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Abstract: The present work considers a model reduction approach for fault
diagnosis with generalised likelihood ratio (GLR) method to improve upon
its diagnostic performance and computational efficiency in large dimensional
applications. Model reduction techniques are widely used in controller design. A
similar concept with balanced truncation technique is employed to obtain a reduced
order diagnostic model of the process for GLR implementation. The proposed
method is incorporated in the fault tolerant control strategy developed by Prakash
et al. (2002). Simulation results for a binary distillation column demonstrate the
efficacy of the proposed fault detection and identification (FDI) method and the
fault tolerant control strategy in comparison to the full-scale implementation for
a variety of faults.
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1. INTRODUCTION

During the past two decades there has been an
increasing trend towards the design and devel-
opment of fault tolerant control system (FTCS),
which can maintain an acceptable control per-
formance despite the occurrence of faults. In an
active FTCS design, the controller is designed
for normal operation, and as and when a fault
is deemed to have occurred, the control law is
reformulated or restructured on-line.

An important component of an active FTCS de-
sign is the FDI method. Among the FDI ap-
proaches, model based methods employing ana-
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lytical redundancy are found to be most suit-
able for control applications, since the infor-
mation it provides facilitates explicit corrective
measures. Recently, Prakash et al. (2002) devel-
oped an active FTCS scheme, which integrates
a FDI methodology based on generalised likeli-
hood ratio (GLR) method (Willsky and Jones,
1976); (Narasimhan and Mah, 1988) with a con-
troller, through an on-line compensation mecha-
nism. They demonstrated through simulation and
experimental studies, the superior performance of
the FTCS over the conventional control scheme
in the presence of various types of soft faults such
as sensor and actuator biases, abrupt changes in
unmeasured disturbances and process parameters.

The key component in their FTCS design is the
use of a linear model (and a Kalman filter) derived



from first principles. The first principles modeling
approach used in their work enables identification
of various types of faults. However, the models of
process units such as a distillation column or a
subsystem consisting of several process units are
of high order, involving hundreds of state vari-
ables. This can lead to excessive computational
demand in real-time application of the proposed
FTCS. In addition to this, system observability is
a prime requirement in the Kalman filter design
for obtaining unique and unbiased estimates of
states. Typically, not all the states are observable
from the relatively few measurements that are
available in such systems. Thus, there is a need to
develop an alternate formulation based on the first
principles model, which will alleviate computa-
tional difficulties and improve the state estimation
particularly when the system dimension is large.

In the proposed approach, we still make use of
a linearised model of the process developed from
first principles in the FDI method, in order to
retain the ability to distinguish between different
types of faults. However, instead of using the full
high order model so developed, we propose to
obtain a reduced order normal and fault models
of the process (essentially a diagnostic model with
fault dynamics incorporated) for FDI implemen-
tation. An ideal binary distillation column sim-
ulation is considered as a prototypical example
of a large dimensional process to illustrate the
proposed scheme. The objective of this study is
to investigate the effectiveness of the proposed
approach in comparison to the full-scale imple-
mentation.

2. REDUCED MODEL BASED FDI
STRATEGY

Fault detection and identification (FDI) is con-
cerned with detecting whether the fault has oc-
curred, and if so, identify the cause and pro-
vide an estimate of the fault magnitude. We
briefly describe the FDI strategy as developed by
Narasimhan and Mah (1988) for identification of
various types of faults.

2.1 FDI Strategy

The FDI strategy makes use of process models
under normal and faulty operating conditions. A
linear discrete stochastic state space equation is
used to model the process as follows

x(k + 1) = Φx(k) + Γuu(k) + w(k) (1)

y(k) = Cx(k) + v(k) (2)

where x ∈ Rn represents the states, u ∈ Rm repre-
sents the manipulated inputs, y ∈ Rr represents

the measured outputs, w ∈ Rq and v ∈ Rr are
assumed to be independent zero mean Gaussian
white noise sequences with covariance matrix R1

and R2 respectively. Under normal operation, the
above model can be used to obtain the optimal
estimates of the state variables using a Kalman
filter (Astrom and Wittenmark, 1994). The inno-
vations (or measurement residuals) generated by
the Kalman filter are given as

