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Abstract: A novel methodological and computational framework for the 
quantitative assessment of the effects of cell population heterogeneity on the 
dynamics of cell populations is presented. We focus on populations of cells 
carrying an artificial genetic network, consisting of a system of two promoter-
repressor pairs. Detailed numerical simulations indicate that taking into account 
cell population heterogeneity leads to agreement with experimental data, while 
neglecting it results in significant qualitative and quantitative differences both 
transiently and at balanced growth. Copyright © 2003 IFAC 
�
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1. INTRODUCTION 

 
Biological systems are undoubtedly complex. Their 
complexity originates from a variety of sources. First, 
the DNA of organisms is comprised of a large 
number of genes, which, depending on the 
intracellular state, maybe on or off or have 
intermediate expression levels. This, in turn gives rise 
to a huge number of possible gene states. In addition, 
cells contain a large variety of chemical components, 
including ribonucleic acids, lipids, amino-acids, 
proteins, and metabolites of many different chemical 
compositions. These cellular components participate 
in many different processes, including signal 
transduction, DNA transcription, DNA replication, 
translation of mRNA into proteins, transport between 
different cellular compartments or between the cell 
and the extracellular space, as well as transformation 
of chemical compounds into metabolic products. 
Furthermore, products of one set of processes 
typically affect (inhibit or enhance) the rates of 
another set of processes, leading to highly nonlinear 
interactions. Finally, intracellular processes occur at 
multiple, vastly different time scales. For example, 
cell proliferation may occur at the time scale of 
minutes or hours or days depending on the strain or 
cell type, the media, and the environmental 
conditions. However, regulation molecules typically 
exert their influence in the time scale of seconds.   
 
All of the aforementioned sources of complexity are 
related to events at the single-cell level. However, the 
majority of the powerful experimental techniques that 
are available today (e.g. DNA arrays, 2-D gels, LC-
MS etc), collect measurements from entire cell 
populations, instead of individual cells. In addition, 
the objective of most biotechnological applications is 
to maximize the productivity of products formed by a 
population of cells instead of maximizing the 
production in an individual cell. Since, in systems 
engineering, the definition of a system depends on 

the purposes and specific objectives of the study, 
these considerations lead us to define a biological 
system as a system consisting of a cell population 
rather than one comprised of an individual cell and its 
components.  
 
Such a biotechnologically meaningful definition 
necessitates the consideration of an extra level of 
complexity originating from the fact that cell 
populations are heterogeneous systems in the sense 
that cellular properties are unevenly distributed 
amongst the cells of a population. Thus, at any given 
point in time, cells of an isogenic cell population 
contain different amounts of DNA, mRNA, proteins, 
metabolites etc. In short, cell population 
heterogeneity can be defined as phenotypic 
variability amongst the cells of an isogenic cell 
population. This biological fact has been known for a 
long time. As early as 1945, Delbrück showed 
significant variations in phage burst sizes (Delbrück, 
1945). Moreover, cell population heterogeneity has 
been observed in cell division times (Powell, 1956), 
the lysogenic states of phage-infected cells (Ptashne, 
1987), the tumbling and smooth-swimming states of 
flagellated bacteria (Spudich and Koshland, 1976), 
flagellar phases (Stocker, 1949), induction or 
repression states of bacterial differentiation (Russo-
Marie, et al., 1993), sporulating cultures of B. subtilis 
containing fusions between sporulation genes and 
lacZ (Chung and Stephanopoulos, 1995), while 
population heterogeneity in �-galactosidase activities 
of cell populations expressing the lac operon genes 
has been demonstrated in various systems (Novick 
and Weiner, 1957). Recently, through an elegant set 
of experiments, the inherently heterogeneous nature 
of various isogenic E. coli strains was also 
established using two different fluorescent proteins as 
reporters (Elowitz, et al., 2002).  
 
The phenotype of each cell depends on the type and 
number of genes that are expressed at any given point 



in time, as well as on the subsequent, numerous 
intracellular reactions comprising what is simply 
known as metabolism. The outcome of these cellular 
processes is greatly influenced by the extracellular 
environmental conditions, while, intracellularly, these 
processes are tightly controlled by regulatory 
molecules. Due to the instrumental role that 
regulatory molecules play in the determination of 
single-cell phenotype, phenotypic variability among 
the cells of a population is tightly related to 
regulation of gene expression and, hence, the 
architecture and dynamics of single-cell regulatory 
networks. The astonishing recent progress in genomic 
research has offered the exciting capability of 
synthesizing artificial genetic networks with pre-
specified, tunable functions. This, in turn, presents 
the revolutionary opportunity to engineer desirable 
cellular properties by building the organism’s gene-
regulatory architecture from appropriate, 
interconnected genetic blocks with well-defined 
regulatory functions. However, before embarking 
into the exciting challenge of building the organism’s 
regulatory architecture (Guet, et al., 2002), it is of 
fundamental importance to understand how each 
specific gene-regulatory module affects the 
phenotype of the entire cell population. 
 
