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Abstract: The performance of predictive controller is typically poor when the true
plant evolution deviates significantly from that predicted by the model. A robust
approach that considers model uncertainty explicitly is then needed. However, it is
often difficult to find a single input profile that works for the range of uncertainty
considered. Thus, multiple input profiles, i.e. one for each realization of the
uncertainty, need to be determined, which is computationally extremely expensive.
This paper proposes an alternative approach, based on neighboring extremals,
where the multiple input profiles are computed using a simple feedback law,
thereby reducing considerably the computational burden. The idea is illustrated
via the simulation of an inverted pendulum on a cart.
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1. INTRODUCTION

Predictive control is an effective approach for
tackling problems with constraints and nonlin-
ear dynamics, especially when analytical compu-
tation of the control law is difficult (Mayne et

al., 2000; Scokaert and Mayne, 1998). Classical
predictive control involves recalculating at every
sampling instant the input 1 that minimizes a
criterion defined over a horizon window in the
future, taking into account the current state of
the system. Only the first part of the computed
optimal input is applied to the system.

A crucial point in predictive control is the ex-
tensive use of the dynamic system model that,
unfortunately, may not always correspond to the

1 The word input is considered here to be singular in-
dependent upon whether there are one or several inputs.
This choice is made in order to be able later to distin-
guish between cases with a single or multiple input profiles
corresponding to either a single nominal model or several
models (one for each realization of the uncertainty).

reality. Thus, the predicted state evolution may
differ from the actual plant evolution. When the
difference between the predicted and the true
plant evolutions is significant (which occurs, for
example, when the system is unstable), standard
predictive control will not be able to provide the
desired performance (Mayne et al., 2000). One
solution to this problem consists of pre-stabilizing
the system with a simple feedback loop. How-
ever, there are no systematic ways of designing
such a feedback (Ronco et al., 2001; Morari and
Lee, 1999; Bemporad, 1998). Another approach
is to cast the problem into a robust framework,
where optimization is performed by taking the
uncertainty into account explicitly.

Standard robust predictive control computes an
input that represent a compromise solution for
the range of uncertainty considered (Bemporad
and Morari, 1999; Lee and Yu, 1997; Kouvari-
takis et al., 2000). Furthermore, to prove robust
stability, it is important to guarantee that the
final state is within some bounded set. When



the dispersion of the open-loop predicted state is
large, especially in the case of unstable systems, it
may not be possible to find a feasible solution to
the robust optimization problem. However, due to
the feedback introduced by the re-optimizations
performed at subsequent sampling instants, the
true state dispersion at the end of the prediction
horizon will in fact be much smaller than the
values given by open-loop prediction. Hence, this
feedback needs to be incorporated in the robust
predictive control formulation in order to reduce
the conservatism and lead to feasible solutions.

There are two ways of expressing this inherent
feedback in a robust optimization framework: (i)
use multiple input profiles, i.e. one for each real-
ization of the uncertainy, starting with the next
sampling interval (Mayne et al., 2000; Scokaert
and Mayne, 1998), and (ii) approximate the inher-
ent feedback by a control law (Bemporad, 1998).
The former is computationally expensive, while an
ad hoc method has been used for the approxima-
tion in the latter. This paper suggests using the
neighboring extremal approach for approximating
the feedback inherent to predictive control.

For small deviations from the optimal solution,
a linear approximation of the system and a
quadratic approximation of the cost are quite rea-
sonable. In such a case, the theory of neighboring
extremals (NE) provides a closed-form solution to
the optimization problem (Bryson, 1999). Thus,
the optimal input can be obtained using state
feedback that approximates the feedback provided
by explicit numerical optimization.

This approach can also be viewed as a novel way
of performing robust optimization with multiple
input profiles. Indeed, the proposed scheme opti-
mizes the multiple profiles, one exactly via explicit
optimization and the others approximately via
the NE-approach. Since only one input profile
is optimized explicitly, the computational com-
plexity of the problem reduces considerably, while
keeping the advantages of the robust optimization
scheme with multiple input profiles. Note that the
main emphasis is not in reducing the computa-
tional complexity of a general MPC problem as
in (Wan and Kothare, 2003), but to really exploit
the structure present in the robust optimization
problem.