γ(k) = y(k)− Cx̂(k/k − 1) (3)

where x̂(k/k − 1) denote the state estimates pre-
dicted at time k using all measurements made up
to time (k − 1). Simple chi-square statistical tests
based on these innovations are employed for fault
detection and subsequent fault confirmation over
a time window. Fault identification is carried out
with the GLR method, where for each hypoth-
esised fault, the characteristic innovations trend
termed as fault signature is determined from the
corresponding fault model and the normal esti-
mator model. For soft faults caused by biases in
sensors and actuators which are assumed to occur
as step changes, the corresponding fault models
can be easily obtained as follows. In the presence
of a sensor bias, the measurement model Eq. (2)
is given by

y(k) = Cx(k) + v(k) + bey,i (4)

for k ≥ tf , where tf is the time of occurrence of
a fault. Likewise, in the presence of an actuator
bias the state transition Eq. (1) is modeled as

x(k + 1) = Φx(k) + Γuu(k) + w(k) + bΓueu,i (5)

In the above equations, b represents the magni-
tude of the fault, ey,i and eu,i are unit vectors
of appropriate dimensions, subscripts y, u signifies
the fault type with i as the index of the measure-
ment or actuator where the bias occurs.

The above fault models for sensor and actuator
biases can be used whether the normal process
model (defined by Eqs. 1 and 2) is derived from
first principles, or obtained from input-output
data using system identification methods. How-
ever, if a step change in a process parameter or
disturbance variable occurs, then the appropriate
fault model can be derived, provided a first prin-
ciples modeling approach is used (Prakash et al.,
2002). The fault models for these type of faults
can be obtained as

x(k + 1) = Φx(k) + Γuu(k) + w(k) + bΓf ′ef ′,i (6)

where the matrix Γf ′ depends on the type of fault
that has occurred (disturbance or parameter) with
f ′ ∈ {d, p}.



From the linearity of the system and filter, the
effect of each fault on the expected values of the
innovations at any time can be obtained as

E (γ(k)) =
{

0
bGf (k; tf )gf,i

k < tf
k ≥ tf

}
(7)

where the subscript f ∈ {y, u, d, p} denotes the
fault type. Here, the matrix Gf (k; tf ) is referred
to as signature matrix and depends upon the time
tf at which the fault has occurred and time k at
which the innovations are computed. The vector
gf,i which we refer to as the fault signature vector,
depends upon the fault type and location. The
computational details of these signature matrices
and signature vectors for different faults are given
in Prakash et al. (2002). The GLR method essen-
tially identifies the fault whose signature best fits
the observed innovations pattern.

2.2 Reduced order FDI development

Model reduction techniques are widely used in
controller design. Among the various approaches,
the balanced truncation technique (Moore, 1981),
removes after suitable transformations, the states
that are difficult to control or observe. Since such
states contribute little to the understanding of
the process input-output behavior, their removal
does not significantly alter the quality of the
model predictions. The distinct advantage of this
reduction approach is that one can obtain an
observable subsystem for the Kalman filter design
to be used in FDI development.

As explained in the preceding section, the GLR
based FDI strategy makes use of process models
under normal as well as faulty operating condi-
tions. Therefore, the requirement in fault diagno-
sis is to adequately capture fault-output dynamics
when compared to a controller design where the
effect of a manipulated input on an output is
important. The standard approach for obtaining
reduced order models to design controllers needs
to be modified.

