
NUMERICAL METHODS FOR LARGE SCALE MOVING
HORIZON ESTIMATION AND CONTROL

John Bagterp Jørgensen∗,1 James B. Rawlings∗∗

Sten Bay Jørgensen∗∗∗

∗ 2-control ApS, Høffdingsvej 34, DK-2500 Valby, Denmark
∗∗ Department of Chemical and Biological Engineering,
University of Wisconsin-Madison, Madison, WI 53706

Wisconsin, USA
∗∗∗ CAPEC, Department of Chemical Engineering, Technical

University of Denmark, DK-2800 Lyngby, Denmark

Abstract: Both the linear moving horizon estimator and controller may be solved by
solving a linear quadratic optimal control problem. A primal active set, a dual active set,
and an interior point algorithm for solution of the linear quadratic optimal control problem
are presented. The major computational effort in all these algorithms reduces to solution
of certain unconstrained linear quadratic optimal controlproblems. A Riccati recursion
procedure for efficient solution of such unconstrained problems is stated.
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1. INTRODUCTION

Model predictive control has been established as the
preferred advanced control technology in the process
industries. Its success is attributed to its ability to
handle hard constraints and its ability to use plant
models identified by standard techniques. The imple-
mentation of model predictive controlsystemsrequi-
res repeated on-line solution of a state estimation pro-
blem and an optimal control problem. Both the state
estimator and the optimal controller can be formula-
ted as constrained optimization problems (Allgöwer
et al., 1999; Binderet al., 2001). Formulated as opti-
mization problems and implemented in a moving ho-
rizon manner, the estimator is called a moving horizon
estimator (MHE) and the controller is called a model
predictive controller (MPC) or a moving horizon con-
troller. Due to the requirement of real-time solution
of both the estimation and control problem, the range
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and scale of processes that can be controlled by model
predictive control systems depends critically on the
ability to solve the constrained optimization problems
efficiently and reliably.

In this paper we outline numerical methods for effi-
cient solution of constrained moving horizon estima-
tion and control problems for systems described by
affine models and with quadratic objective functions.
Both the moving horizon estimator and controller of
such systems are formulated as sparse convex quadra-
tic programs with equality and inequality constraints.
This formulation is in contrast to the formulation in
which the states are eliminated and the optimiza-
tion problem is formulated as a dense quadratic pro-
gram with inequalities only. Previously, both interior-
point and active set algorithms for the solution of the
quadratic program corresponding to a linear-quadratic
optimal control based on a banded-matrix factoriza-
tion have been proposed for solution of the model
predictive control problem (Wright, 1996). The active
set algorithm suggested in Wright (1996) is of the



primal type and the linear algebra is based on updating
an LU-factorization each time a constraint is added to
or removed from the current working set of active con-
straints. The quadratic programs corresponding to the
moving horizon controller and estimator, respectively,
have also been solved by interior-point algorithms
using Riccati iterations for the matrix factorization
(Rao et al., 1998; Tenny and Rawlings, 2002). The
Riccati facotization is very efficient for solution of the
KKT system as it exploits the specific block-diagonal
structure arising in the moving horizon control and
estimation problem. Alternatively, a dual active set
algorithm using the Schur-complement and a gene-
ral sparse matrix factorization has been suggested
for solution of the model predictive control problem
(Bartlettet al., 2000).

We show that in the primal active-set, the dual active-
set, and the interior-point algorithm for general convex
quadratic programming problems, the search direction
may be computed by solving a Karush-Kuhn-Tucker
(KKT) system with the same structure as an equality
constrained quadratic program. In quadratic programs
of constrained optimal control problems, the KKT-
system corresponding to the unconstrained control
problem has a special structure and may be solved
efficiently by a Riccati recursion. Both the constrained
moving horizon estimation problem and the moving
horizon control problem may be formulated as an
optimal control problem and solved efficiently using
the Riccati recursion.