Based on these considerations, the natural, 
fundamental question for the Systems Biologist 
becomes: “How does one accurately describe the 
dynamics of cell populations?” The traditional 
approach consists of formulating chemically 
structured continuum models. These are ordinary 
differential equation (ODE) models describing the 
dynamics of population average intracellular 
concentrations and their coupling with the dynamics 
of the nutrients and extracellular environmental 
conditions, in general. Models of this type contain a 
significant amount of biological detail on processes 
that occur at the single-cell level. Moreover, they are 
rather easy to formulate and simulate. In addition, 
there exist well-developed, general, theoretical and 
computational tools, which utilize ODE models for 
process design, control and optimization. Finally, 
there exists a variety of advanced parameter 
estimation techniques allowing the routine 
determination of parameters that appear in such 
models from appropriate experimental data. 
However, chemically-structured continuum models 
are characterized by fundamental limitations. First, 
by construction, they do not describe how moments 
of the cell property distribution higher than the first 
evolve with time, hence providing only a limited 
view of the biological system of interest. One might 
argue that in many instances, knowledge of just the 
population average dynamics is sufficient. However, 
in order to obtain closure in deriving a set of 
equations describing just the first moments of the cell 
property distribution, continuum models inherently 
assume that a cell population is a homogeneous 
system. More specifically, it is assumed that a cell 
population behaves like a lumped biophase, where all 
cells behave exactly like the average population cell. 
Such an assumption obviously neglects the effects of 
cell population heterogeneity and might lead to 

inaccurate predictions of the dynamics of the 
average.  
 
Such a restrictive assumption is not present in the cell 
population balance (CPB) modeling approach 
(Ramkrishna, 2000). These models describe the 
dynamics of the entire cell property distribution, thus 
naturally accounting for the heterogeneous nature of 
cellular processes, nutrient uptake and product 
formation. Furthermore, they can accommodate all 
the information contained in continuum models on 
the reaction kinetics occurring at the single-cell level. 
In addition, they explicitly incorporate in their 
formulation the division process, as well as the 
mechanism by which dividing cells partition their 
material into two daughter cells. Thus, one of the 
fundamental sources of cell population heterogeneity 
is explicitly accounted for in the mathematical 
formulation. However, CPB models consist of first-
order, hyperbolic, partial integro-differential 
equations describing the time evolution of the cell 
property distribution, which are typically, nonlinearly 
coupled with integro-ordinary differential equations 
describing the dynamics of the extracellular 
environment. Such formulations are characterized by 
significant mathematical complexity and their 
numerical simulation represents a challenging task. 
This mathematical complexity in turn results in 
additional difficulties in developing control and 
optimization strategies for biological systems 
described by CPB models.  
 
In this work we present a novel methodological 
framework that isolates the quantitative effects of cell 
population heterogeneity for a given set of 
biomolecular reactions occurring at the single-cell 
level by combining the chemically-structured 
continuum with the cell population balance modeling 
approaches. In section 2 we present the derivation of 
this framework, and we sketch the general 
computational algorithm that was developed in order 
to quantitatively assess the effects of cell population 
heterogeneity on the dynamics of cell populations. 
Finally, in section 3 we apply the presented 
mathematical/computational framework to a well-
known artificial gene switching network, known as 
the genetic toggle (Gardner et al., 2000).        
 
 

2. METHODOLOGICAL FRAMEWORK 
 
Motivated by the natural way that CPB models 
account for population heterogeneity, we developed a 
general modeling and computational framework 
aiming at: a) quantitatively assessing the effects of 
population heterogeneity on the dynamics of cell 
populations for a given single-cell gene-regulatory 
network and b) accurately predicting the entire cell 
property distribution dynamics.  
 