A generic state space process model which de-
scribes the effect of manipulated inputs, paramet-
ric and disturbance faults, can be obtained by
combining the normal and fault model (Eqs. 1,
5 and 6) as follows

x(k + 1) = Φx(k) + Γuuc(k) (8)

y(k) = Cx(k) (9)

where

uc =
[
uT dT pT

]T
(10)

where x ∈ Rn, y ∈ Rr are variables as defined
with Eqs 1 and 2. The input vector uc ∈ Rmc de-

notes a complete input set with Γ =
[
Γu Γd Γp

]
as the corresponding input coupling matrix with
individual components as explained in Eqs 5 and
6. Let ζ be a vector of variables related to x by a
balancing transformation x = Tζ. The state space
model Eqs. (8) and (9) in transformed domain is
given as

ζ(k + 1) = Φ̂ζ(k) + Γ̂uc(k) (11)

y(k) = Ĉζ(k) (12)

where Φ̂ = T−1ΦT ; Γ̂ = T−1Γ and Ĉ = CT . In a
balanced realisation, each state in the transformed
domain ζi is just as controllable as it is observable.
A measure of the state joint controllability and
observability is given by the size of its associated
Hankel singular value σi. The size of σi is a relative
measure of the contribution that state ζi makes to
the input-output behavior. The balanced trunca-
tion approach removes the states corresponding
to the small Hankel singular values. Partition the
state vector ζ of dimension n into ζ1 and ζ2 where
ζ2 is a vector of (n − l) states whose effect is
negligible compared to ζ1 on the input-output
response. With appropriate partitioning of Φ̂, Γ̂
and Ĉ the state space equations becomes
[

ζ1(k + 1)
ζ2(k + 1)

]
=

[
Φ̂11 Φ̂12

Φ̂21 Φ̂22

] [
ζ1(k)
ζ2(k)

]
+

[
Γ̂1

Γ̂2

]
uc(k)(13)

y(k) =
[
Ĉ1 Ĉ2

] [
ζ1(k)
ζ2(k)

]
(14)

Setting ζ2 = 0 gives the following reduced order
model

ζ1(k + 1) = Φ̂11ζ1(k) + Γ̂1uc(k) (15)

ỹ(k) = Ĉ1ζ1(k) (16)

From the above equations, one can extract the
reduced order model under normal operation, as
well as the reduced order model for each type of
fault to be used in FDI design.

3. BASIC FAULT TOLERANT CONTROL
SCHEME

The efficacy of the proposed FDI method is as-
sessed by incorporating it in the fault tolerant
control scheme developed by Prakash et al. (2002).
The basic idea of their FTCS is to compensate /
adapt the controller and state estimator on-line
once a fault is identified. As stated earlier, the
soft faults caused by biases in sensors, actuators
and abrupt changes in disturbance and operating
parameters are considered in the design of FTCS.

In the BFTCS design (figure 1), the FDI module is
like an external interface to the existing feedback
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Fig. 1. Schematic of Basic Fault Tolerant Control
Scheme

control system. Typically, a conventional feedback
controller with integral action can satisfactorily
deal with actuator biases, disturbances and pro-
cess parameter changes in the absence of input
constraints. However, in the presence of a sensor
bias, it takes corrective action based on the biased
value thereby introducing an offset in the true
value of the plant output. The BFTCS was devel-
oped to give good control performance despite the
occurrence of any type of soft fault, by appropri-
ately integrating the FDI method with controller.
In case a sensor bias is identified, the magnitude
of the bias estimated by the FDI method is used to
correct the faulty measurement, before being used
in the controller. For all types of faults identified,
the FDI model is suitably adapted so that any
subsequent fault occurring in the process can be
detected.

4. SIMULATION STUDIES

The performance of the proposed scheme is tested
through simulation of a 20-tray single feed binary
distillation column (Luyben, 1990). The follow-
ing assumptions are made in deriving a nonlinear
model from first principles: constant overflows,
constant relative volatility, linear liquid flow dy-
namics, constant pressure, no vapor holdup, to-
tal condenser, perfect level control in condenser
and reboiler. The only modification made to the
column simulation by Luyben (1990) is that the
Murphree vapor phase stage efficiency η is con-
sidered (assumed the same for all trays) in order
to demonstrate parametric faults. The resulting
model equations consists of two differential (ma-
terial balance and component balance) and three
algebraic equations (vapor liquid equilibrium, tray
efficiency and liquid hydraulic relation) for each
stage i. A full-order model of the process derived
from first principles (with material and compo-
nent balances) consists of 42 nonlinear ordinary
differential equations. The reflux flow rate (R)
and vapor boil-up rate (V ) are manipulated to
control the top and bottom product compositions
(xd, xd).