The paper is organized as follows. Background
material regarding predictive control and neigh-
boring extremals is presented in Section 2. The
classical robust predictive control scheme and ro-
bust predictive control with multiple input profiles
are presented in Section 3. The robust predictive
control based on the NE-approach is presented
in Section 4. In Section 5, the various schemes
are compared on an illustrative example. Finally,
concluding remarks are given in Section 6.

2. PRELIMINARIES

2.1 Classical Predictive Control

Consider the nonlinear system represented as:

ẋ = F (x, u, θ), x(0) = x0 (1)

where the state x and the input u are vectors of
dimension n and m, respectively. x0 represents the
initial conditions, θ ∈ Θ the vector of uncertain
parameters, assumed to lie in the admissible re-
gion Θ, and F the system dynamics.

In predictive control, the following optimization
problem is solved repeatedly at discrete time
instants:

min
u([tk,tk+Tf ])

J(tk) =
1

2
x(tk + Tf)T P x(tk + Tf )

(2)

+
1

2

∫ tk+Tf

tk

(

x(τ)T Q x(τ) + u(τ)T R u(τ)
)

dτ

s.t. ẋ = F (x, u, θ), x(tk) = xk

x(tk + Tf ) ∈ X

where P , Q, and R are positive-definite weight-
ing matrices of appropriate dimensions, X the
bounded region of state space where the final state
should be, tk the present time for which the opti-
mization is performed, Tf the prediction horizon,
and xk the state measured or estimated at the
time instant tk. The optimal input computed by
solving (2) is represented by u?([tk, tk +Tf ]). The
importance of having a terminal cost, and also a
bounded region for the final state for the sake of
stability, is discused in (Mayne et al., 2000).

Let δ be the sampling period which, in general,
is constant. The first part of the optimal input,
u?([tk, tk + δ]), is applied open loop, and the
optimization problem is repeated at the time
instant tk+1. For implementation purposes, the
infinite-dimensional input u([tk, tk +Tf ]) needs to
be parameterized using a finite number of decision
variables, typically piecewise constant.

2.2 Neighboring Extremals

Including the constraints of the optimization
problem (2) in the cost function, the augmented
cost function, J̄ , can be written as (Bryson, 1999):

J̄ = Φ(x(tk + Tf )) +

∫ tk+Tf

tk

(

H − λT ẋ
)

dt (3)

where Φ = 1
2xT Px, H = 1

2 (xT Q x + uT R u) +
λT F (x, u), and λ(t) 6= 0 is the n-dimensional
vector of adjoint states (Lagrange multipliers for
the system equations), whose dynamics are given
by λ̇T = −Hx, λT (tk + Tf ) = Φx(tk + Tf ).



The notation ab = ∂a
∂b

is used. The necessary
conditions of optimality read:

Hu = uT R + λT Fu = 0 (4)

At the optimal solution, the first variation of J̄ is
given by:

∆J̄ =
(

Φx − λT
)

∆x
∣

∣

tk+Tf

+

∫ tk+Tf

tk

[(

Hx + λ̇T
)

∆x + Hu∆u
]

dτ (5)

where ∆x(t) = x(t) − x?(t) and ∆u(t) = u(t) −
u?(t), with x∗ and u∗ being the optimal state and
input, respectively. The conditions of optimality
are derived from ∆J̄ = 0. The second-order
variation of J̄ is given by:

∆2J̄ =
1

2
∆x(tk + Tf )T P ∆x(tk + Tf) +

1

2

∫ tk+Tf

tk

[

∆xT ∆uT
]

[

Hxx Hxu

Hux Huu

] [

∆x

∆u

]

dτ(6)

Choosing ∆u to minimize ∆2J̄ under the linear
dynamic constraint:

∆ẋ = Fx∆x + Fu∆u (7)

represents a time-varying Linear Quadratic Reg-
ulator (LQR) problem, for which a closed-form
solution is available:

∆u(t) = −K(t)∆x(t) (8)

K = H−1
uu

(

Hux + FT
u S

)

(9)

Ṡ = −Hxx − SFx − FT
x S + HxuK + SFuK

S(tk + Tf) = P (10)

The details of the development leading to this
formulation can be found in (Bryson, 1999). The
above controller, termed the neighboring extremal
controller, will be used extensively in this paper.