To achieve our aim, we observe that the fundamental 
difference between chemically-structured continuum 
models and CPB models is that the former models 
assume that all cells in the population behave 
identically to the average cell, while the latter are 
more general and do not make this restrictive 



assumption. We also note that, by construction, 
continuum models can only predict the dynamics of 
average cellular properties, and none of the other cell 
distribution characteristics. Therefore, for a given 
reaction network, in order to isolate the effects of 
extrinsic population heterogeneity, it suffices to 
develop a framework for comparing the predictions 
for the average cellular property dynamics made by a 
CPB model with those made by its corresponding 
continuum model. The question that naturally arises 
is the following: Given a CPB model, what is its 
corresponding continuum formulation? 
 
The starting point of our approach for addressing this 
question is the generalized CPB model subject to 
regularity boundary conditions (Ramkrishna, 2000):  
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where x is an r-dimensional vector describing the 
cellular state; G is the space of admissible states; S is 
a p-dimensional vector with the extracellular 
substrate concentrations; D is the dilution rate in 
continuous bioreactors; N(x,t)dx is the number of 
cells which at time t, have a state between x and 
x+dx; r(x,S), �(x,S), and p(x,y,S) describe single-
cell, state dependent processes. They represent, 
respectively, the r-dimensional vector with the net 
reaction rates, the scalar division rate and the 
partition probability density function. The latter 
describes the mechanism by which a mother cell of 
state y partitions its cellular material into two 
daughter cells of state x and y-x. We note that the 
integro-partial differential equation (1) is, in general, 
nonlinearly coupled with a set of integro-ordinary 
differential equations describing the dynamics of the 
p substrates S (not shown). Moreover, in the case of a 
batch reactor with excess substrates and in the 
absence of cell death, the state distribution function 
N(x,t) does not reach a steady state as the cells 
continue to grow in the exponential phase. 
Manipulation of eqs. (1) and (2), as well as properties 
of p(x,y,S), leads to the equation describing the 
dynamics of the number density function n(x,t), 
which is defined as the ratio of N(x,t) over the cell 
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Due to the presence of the extra nonlinear term 
accounting for dilution due to cell proliferation, n(x,t) 
reaches a steady state, known as the state of balanced 

growth. At this state, N(x,t) reaches a time-invariant 
shape, while cells continue to proliferate.  Taking the 
first moment of eq. (3) and applying conservation of 
mass for each cellular component at cell division, 
leads to a set of equations describing the dynamics of 

the average intracellular concentrations (ix , i 
=1,...,r): 
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Notice that the dynamics of the average intracellular 
concentrations are coupled with those of the number 
density function (eq. (3)). To derive the 
corresponding continuum model, it suffices to apply 
to eq. (4), the fundamental assumption of continuum 
models, namely, that all cells in the population 
behave exactly like the average cell. This can be 
mathematically captured by representing n(x,t) as a 
product of delta functions centered around the 
average intracellular states:  
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Substitution of (5) into (4) yields the continuum 
model, which corresponds to the CPB model: 
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The difference in the predictions of equations (4) and 
(6) constitutes the basis for quantitatively assessing 
the effects of population heterogeneity for a given 
biomolecular network. Notice that both sets contain 
the same parameters. The only difference is that eqs. 
(4) account for the heterogeneous nature of cell 
growth, while eqs. (6) do not. A careful inspection of 
eqs (4) and (6) reveals that the effects of population 
heterogeneity can safely be neglected when the 
single-cell division and reaction rates are either state-
independent or depend linearly on the cellular state. 
In all other cases, differences between the two 
approaches are expected. Finally, notice that the 
proposed framework is bidirectional: Given a CPB 
one can derive the corresponding continuum model 
as described. Similarly, given a continuum model 
describing the dynamics of a certain network, the 
corresponding CPB model can be derived, by 
relaxing the homogeneity assumption captured in eq. 
(5). One also needs to model the partitioning 
mechanism. However, p(x,y,S) affects the dynamics 
of the average only indirectly, since it does not 
explicitly appear in the equations describing the 
population average dynamics (eqs. (4)).  
 
 

2.1 Numerical Algorithm 
 
The computational challenge in applying this 
theoretical framework lies in the necessity to solve 
the cell population balance model. To this end, 
significant progress has been made in recent years 
(Mantzaris, et al., 1999; Mantzaris et al., 2001a,b,c). 