The key contribution of this paper is a dual algorithm
based on Riccati based factorization for solution of the
quadratic program constituting a constrained linear-
quadratic optimal control problem. It is demonstrated
how the constrained linear-quadratic optimal control
problem may represent a moving horizon controller
and a moving horizon estimator. Furthermore, the im-
portance and key role of the KKT-system in numerical
solution of the constrained-linear quadratic optimal
control problem by the primal active set algorithm as
well as the dual active set algorithm and the interior-
point algorithm is emphasized and explained.

2. ALGORITHMS FOR SOLUTION OF CONVEX
QPS

Consider the general convex quadratic program

min
x∈Rn

f(x) =
1

2
x′Gx + g′x (1a)

s.t. A′x = b (1b)

C ′x ≥ d (1c)

in which the Hessian matrixG ∈ R
n×n is symmetric

and positive semi-definite. Assume further that the
matrix A ∈ R

n×m has full column rank and that the
KKT-matrix

[

G −A

−A′ 0

]

(2)

is non-singular. Further let the columns of the matrix
C ∈ R

n×mI be denotedci ∈ R
n for i ∈ I =

{1, 2, . . . ,mI}. The Lagrangian of (1) is

L(x, π, λ) =
1

2
x′Gx+g′x−π′(A′x−b)−λ′(C ′x−d)

(3)
and the necessary and sufficient conditions for opti-
mality of (1) are

Gx + g − Aπ −
∑

i∈A(x)

ciλi = 0 (4a)

A′x = b (4b)

C ′x ≥ d (4c)

λi ≥ 0 i ∈ A(x) = {i ∈ I : c′ix = di} (4d)

λi = 0 i ∈ I \ A(x) (4e)

Active set algorithms for solution of (1) apply the
conditions (4) in the search for the minimizer of (1). A
current working setW ⊂ A(x) of active constraints
is recurred and the search direction is constructed by
utilizing λi = 0 for i ∈ I \W andc′ix = di for i ∈ W
and partly ignoring the remaining inequalities.

At a primal feasible point, primal active set algorithms
compute the primal search directionp along which the
objective function decreases (Gill and Murray, 1978).
Along with the search directionp, the equality con-
straint Lagrange multipliersπ, and the Lagrange mul-
tipliers λ associated with the current working set of
active constraints are computed.(p, π, λ) are compu-
ted as the solution of




G −A −F

−A′ 0 0
−F ′ 0 0









p

π

λ



 = −





Gx + g

0
0



 F = [ci]i∈W

(5)
The next iterate is̄x = x + αp in which the step
lengthα is selected to maintain primal feasibility, i.e.
c′ix̄ ≥ di for all i ∈ I \ W. Optimality of the current
iterate is determined by the sign ofλ. The current
iterate is optimal ifλ ≥ 0 andp = 0. At each iteration
either an inequality constraint is appended to or remo-
ved from the current working set of active constraints.
This implies that a column is appended to the matrix
F when an inequality constraint is appended to the
current working set of active constraints. A column
is removed from the matrixF when a constraint is
removed from the current working set. Accordingly,
the KKT-matrix at each iteration changes by a single
column and row. Efficient active set algorithms exploit
this simple modification of the KKT-matrix such that
it is not refactorized at each iteration, but rather its fac-
torization is updated. Initially, a primal feasible point
must be provided as primal active set algorithms pro-
ceed from primal feasible points and maintains primal
feasibility while improving the value of the program.
Determination of the feasible point, for instance by
solving a phase-I linear program, may be a substantial
part of the overall computations in determining an
optimal point.



Primal active set algorithms proceed by solving a
sequence of equality constrained quadratic programs
in which some of the inequality constraints are treated
as equalities. Simultaneously, these algorithms gene-
rate the iterates such that primal feasibility is maintai-
ned. Dual active set algorithms proceed by generating
iterates such that the objective function of the dual
program is improved while maintaining dual feasibi-
lity (Goldfarb and Idnanini, 1983). The dual program
of (1) is

max
x,π,λ

L(x, π, λ) (6a)

s.t. Gx − Aπ − Cλ = −g (6b)

λ ≥ 0 (6c)