3. EXISTING APPROACHES TO ROBUST
PREDICTIVE CONTROL

3.1 Standard Robust Predictive Control

The state x and hence the cost function J are
functions of the vector of uncertain parameters θ.
For a given value of θ, let xθ be the state and Jθ

the cost function. In robust predictive control, the
uncertainty is handled as part of the optimization
problem, which is solved repeatedly at discrete
time instants:

min
u([tk,tk+Tf ])

Eθ∈Θ[Jθ(tk)] (11)

s.t. ẋθ = F (xθ, u, θ) xθ(tk) = xk

xθ(tk + Tf) ∈ X , ∀θ ∈ Θ

Jθ(tk) =
1

2
xθ(tk + Tf )T P xθ(tk + Tf) (12)

+
1

2

∫ tk+Tf

tk

(

xθ(τ)T Q xθ(τ) + u(τ)T R u(τ)
)

dτ

(where Eθ∈Θ(x) denotes the expectation of x

when the random variable θ is in the set Θ). The
major difficulty with this formulation is that there
may not be a solution, especially when the system
is open-loop unstable. The state dispersion might
be so large that it is not possible to find a single
input u([tk, tk+Tf ]) that satisfies xθ(tk+Tf ) ∈ X ,
∀θ ∈ Θ.

It should be noted here that a robust control
scheme based on the expectation of the cost
is a standard approach that, however leads to
only limited robustness improvement (Nagy and
Braatz, 2003).

3.2 Robust Predictive Control with Multiple Input

Profiles

Though all computations in predictive control
are performed open loop, there is inherent feed-
back due to the state measurement and the re-
optimization. This feedback reduces the sensitiv-
ity to uncertainty, and thus the state dispersion
is often much smaller than what is predicted from
an open-loop perspective.

The difficulty with the classical formulation (11)
is that it does not take into account the fact that
the optimization will be repeated at subsequent
time instants. Thus, the idea is to reformulate the
robust predictive control problem and include re-
optimization in the problem formulation (Mayne
et al., 2000):

min
u([tk,tk+1]),ūθ([tk+1,tk+Tf ])

Eθ∈Θ[Jθ(tk)] (13)

s.t. ẋθ = F (xθ, uθ, θ) xθ(tk) = xk

xθ(tk + Tf) ∈ X , ∀θ ∈ Θ

uθ =

{

u if tk ≤ t < tk+1

ūθ if tk+1 ≤ t ≤ tk + Tf
(14)

Jθ(tk) =
1

2
xθ(tk + Tf)T P xθ(tk + Tf ) (15)

+
1

2

∫ tk+Tf

tk

(

xθ(τ)T Q xθ(τ) + uθ(τ)T R uθ(τ)
)

dτ

where ūθ is the input for the realization θ dur-
ing the prescribed interval. This means that the
manipulated variables consist of one set of in-
puts for all realizations of θ between tk and tk+1.
However, between tk+1 and tk + Tf , different sets



of inputs are required for different realizations of
θ. This problem is computationally expensive to
solve since ūθ([tk+1, tk + Tf ]) needs to be opti-
mized for every realization of θ. Note that, though
ūθ([tk+1, tk + Tf ]) is important for calculating
u([tk, tk+1]), it will never be implemented on the
real system. What will be implemented is the part
u([tk, tk+1]), which represents the compromise in-
put for all the uncertainty realizations considering
all future possibilities.