Normal operating data is as reported in table 1.
Seven different faults are hypothesized namely,
bias in the two concentration measurements (xd

and xb), bias in the two actuators corresponding
to the manipulated variables, reflux R and vapor
boil- up V, step change in the two disturbance
variables (feed flow rate F and feed composition
zf ) and a step change in the tray efficiency param-
eter (η). We have in total five inputs (R, V, F, zf

and η) to be considered for obtaining a reduced
order model for fault diagnosis. We next describe
the reduction procedure.

Table 1. Normal operating values

Distillate concentration xd 0.904
Bottom concentration xb 0.272
Reflux R 124.08 (mol/min)
Vapor boil-up V 178.01 (mol/min)
Feed flow rate F 100.00 (mol/min)
Feed composition zf 0.5
Tray efficiency parameter η 0.7

4.1 Model reduction and FTCS development
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Fig. 2. Hankel singular values plot

A linearized continuous state space model is
obtained by linearising the nonlinear equations
around the normal operating point (table 1).
The state space matrices and the fault coupling
matrices are obtained by numerically evaluating
the Jacobians of the differential equations with
respect to the state, input and fault variables.
The MATLAB function ’sysbal ’ is used for com-
puting the balancing transformation and ’strunc’
for obtaining the reduced dimensional state space
subsystem by truncation. A truncation index (TI)
of 0.99 was chosen to decide upon the model order
of 8 as explained in the plot of Hankel singular
values vs state indices (figure 2).

Figure 3 compares step responses of the distillate
product composition obtained with respect to
different normal and fault inputs for the full-scale
and reduced order model. As can be seen from the
Figures 3(a)-(e), the reduced order model is able
to capture the system dynamics reasonably well
for all the inputs considered. Similar kind of close
match is obtained for responses of the bottom
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Fig. 3. Step responses of distillate concentration
xd with respect to different fault inputs

product composition. A point to note is that
the MATLAB function for balancing is written
for the continuous system description. Since the
balancing theory is equivalent for continuous and
discrete systems, the model reduction is carried
out first in the continuous domain and discretised
later. An 8th reduced order continuous model so
obtained is discretised with a sampling time of 1
min for use in FDI and controller development.

One can develop a reduced order model for FDI
and controller independently since the FDI is
like an external interface in the developed FTC
scheme. However, for the sake of consistency and
ease in maintainability, the controller is designed
using the reduced order normal model of the pro-
cess obtained from Eq. (15). An unconstrained
DMC control law is developed with tuning param-
eters as given in Table 2. The reduced model based
FDI strategy is incorporated in the BFTCS design
with the tuning parameters as given in Table
3. To decide upon the parameter values, certain
guidelines as given by Prakash et al. (2002) are
used. In all simulation runs, 50 simulation trials
(Nt) were performed with each trial lasting for
1000 sampling instants. State noise is simulated
with random fluctuations in disturbance inputs
(feed flow rate F and feed composition zf ) around
the mean value as Gaussian zero-mean white noise
sequences with standard deviation as 5% and 1%
of their nominal values respectively. Measurement
noise is simulated as Gaussian zero-mean white
noise sequence with standard deviation as 1% of
their respective nominal values. The Kalman filter
for FDI development is designed using reduced
order normal description of the process with these
noise characteristics. For all the simulation cases
reported, the fault is introduced at the 1st sam-
pling instant. The magnitude of the sensor and

Table 2. Parameter values for DMC

Parameter value

Prediction horizon (p) 20
Control horizon (q) 1
Error weighting matrix We diag[1 37]

Table 3. Parameter values for FDI

Parameter value

Window length (N) 60
Level of significance for FDT (αFDT ) 0.75
Level of significance for FCT (αFCT ) 0.01

actuator bias introduced was in proportion to the
standard deviation of the output or input, as the
case may be under normal operation.

4.2 Performance measures

In order to assess the performance of the FTCS,
the proposed FTCS as well as conventional con-
trol scheme are implemented, and the following
performance measures are evaluated.