Let inequality constraintr, i.e.c′rx ≥ dr, be violated.
In the dual active set algorithm, the search direction
(p,w, v) along which the dual objective function in-
creases is computed as the solution to the KKT system





G −A −F

−A′ 0 0
−F ′ 0 0









p

w

v



 =





cr

0
0



 F = [ci]i∈W

(7)
The next iterate(x̄, π̄, λ̄) is computed bȳx = x + αp,
π̄ = π + αw, λ̄W = λW + αw, λ̄r = λr + α. λW is
the Lagrange multipliers associated to the inequality
constraints in the current working set of primal active
constraints (and dual inactive constraints). The step
length α is selected such that dual feasibility, i.e.
λ ≥ 0, is maintained. By construction of the search
direction, the constraint (6b) is satisfied asλi = 0
for i ∈ I \ W. A particular advantage of the dual
active set algorithm, is that an initial dual feasible
point is readily available. It may be obtained as the
solution to KKT-system of the equality constrained
primal program (1a)-(1b), i.e. as the solution of

[

G −A

−A′ 0

] [

x

π

]

= −

[

g

b

]

(8)

Interior-point algorithms for solution of (1) are not ba-
sed on the optimality conditions (4) but on necessary
and sufficient optimality conditions in the following
form

Gx + g − Aπ − Cλ = 0 (9a)

A′x = b (9b)

C ′x ≥ d (9c)

λ ≥ 0 (9d)

λi(c
′
ix − di) = 0 i ∈ I (9e)

Instead of the active set condition,λi ≥ 0 for i ∈
A(x) andλi = 0 for i ∈ I \ A(x), the formulation
(9) is based on the complementarity condition (9e).
Introduce slack variables,t = C ′x − d ≥ 0, and the
notation

T =







t1
. . .

tmI






Λ =







λ1

. . .
λmI






e =







1
...
1







(10)

such that the conditions (9) may be expressed as

Gx + g − Aπ − Cλ = 0 (11a)

A′x − b = 0 (11b)

C ′x − d − t = 0 (11c)

TΛe = 0 (11d)

(t, λ) ≥ 0 (11e)

These conditions may be regarded as a system of non-
linear equations represented asF (x, π, λ, t) = 0 with
the requirement(t, λ) ≥ 0. The Mehrotra predictor-
corrector algorithm is an interior-point method which
computes the search direction as a combination of a
predictor and a corrector step (Raoet al., 1998). At
both the predictor and corrector stept andλ are main-
tained in the interior, i.e.(t, λ) > 0. The predictor
step is a pure Newton step forF (x, π, λ, t), i.e. (11a)-
(11d), while the corrector step is a modified Newton
step. In both cases, the structure of the equations sol-
ved in computing the search direction is









G −A −C 0
−A′ 0 0 0
−C ′ 0 0 I

0 0 Tk Λk

















∆x

∆π

∆λ

∆t









= −









rG

rA

rC

rΛ









(12)

3. KKT-SYSTEMS

The major computational effort in algorithms for ge-
neral convex quadratic programs (1) is computation
of the search direction. This corresponds to solution
of (5) in the primal active set algorithm, (7) in the
dual active set algorithm, and (12) in the interior point
algorithm, respectively.

Consider, the equality constrained quadratic subpro-
blem of (1)

min
x∈Rn

f(x) =
1

2
x′Gx + g′x (13a)

s.t. A′x = b (13b)

The solution of this program is computed as the solu-
tion of the following KKT system

[

G −A

−A′ 0

] [

x

π

]

= −

[

g

b

]

(14)

The solution of (5), (7), and (12) may essentially be
reduced to solution of systems with the structure (14).
This is advantageous if (14) has a special structure that
facilitates its efficient computation.