4. ROBUST PREDICTIVE CONTROL BASED
ON NEIGHBORING EXTREMALS

In order to avoid having to compute the optimal
input for many different realizations of θ, a rela-
tionship between the uncertain parameters θ and
the optimal input is needed. The idea proposed in
this paper is to use the NE-approach. As seen in
Section 2, the NE-approach provides the following
relationship:

uθ([tk+1, tk + Tf ]) = uθ0
([tk+1, tk + Tf ])

−K(t)∆x([tk+1, tk + Tf ]) (16)

where θ0 is the nominal parameter vector. The
optimization problem then becomes:

min
u([tk,tk+Tf ])

Eθ∈Θ[Jθ(tk)] (17)

s.t. ẋθ0
= F (xθ0

, u, θ0), xθ0
(tk) = xk

ẋθ = F (xθ, uθ, θ), xθ(tk) = xk, ∀θ 6= θ0

xθ(tk + Tf) ∈ X , ∀θ ∈ Θ

uθ =

{

u if tk ≤ t < tk+1

u − K(xθ − xθ0
) if tk+1 ≤ t ≤ tk + Tf

Jθ(tk) =
1

2
xθ(tk + Tf)T P xθ(tk + Tf )

+
1

2

∫ tk+Tf

tk

(

xθ(τ)T Q xθ(τ) + uθ(τ)T R uθ(τ)
)

dτ

Note that the decision variables in (17) are only
u([tk, tk + Tf ]) for the nominal plant and not
uθ([tk, tk + Tf ]) for all realizations. The input
profiles for realizations other than the nominal
one are computed using the NE-controller. The
parameterization of the nominal input can be
chosen conveniently.

The NE-approach can be interpreted from two
viewpoints: (i) From the view point of feedback,
it is an approximation of the inherent feedback
provided by the predictive control itself; (ii) From
the point of view of robust predictive control with
multiple input profiles, and given the nominal
optimal input profile, the NE-approach computes
to a first-order approximation the optimal input
profiles that correspond to the various realization

of θ. Note that, as in Subsection 3.2, the input
computed via the NE-approach will never be im-
plemented on the true system since it is computed
for the time interval [tk+1; tk + Tf ]. In that sense,
the NE-feedback is a fictitious one that serves only
a computational purpose.

The proposed NE-approach is only an approxima-
tion of robust control with multiple input profiles
and thus should have an inferior performance.
However, in the examples that have been worked
out, the proposed NE-approach often led to a
slight improvement in performance over robust
control with multiple input profiles. This can be
attributed to the fact that robust control with
multiple input profiles requires the solution of an
optimization problem with a large number of deci-
sion variables and, thus, often gets stuck in a local
minimum due to sensitivity issues. Thus it might
be advantageous to use a well-posed feedback law
instead of a poorly posed open-loop problem.

Though this paper presents no stability proof for
the proposed robust predictive controller based
on the NE-approach, many pointers indicate that
robust stability can indeed be established. The
steps to be followed are: (i) Stability of the ro-
bust predictive control with multiple input pro-
files (Mayne et al., 2000), (ii) Proof that robust
predictive control based on NE is a first-order
approximation of that with multiple input profiles
(see preliminary work in this direction by (Ronco
et al., 2001)), and (iii) Effect of the approximation
error on stability.

5. ILLUSTRATION: CONTROL OF AN
INVERTED PENDULUM

5.1 System Model

This section illustrates the application of both
classical and robust predictive control schemes
to an inverted pendulum on a cart, ignoring the
cart dynamics (Ronco et al., 2001). The model
equations are:

ẋ1 = x2 (18)

ẋ2 =
m l

J
[sin(x1) g − cos(x1)u] (19)

where x1 is the pendulum angle, x2 its rotational
velocity, and u the control torque. The control ob-
jective consists of regulating the pendulum around
the upright position, starting from the downward
position x0 = [π 0]. The following numerical val-
ues are used: m = 1 [kg], g = 9.81

[

m
s2

]

, l = 1 [m]
and J = 1 [kg · m2]. In addition, the control is
constrained, −5

[

m
s2

]

< u < 5
[

m
s2

]

. For all tech-
niques, the same sampling period of δ = 0.25 [s] is
used.



5.2 Control Parameters

All schemes share the following features: (i) re-
optimization of the input at each sampling in-
stant, (ii) prediction horizon, Tf = 1s, (iii) con-
trol horizon = sampling period, i.e. the control
sequence for tk ≤ t ≤ tk + δ is applied, leaving the
rest of the sequence unused, (iv) x(tk + Tf) ∈ X

was not enforced, (v) P = 10 I, Q = 10−2,
R = 0.02, where I is the identity matrix.