The most efficient algorithms suggested in the 
literature share one common characteristic: they 
discretize the cell population balance equation in a 
fixed domain. However, the upper bounds of the 
physiological state space are typically known only 
initially. Moreover, large differences in the time 
scales involved in the time evolution of the cell 
property distribution may lead even the most 
efficient, fixed-domain algorithms to significant 
inaccuracies. Motivated by the above considerations, 
we developed a moving boundary algorithm for the 
solution of population balance models. The number 
density function in the moving physiological state 
domain was expanded using a Galerkin spectral 
method with sinusoidal basis functions, since this set 
of basis functions requires a low number of modes in 
order to accurately capture the dynamics of the 
distribution. For the time integration of the system of 
ODEs resulting after expansion of the distribution 
function using a finite number of basis functions, the 
one-step, time explicit Runge-Kutta 4th order 
algorithm was found to be the most efficient 
(Mantzaris, et al., 2001b). This algorithm results in a 
more accurate and efficient simulation of the 
population balance model, since at each time step, 
only the part of the physiological state space where 
cells exist is discretized. It simulated very efficiently 
population balance equations describing vastly 
different (cellular and non-cellular) processes. The 
details of the derivation and the performance tests are 
presented elsewhere (Mantzaris, 2003). 
 

3. THE GENETIC TOGGLE SYSTEM 
 
Motivated by the potential of artificial genetic 
networks to tailor the phenotype of various strains 
according to specific biotechnological needs, we 
focus our attention on a specific artificial genetic 
network, known as the pTAK genetic toggle. It was 
constructed by Gardner and coworkers (Gardner et 
al., 2000) and consists of two promoter-repressor 
pairs. In particular, the lacI repressor gene is under 
the control of the cIts (phage � repressor) - repressed 
PLs1con promoter, while the � repressor gene is 
under the control of the lacI-repressed, IPTG-
inducible Ptrc-2 promoter. The gfpmut3 gene 
expressing fluorescent GFP serves as the reporter and 
is placed after the cIts gene.  The population 
dynamics of cells carrying the genetic toggle were 
well-characterized by Gardner and co-workers using 
flow cytometry (Gardner, et al., 2000).  
 
To predict the induction dynamics, the authors also 
developed a two-state, chemically-structured 
continuum model, which, as stated earlier assumes a 
homogeneous population behavior. The model 
describes the expression dynamics of the two genes 
according to the dimensionless equations: 
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where a1, a2 are the effective rates of synthesis of the 
two genes; �, � are Hill coefficients describing 
cooperative inhibition of the expression of each gene 
by the gene product of the other; f([IPTG]) is a 
function describing the induction process of the Ptrc-
2 promoter (controlling the expression of the � 
repressor) by the extracellular inducer isopropyl-�-D-
thiogalactopyranoside (IPTG): 
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The parameter values that were used in all 
simulations are given in Table 1 and are identical to 
those used in the original work of Gardner and co-
workers (Gardner, et al., 2000). 
 
Equations (7) and (8) constitute the continuum 
model, which was used as the basis for the 
development of the corresponding CPB model 
through the application of the theoretical framework 
presented earlier. We assumed that the division rate 
depends on the � repressor expression according to 
an expression of the form:  
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where m is a parameter. Notice that the average 
division rate obtained from eq. (10) is equal to 1, in 
agreement with the average division rate given by the 
continuum model. Finally, we assumed that the 
partitioning function is equal with respect to the lac 
repressor and a symmetric beta distribution with 
respect to the � repressor: 
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where � is the Dirac function; x1,x2 and z1,z2 are the 
expression levels of the two genes in the daughter 
and mother cells respectively, and q is a parameter. 
 

Table 1: Parameter values used in simulations 
 

Parameter Value 
a1 156.25 
a2 15.6 
� 2.5 
� 1.0 
K 2.9618x10-5M 
� 2.0015 
m 3 
q 10 
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Figure 1: Average, normalized expression levels at 
balanced growth. Solid line: continuum model; Open 
circles: Cell population balance model 
 

 
3.1. Results 

 
The theoretical framework discussed in section 2 was 
applied in order to understand the interplay between 
the single-cell dynamics of the genetic toggle system 
and those of the entire cell population. The natural 
bifurcation parameter was the extracellular IPTG 
concentration. The comparison between the 
predictions of the two modeling approaches for the 
normalized, average balanced growth GFP 
expression levels (quantifying the expression levels 
of the � repressor) is shown in Figure 1. Notice that 
both modeling approaches predict similar balanced 
growth average expression levels at high induction 
levels. Notice also the agreement between the 
modeling approaches in the prediction of the 
bifurcation point around 40 �M IPTG. However, the 
continuum model predicts a huge range of IPTG 
concentrations where the system exhibits steady-state 
multiplicity, with the upper and low states being 
stable, while the intermediate is unstable. On the 
contrary, taking into account population 
heterogeneity leads to a much narrower region of 
multiple steady states. The predictions of the CPB 
model are in excellent agreement with the 
experimental measurements of Gardner and co-
workers (figure 5a, Gardner, et al., 2000). In 
particular, they showed that the population displays a 
much sharper transition from the low to the high state 
with a narrow region of steady-state multiplicity 
around the transition point of 40 �M IPTG.  
 