Proposition 1.(Schur-complement solution). Let
G ∈ R

n×n be symmetric positive semi-definite. Let
[

A F
]

∈ R
n×(m+mF ) have full column rank. Let the

KKT-matrix (2) be non-singular. Then

S =
[

F ′ 0
]

[

G −A

−A′ 0

]−1 [

F

0

]

(15)

is symmetric positive definite and has the Cholesky
factorizationS = LL′. Furthermore, the unique solu-
tion (p, s, u) of







G −A −F

−A′ 0 0
−F ′ 0 0









p

s

u



 = −





h

0
0



 (16)

may be obtained by solving the following sequence of
equations

[

G −A

−A′ 0

] [

p0

s0

]

= −

[

h

0

]

(17a)

LL′u = −F ′p0 (17b)
[

G −A

−A′ 0

] [

∆p

∆s

]

= −

[

−Fu

0

]

(17c)
[

p

s

]

=

[

p0

s0

]

+

[

∆p

∆s

]

(17d)

Proof. See Ouellette (1981). �

Proposition 1 may be used for solution of (5) in the
primal active set algorithm and solution of (7) in the
dual active set algorithm. In the first caseh = Gx +
g and in the latter caseh = −cr. The matrixS is
not computed from scratch at each iteration. Rather,
its Cholesky factorization is updated utilizing that the
matrixF changes by a single column at each iteration
in the active set algorithms. The Cholesky factor,L,
is treated as a dense matrix. Hence, the method is
most efficient when only a few inequality constraints
are active at the optimal solution. The method is
only efficient, when the KKT-matrix (2) has a sparse
structure that can be utilized. The KKT matrix (2) used
in proposition 1 remains constant and need only to be
factorized once.

Proposition 2.(Interior-Point KKT System). Let
G ∈ R

n×n be symmetric positive semi-definite. Let
(2) be non-singular. Let(tk, λk) > 0. Then the unique
solution (∆x,∆π,∆λ,∆t) of (12) may be obtained
by computation of the unique solution of

[

G + CT−1
k ΛkC ′ −A

−A′ 0

] [

∆x

∆π

]

= −

[

r̃G

rA

]

(18a)

in which

r̃G = −rG + CT−1
k (−rΛ + ΛkrC) (18b)

and subsequent computation of

∆t = −rC + C ′∆x (18c)

∆λ = T−1
k (−rΛ − Λk∆t) (18d)

Proof. Follows by simple rearrangement of (12). See
Raoet al. (1998). �

As is evident from proposition 2, the computational
burden in finding the search direction of the interior-
point algorithm is solution of (18a). The structure of
(18a) is identical to the structure of (14), and therefore
the computation of the search direction in the interior-
point algorithm is facilitated by efficient solution of
(14). The KKT-matrix in (18a) changes as(λk, tk)
changes and must therefore be refactorized at each
iteration.

4. LINEAR QUADRATIC OPTIMAL CONTROL

Proposition 1 and 2 provide methodologies for so-
lution of inequality and equality constrained convex
quadratic programming. The efficiency of these met-
hods depends on the efficiency of the solution met-
hod for the corresponding equality constrained convex
quadratic program.

The unconstrained linear quadratic optimal control
problem is the equality constrained convex quadratic
program

min
{xk+1,uk}

N−1

k=0

φ =
N−1
∑

k=0

lk(xk, uk) + lN (xN )

(19a)

s.t. xk+1 = A′
kxk + B′

kuk + bk (19b)

in which the stage costs of the objective function are

lk(xk, uk) =
1

2
(x′

kQkxk + 2x′
kMkuk + u′

kRkuk)

+ q′kxk + r′kuk + fk

(20a)

lN (xN ) =
1

2
x′

NPNxN + p′NxN + γN (20b)

The matrices

[

Qk Mk

M ′
k Rk

]

andPN are assumed to be

symmetric positive semi-definite and the KKT-matrix
of the problem is assumed to be non-singular.