The input parameterization considers u(t) con-
stant over the time interval [tk, tk +δ]. The rest of
the input trajectory is obtained using the shooting
method (Lewis, 1986), with the initial conditions
of the adjoint variables serving as parameters.
In the following simulations, it is assumed that
the mass of the pendulum is unknown but lies
somewhere between 0.5 [kg] and 1.5 [kg], with a
uniform probability distribution. The expectation
Eθ∈Θ (Jθ) is approximated as

∑3
k=1

1
3Jmk

, with
m1 = 0.5 [kg], m2 = 1 [kg] and m3 = 1.5 [kg].
The predictive control schemes are applied to a
simulated reality with a mass m = 1.32 [kg], thus
making the real system slower than the nominal
model (m = 1 [kg]).

5.3 Classical Predictive Control

The classical non-robust re-optimization scheme
(2) is applied first. The control is computed from a
single nominal model with m = 1 [kg] and applied
to the simulated reality with m = 1.32 [kg]. The
simulation results are displayed in Figure 1. They
show that the approach does not work since the
sampling period is too large for the control scheme
to converge.
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Fig. 1. Classical Predictive Control

5.4 Standard Robust Predictive Control

The robust predictive control scheme considered
here uses three models (values of the mass: m1 =

0.5 [kg], m2 = 1 [kg], m3 = 1.5 [kg]). The op-
timization scheme (11) computes a single input
profile for all three models. The simulation results
are displayed in Figure 2. They show that this
approach does not work either. The optimization
is unable to find a single input profile that works
well with all three models. Hence, the predicted
value of the cost function is high and does not
decrease with the number of re-optimizations. No
final constraint is imposed since this optimization
is unable to provide a feasible solution.
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Fig. 2. Standard Robust Predictive Control

5.5 Robust Control with Multiple Input Profiles

The robust control scheme with multiple input
profiles (13) is studied next. The same three mod-
els are used but, at each re-optimization, three
different control sequences are computed, i.e. one
for each model. The input for the first sampling in-
terval is the same for all three models, but distinct
for each model thereafter. The results of the sim-
ulation are displayed in Figure 3. The computa-
tional burden is very heavy, the duration of one re-
optimization (when the system is not close to the
reference) is approximately 5200 seconds. Also,
since the number of decision variables and the
number of simulations to be performed increase
with the number of realizations considered, the
computational time increases quadratically with
the number of realizations.

5.6 Robust Control based on Neighboring Extremals

The proposed approach (17) is used, where the
input consists of two parts. The first part, for
t = [tk, tk + δ], is a piecewise constant input
that is common to the three models. The second
part, for t = [tk + δ, tk + Tf ], is generated by a
NE-controller and differs for each model. At each
re-optimization, an optimal input is computed
for the nominal model (m = 1 [kg]), using a
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Fig. 3. Robust Control with Multiple Input Pro-
files

shooting method. Based on this optimal input, a
NE-controller is designed to generate the optimal
trajectory for each of the three models in the
interval t = [tk + δ, tk + Tf ].

The simulation results, displayed in Figure 4,
show that this approach works well on this system.
The computational burden is much lower than
with multiple input profiles: the duration of a re-
optimization (when the system is not close to the
reference point) is of the order of 700 seconds, a
considerable reduction compared to scheme (13).
Moreover, with the NE-approach, the computa-
tional time increases linearly with the number of
models used to represent the uncertainty.
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Fig. 4. Robust Control with Neighboring Ex-
tremals

6. CONCLUSION

This paper has addressed the problem of robust
predictive control of systems for which the open-
loop prediction of the future state evolution leads
to very conservative results. The fact that there
will be re-optimizations needs to be incorporated
in the predictions, and this was done in this paper

using the NE-approach. The proposed approach
was illustrated and compared to other approaches
on a simple unstable mechanical example.

The stability and performance of the NE-based
robust predictive control scheme have not been
addressed in this paper. These issues will form
the subject of future research. The main issues
involved therein will be how good the approxima-
tion is and how the approximation error influences
stability. In this paper, the feedback computed
using the NE-approach was only used as a fic-
titious one for computational purposes. Its use
for implementation is another promising research
direction.
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