which, as stated earlier assumes

homogeneous population behaviolThe model Parameter Value

describes the expression dynamics of the two genes a 156.25
according to the dimensionless equations: a 15.6
. B 2.5
X _ & 1.0
dt 1+ % % @ & 2.9618x10M
n 2.0015
m 3
q 10
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Figure 1: Average, normalized expression levels atrigure 2: Transient simulations for the average,
balanced growth. Solid line: continuum model; Opennormalized expression levels for high and low aiiti
circles: Cell population balance model average expression level at [IPTG]s20. Solid
line: continuum model-high initial average; Dashed
line: continuum model-low initial average; Solidé-
3.1. Results open circles: CPB-high initial average; Dashed-line
open circles: CPB-low initial average.
The theoretical framework discussed in section & wa
applied in order to understand the interplay betwee To better understand the source of the discrepancy
the single-cell dynamics of the genetic toggleayst between the predictions of the two models, we show
and those of the entire cell population. The naturathe dynamics of the entire number density function
bifurcation parameter was the extracellular IPTGfor the same IPTG concentration (figure 3a). The
concentration. The comparison between thesystem initially exhibits some transient bimodal
predictions of the two modeling approaches for thedistributions before reaching a unimodal distribnti
normalized, average balanced growth GFPwith a low mean value. These bimodal transient
expression levels (quantifying the expression kvel distributions have also been experimentally obskrve
of the A repressor) is shown in Figure 1. Notice that (see Figure 6 in (Gardner et al., 2000)). Desyite t
both modeling approaches predict similar balancedow average value, there exist some cells with at
growth average expression levels at high inductiorrelatively high expression state, accounting fog th
levels. Notice also the agreement between thdact that the average expression level at
modeling approaches in the prediction of the[IPTG]=20uM predicted by the CPB model is higher
bifurcation point around 4QM IPTG. However, the than the one predicted by the continuum model, (see
continuum model predicts a huge range of IPTGFigure 2).
concentrations where the system exhibits steadg-sta
multiplicity, with the upper and low states being
stable, while the intermediate is unstable. On the
contrary, taking into account population
heterogeneity leads to a much narrower region of
multiple steady states. The predictions of the CPB
model are in excellent agreement with the
experimental measurements of Gardner and co-
workers (figure 5a, Gardner, et al., 2000). In
particular, they showed that the population display
much sharper transition from the low to the higitest
with a narrow region of steady-state multiplicity
around the transition point of 4M IPTG.
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oo ) igure 3: The dynamics of the GFP (orepressor)
Analogous similarities and differences are observe(f number density function for [IPTG]=aM as

tr.ansierjtly. In particu!ar, figure_ 2 shows two sefs predicted by the CPB model.
simulations for low-intermediate induction levels
([IPTG]=20uM). In the first set, the initial average
expression level is lower than in the second set
Notice that vastly different phenotypes are prexict
by neglecting population heterogeneity. Low initial
average expression level leads to an uninduced, stat
while for the higher initial condition the systemsts

at a highly induced state. On the contrary, aftenes
initial dynamics and for both initial conditiondet
inclusion of population heterogeneity leads the
system to an uninduced state, which is higher tha
the one predicted by the continuum model.

The effects of population heterogeneity are less
pronounced at high induction levels as figure 4
shows. In this case, most cells exist above the
threshold separating the low and high state and
consequently the phenotype of the cell populat®on i
not significantly affected by the uneven distributi

of expression levels. This result can also be éxpth
mathematically: at high induction levels, the
expression rate of tha repressor is almost state-
r?ndependent and, as explained earlier, linear or
constant rate expressions result in less significan
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