The necessary and sufficient optimality conditions for
(19) are

Qkxk + Mkuk + qk − πk−1 + Akπk = 0 (21a)

M ′
kxk + Rkuk + rk + Bkπk = 0 (21b)

PNxN + pN − πN−1 = 0 (21c)

xk+1 = A′
kxk + B′

kuk + bk (21d)

In the caseN = 2, the necessary and sufficient
optimality conditions may be expressed as the KKT-
system
















R0 B0

Q1 M1 −I A1

M
′

1 R1 B1

P2 −I

B
′

0 −I

A
′

1 B
′

1 −I

































u0

x1

u1

x2

π0

π1

















= −

















r0 + M
′

0x0

q1

r1

p2

b0 + A
′

0x0

b1

















which may be rearranged to
















R0 B0

B′
0 0 −I

−I Q1 M1 A1

M ′
1 R1 B1

A′
1 B′

1 0 −I

−I P2

































u0

π0

x1

u1

π1

x2

















= −

















r0 + M ′
0x0

b0 + A′
0x0

q1

r1

b1

p2

















The necessary and sufficient conditions (21) for opti-
mality of (19) are sparse and highly structured. The
following proposition prescribes a Riccati iteration
procedure for solution of (21).



Proposition 3.(LQ Optimal Control Solution). Letx0,
{Ak, Bk, bk, Qk,Mk, Rk, qk, rk}

N−1
k=0 , and{PN , pN}

be given. Then the solution{uk, πk, xk+1}
N−1
k=0 of

(21) may be obtained by the following procedure

(1) Compute

Re,k = Rk + BkPk+1B′

k (22a)

Kk = −R−1

e,k
(M ′

k + BkPk+1A′

k) (22b)

ak = −R−1

e,k
(rk + Bk(Pk+1bk + pk+1)) (22c)

Pk = Qk + AkPk+1A′

k − K′

kRe,kKk (22d)

pk = (Ak + K′

kBk)(Pk+1bk + pk+1)

+ qk + K′

krk

(22e)

for k = N − 1, N − 2, . . . , 0.
(2) Compute the primal solution{uk, xk+1}

N−1
k=0 for

k = 0, 1, . . . , N − 1 by

uk = Kkxk + ak (23a)

xk+1 = A′
kxk + B′

kuk + bk (23b)

(3) Obtain the dual solution{πk}
N−1
k=0 by computing

πN−1 = PNxN + pN (24a)

πk−1 = Akπk + Qkxk + Mkuk + qk (24b)

for k = N − 1, N − 2, . . . , 1.

Proof. See Raoet al. (1998) or Ravn (1999). �

Let x ∈ R
n andu ∈ R

m. Then this method has com-
plexity O(N(n3 + m3)) while a dense method on the
same KKT-system has complexityO(N3(n + m)3).
Corresponding dense quadratic programs obtained by
elimination of the states has complexityO(N3m3).
The Riccati based factorization is thus two order of
magnitudes faster than the dense based approach when
the horizonN length is much larger than the state
dimensionn.

The constrained linear quadratic optimal control pro-
blem is (19) with the additional constraints

C ′
kxk + D′

kuk + ck ≥ dk k = 0, 1, . . . , N − 1
(25a)

C ′
NxN + cN ≥ dN (25b)

The search direction in algorithms for solution of this
problem is computed efficiently by combination of
proposition 3 and either proposition 1 or 2.

The model predictive controller and the moving ho-
rizon estimator are particular instances of the optimal
control problem, i.e. (19) and (25). For simplicity and
to focus on the essentials, this is demonstrated for the
model predictive controller and moving horizon esti-
mator without inequality constraints. These formula-
tions are easily extended to the inequality constrained
cases.

5. MODEL PREDICTIVE CONTROL

The unconstrained model predictive controller for li-
near systems may be expressed as

min
{yk,wk+1,uk}

∞

k=0

φ =

∞
∑

k=0

l̃k(yk,∆uk) (26a)

s.t. wk+1 = Ã′
kwk + B̃′

kuk + b̃k

(26b)

yk = C̃ ′
kwk + c̃k (26c)

in which the stage cost is

l̃k(yk,∆uk) =
1

2
||yk − zk||

2
Q̃k

+
1

2
||∆uk||

2
S̃k

(27)