Analogous similarities and differences are observed 
transiently. In particular, figure 2 shows two sets of 
simulations for low-intermediate induction levels 
([IPTG]=20�M). In the first set, the initial average 
expression level is lower than in the second set. 
Notice that vastly different phenotypes are predicted 
by neglecting population heterogeneity. Low initial 
average expression level leads to an uninduced state, 
while for the higher initial condition the system rests 
at a highly induced state. On the contrary, after some 
initial dynamics and for both initial conditions, the 
inclusion of population heterogeneity leads the 
system to an uninduced state, which is higher than 
the one predicted by the continuum model. 
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Figure 2: Transient simulations for the average, 
normalized expression levels for high and low initial 
average expression level at [IPTG]=20�M. Solid 
line: continuum model-high initial average; Dashed 
line: continuum model-low initial average; Solid line-
open circles: CPB-high initial average; Dashed line-
open circles: CPB-low initial average. 
 
To better understand the source of the discrepancy 
between the predictions of the two models, we show 
the dynamics of the entire number density function 
for the same IPTG concentration (figure 3a). The 
system initially exhibits some transient bimodal 
distributions before reaching a unimodal distribution 
with a low mean value. These bimodal transient 
distributions have also been experimentally observed 
(see Figure 6 in (Gardner et al., 2000)). Despite the 
low average value, there exist some cells with at 
relatively high expression state, accounting for the 
fact that the average expression level at 
[IPTG]=20�M predicted by the CPB model is higher 
than the one predicted by the continuum model, (see 
Figure 2).   

 
Figure 3: The dynamics of the GFP (or � repressor) 

number density function for [IPTG]=20�M as 
predicted by the CPB model. 

 
The effects of population heterogeneity are less 
pronounced at high induction levels as figure 4 
shows. In this case, most cells exist above the 
threshold separating the low and high state and 
consequently the phenotype of the cell population is 
not significantly affected by the uneven distribution 
of expression levels. This result can also be explained 
mathematically: at high induction levels, the 
expression rate of the � repressor is almost state-
independent and, as explained earlier, linear or 
constant rate expressions result in less significant 



quantitative effects of cell population heterogeneity. 
The small differences in the predictions of the two 
modeling approaches are mainly attributed to the 
nonlinearity of the division rate.  
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Figure 4: Transient simulations for the average, 
normalized expression levels at [IPTG]=200�M. 
Solid line: continuum; Dashed line: CPB model. 
 
 

4. CONCLUSIONS 
 

We have developed a theoretical/computational 
framework for isolating the quantitative effects of 
cell population heterogeneity for a given set of 
intracellular processes.  The framework was applied 
to study the population dynamics of cells carrying an 
artificial genetic network, consisting of two 
promoter-repressor pairs. Our studies clearly showed 
that neglectimg cell population heterogeneity, may 
lead to significant qualitative and quantitative errors 
in the predictions of average population behavior, 
both transiently and at steady state. Thus, even in 
cases where only the prediction of the average is of 
interest, cell population heterogeneity needs to be 
accounted for. The effects of cell population 
heterogeneity were shown to be more pronounced at 
low-intermediate induction levels and smaller at high 
induction levels. This behavior is in qualitative 
agreement with experimental data (Elowitz, et al., 
2002). The cell population balance modeling 
approach which accounts for cell-to-cell variability 
predicted a narrower region of multiple steady states, 
in agreement with experimental data (Gardner et al., 
2000). This qualitative behavior was found to be 
insensitive to the exact division and partitioning 
mechanisms (results not shown). Thus, accounting 
for the heterogeneous nature of cellular processes 
leads to predictions with less rich dynamics.   This, in 
turn, is an indication that cell-to-cell variability may 
be responsible for the robustness of cell populations 
as well as their adaptation ability to various 
environmental perturbations.  
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