• Performance index (PI)

PI =
ISEi(FTCS)

ISEi(Conventional control)
(17)

where ISEi is the sum squared difference
between the true value of a controlled vari-
able and the corresponding setpoint over the
simulation trial, averaged over all the trials
in a run.

• Percentage of successful trials (PST)

PST =
NS

NT
× 100 (18)

where NS is the number of simulation trials
in which the fault is correctly identified at
least once.

• False alarm index (FAI)

FAI =
NF

NT × L
N

(19)

where NF is the total number of faults falsely
identified in the simulation run.

5. RESULTS AND DISCUSSIONS

A comparative study of FDI and BFTCS control
performance with different degrees of plant model
mismatch is made for the following three cases
namely,

• FDI and process simulation using full-scale
linear model (FS-L)

• FDI based on reduced order linear model, pro-
cess simulated using full-scale linear model
(RO-L)



• FDI based on reduced order linear model,
process simulated using full-scale nonlinear
model (RO-NL)

As can be seen in tables 4 and 5, for sensor and
parametric faults with linear process simulation
(FS − L,RO − L), the FDI and BFTCS control
performance obtained in terms of number of suc-
cessful detections, false alarms committed and the
PI values is almost identical with the two different
accuracy models used for FDI. Further, in the
presence of a sensor bias, the conventional control
scheme produces an offset between the true value
and the setpoint whereas the fault tolerant scheme
corrects for the bias and therefore improves upon
the control performance as indicated by the lower
PI values. With parametric faults, the BFTCS
does not further improves the control performance
as the DMC conventional controller can itself
handle such small magnitude process parameter
changes.

Table 4. Comparison of FDI and
BFTCS control performance for a sen-

sor bias in xd(3σxd
= 0.027)

Model b̂ PST FAI (PI)xd (PI)xb

FS-L 0.0265 100 0.008 0.08 1.007
RO-L 0.0266 100 0.006 0.076 1.006
RO-NL 0.0239 100 0.014 0.09 0.964

Table 5. Comparison of FDI and
BFTCS control performance for a para-

metric fault in η(∼ 10% = −0.075)

Model b̂ PST FAI (PI)xd (PI)xb

FS-L -0.076 100 0.014 1.028 1.001
RO-L -0.077 100 0.007 1.004 1.0002
RO-NL -0.10 100 0.002 1.013 1.0002

With full-scale model, for actuator and distur-
bance faults, there is a significant deterioration
in FDI performance in terms of increasing false
alarms and in control performance because of
subsequent fault accommodation. In fact these
are quite unacceptable results from control per-
formance point of view. However, the reduced di-
mensional model gives acceptable performance for
all the fault cases and the model approximation
introduced via reduction does not deteriorates
the FDI performance. On the contrary, Kalman
filter design based on an observable system model
improves state estimation which leads to a better
diagnostic performance.

Table 6. Comparison of FDI and
BFTCS control performance for an ac-

tuator bias in R(−1σ = −5)

Model b̂ PST FAI (PI)xd (PI)xb

FS-L -4.87 66 0.096 1.36 1.01
RO-L -5.07 74 0.03 1.013 1.004
RO-NL -5.33 96 0.03 1.029 1.006

Table 7. Comparison of FDI and
BFTCS control performance for a dis-
turbance step change in F (10% = 10)

Model b̂ PST FAI (PI)xd (PI)xb

FS-L 9.9 100 0.14 1.79 1.01
RO-L 10.001 100 0.07 1.007 1.06
RO-NL 10.18 100 0.056 1.032 1.001

In all the cases, the nonlinear process simulation
deteriorates the FDI and BFTCS control perfor-
mance when compared to the linear case because
of the resulting plant model mismatch. However,
the PI values indicate that the resulting FTCS
control performance is superior to conventional
control in the presence of a sensor bias and is
as good as the conventional control for the other
input faults that are considered.

6. CONCLUSIONS

The proposed reduced order model based FDI
scheme enables efficient real-time FTCS imple-
mentation for large dimensional processes. Fur-
thermore, state estimation using reduced order
observable models improves the diagnostic perfor-
mance considerably when compared to the full-
scale implementation.
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