The goal stated by this cost, is to keep the systems
output {yk}

∞
k=0 close to some prescribed trajectory

{zk}
∞
k=0 while simultenously limiting the actuator va-

riation ∆uk = uk − uk−1. Let the data at stagek of

this controller beMk =
{

Ãk, B̃k, b̃k, C̃k, c̃k, Q̃k, S̃k

}

and letM =
{

Ã, B̃, b̃, C̃, c̃, Q̃, S̃
}

. Assume that the

controller (26) is parameterized as

C = {Mk}
∞
k=0 = {M0,M1, . . . ,MN−1,M,M, . . .}

(28)
and that the reference trajectory has the parameteriza-
tion

{zk}
∞
k=0 = {z0, z1, . . . , zN−1, z, z, . . .} (29)

The optimal steady state consistent with the controller
model (26) is obtained by solution of the quadratic
program

min
u,w,y

1

2
||y − z||2

Q̃
+

1

2
||u − us||

2
Rs

(30a)

s.t. w = Ã′w + B̃′u + b̃ (30b)

y = C̃ ′w + c̃ (30c)

in whichus is a target of the input if there are degrees
of freedom in excess andRs is computed by the
procedure (Muske, 1997)

Ñ = Null
([

I − Ã′ −B̃′
])

=

[

Ñx

Ñu

]

(31a)

α = Null
(

Ñ ′
xC̃C̃ ′Ñx

)

(31b)

Rs = R̃Ñuαα′Ñ ′
uR̃ (31c)

When a target(u,w) has been computed the model
predictive controller algorithm solves the dynamic
quadratic program

min φ =

N−1
∑

k=0

lk(xk, uk) + lN (xN ) (32a)

s.t. xk+1 = A′
kxk + B′

kuk + bk (32b)

in which

xk =

[

wk

uk−1

]

A′
k =

[

Ã′
k 0

0 0

]

B′
k =

[

B̃′
k

I

]

bk =

[

b̃k

0

]

(33)

andlk(xk, uk) is of the form (20a) with the parameters



Qk =

[

C̃kQ̃kC̃ ′
k 0

0 S̃k

]

Mk =

[

0

−S̃k

]

Rk = S̃k

(34a)

qk =

[

C̃kQ̃k(c̃k − zk)
0

]

rk = 0 (34b)

fk =
1

2
(c̃k − zk)′Q̃k(c̃k − zk) (34c)

Let

x =

[

w

u

]

Q =

[

C̃Q̃C̃ ′ 0

0 S̃

]

M =

[

0

−S̃

]

R = S̃

(35)
and computeP from the Riccati equation

P = Q + APA′

− (M + APB′)(R + BPB′)−1(M + APB′)′

(36)

Then the selected cost-to-go function in (32)

lN (xN ) =
1

2
(xN − x)′P (xN − x) (37)

is identical to (20b) with the parameters

PN = P pN = −Px γN =
1

2
x′Px (38)

Consequently, the dynamic quadratic program of mo-
del predictive control is an instance of a linear quadra-
tic optimal control problem.

6. CONCLUSION

Model predictive control and moving horizon esti-
mation with affine models are instances of the li-
near quadratic optimal control problem. By utilizing
the structure of the linear quadratic optimal control
problem, efficient methods for solution of the linear
quadratic optimal control problem have been outlined.
These methods are linear in the control horizon. They
are therefore particularly attractive for predictive con-
trol with long horizons. Long horizons in predictive
control are often preferable, because nominal stability
can be guaranteed provided the control horizon is suf-
ficiently large.

The search-direction of active-set algorithms for solu-
tion of the constrained linear quadratic optimal con-
trol problems, (19) and the additional constraints (25),
may be efficiently computed using the decomposition
stated in proposition 1 and the Riccati iteration stated
in proposition 3. When the model parameterization is
fixed a priori, as for instance for linear time invariant
systems, the factorization of the unconstrained linear
quadratic optimal control problem may be done off-
line, and the method increases even further in effici-
ency.

The search direction of the Mehrotra predictor-corrector
interior-point algorithm for solution of the constrai-
ned linear quadratic optimal control problem may be
efficiently computed by combination of proposition 2
specialized to (19,25) and proposition 3.

The algorithms outlined for solution of the linear
quadratic optimal control problem can be applied as
the QP-solver for solution of the nonlinear optimal
control problem by SQP algorithms.
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