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Abstract: In this paper, the explicit calculation of prediction intervals for multi- 
step-ahead predictions from dynamic neural network models is described. Usually, 
asymptotic methods that are based on linearized descriptions of neural networks 
are applied with the potential problem of large coverage errors and too optimistic 
prediction intervals. The potential sources of these problems are the negligence of 
the network parameter uncertainties and the non-normality of error distributions. 
To overcome these restrictions, the bootstrap method is used here. The bootstrap 
is a tool from computational statistics. New formulations are introduced to apply 
the bootstrap to nonlinear time series models with exogenous inputs. The proposed 
method is illustrated by an analysis of a neural network model of a bioreactor 
benchmark problem. 
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1. INTRODUCTION 

Chemical processes exhibit frequently strong non- 
linearities and especially when operated in batch 
or semibatch mode or over a wide range cannot 
be controlled well by a linear controller which 
is designed around a nominal operation point. 
Hence, the application of nonlinear model predic- 
tive control (NMPC) schemes for chemical pro- 
cesses seems advantageous. A major drawback is 
the size and the complexity of rigoros dynamic 
models as the computational burden even with 
state of the art computers is prohibitive. 

Nonlinear black box models may overcome this re- 
striction and neural networks have gained consid- 
erably attention in both academic research as well 
as industrial applications. Their universal approx- 
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imation abilities and the access to a wide range 
of software tools qualify them for the building of 
nonlinear dynamic black-box models which can be 
applied as prediction models in an NMPC scheme 
(see e.g. (Wang et al., 2003)). In the application 
of this idea it turns out that  a key issue is to 
estimate the prediction accuracy of the neural 
network models over medium to large prediction 
horizons. 

However, a comparatively small number of arti- 
cles in the literature deals with the assessment of 
neural network predictions. In the case of station- 
ary mappings, several different approaches were 
reported. In (Chryssolouris et al., 1996) a method 
based on linearization of the neural network is 
presented and in (Tibshirani, 1995) it is compared 
with two bootstrap methods. 

The specific problem of the reliability or uncer- 
tainty of the neural network prediction within 



dynamic models has hardly been addressed sys- 
tematically. On the other hand, neural network 
based predictive controller may show undesired 
behaviors when the process leaves the regime in 
which the prediction model had been trained. One 
possible solution is to divide the input space up 
into subspaces and to calculate the density of the 
training data in these subspaces. If the density is 
too low the neural network based NMPC switches 
to a conventional PID controller. This basic idea 
as well as technical considerations can be found 
in (Rogmann, 2002). A similar approach was de- 
scribed in (Tsai et al., 2002) where a regional 
knowledge index is calculated. The index reflects 
the mean distance to all training patterns, and 
a supervising controller interpolates between the 
NMPC and a neural adaptive controller. Both 
approaches try to evaluate whether the current 
neural network input lies in a region with a high 
training data density or not. However, even if 
enough training data was used, the neural net- 
work predictions may be inaccurate, especially for 
growing prediction horizons. 

In this paper, prediction intervals of multi-step- 
ahead forecasts of neural networks are calculated 
by bootstrap methods. A prediction interval is 
an upper and lower limit of the predicted value 
together with a probability c~ that future realiza- 
tions of the process lie in between these bounds. 
For this purpose the residuals from the neural 
network training are taken as estimates of the true 
error distribution. The nominal neural network is 
then simulated many times with random draws 
from the error distribution. The newly generated 
data sets are used to estimate neural networks for 
each simulation run. The estimated error distri- 
bution represents the uncertainty of the network 
predictions with respect to noise or unmodeled 
process behavior, and the set of neural networks 
represents the uncertainty of the network param- 
eters considering them as stochastic quantities as 
they are determined from noisy and limited data. 
The m-step-ahead prediction and its distribution 
are calculated from all neural network predictions 
and by adding an error term from the empirical 
error distribution during each prediction step. 

The paper is structured as follows. Section 2 
describes the basic methods used. In Section 3, 
extensions are made for dynamic models, Section 
4 presents a linear method which is used in Section 
5 where the results from a bioreactor simulation 
example are shown. The concluding Section 6 
summarizes the presented results and gives an 
outlook to future work. 

2. THE BOOTSTRAP 

The bootstrap is a computer-based statistical 
method to estimate unknown distributions or pa- 
rameters of distributions and can be separated 
into nonparametric or parametric techniques. The 
standard textbook which covers a wide range of 
applications is (Efron and Tibshirani, 1993). Ba- 
sically, the bootstrap generates replicate pseudo- 
data sets by resampling from empirical distribu- 
tion functions. The union of all bootstrap resam- 
ples is most likely to approximate the underlying 
true distribution. 2 

The standard nonparametric bootstrap method 
cannot be applied to dynamic models as it is 
based on the //&assumption (independently and 
identically distributed) of the training data. As 
time series usually have serial correlations, the 
//&assumption is obviously violated. In this case 
the bootstrap must be applied to the residuals 
of the training data rather than to the original 
data assuming that the residuals fulfill the iid- 
assumption. 

A step-by-step guide for the calculation of predic- 
tion intervals without considerations of network 
uncertainties is as follows. The description is sire- 
ilar to that in (Clements and Taylor, 2001) and 
references therein even though only linear AR(p) 
models are considered there. The method will be 
denoted Boot in the sequel. 

S tep  1 The data is generated by the NAR(p) 
process 

Yk = f (e, Yk-l, . . . ,  Yk-~) + Ek (1) 
where Ek is a white noise process with dis- 
tribution Fe, zero mean and finite second too- 
ment. 0 is the parameter vector of the process. 
Simulate the process and get the time series 
Y : { Y l , . . . , Y n + p } 3 .  

Step  2 Estimate the parameters of the neural 
network 0 and obtain the empirical distribution 
F~ 4 of  the residuals 

e k  : Y k  - -  f (O ,  Y k - l ,  . . . ) .  (2) 

If necessary center and rescale the residuals. 
S tep  3 Simulate B bootstrap continuations re- 

cursively for the m-step-ahead prediction 

2 This is the bootstrap paradigm. Statistical inference 
usually tries to find a description between a sample and the 
population the sample was drawn from. As the population 
and its parameters are generally unknown, the distribution 
of the (unknown) population is replaced by the (known) 
sample population and the original sample is replaced by 
the bootstrap one. A more formal definition is given in 
(Hall, 1988). 
3 Note the difference between the process Y~ and its 
realizations y~. 
4 An empirical distribution function F~ assigns to each 
value of the sequence X = { x l , .  • • ,  x n  } equal probabilities 
of n - 1 .  Sometimes n - 1  is called mass. 



• b (t) ,b ,b ) ,b Y k + j  - -  f + e k + j ,  (3) , Y k + j - 1 , ' ' ' , Y k + j - p  

j =  l , . . . , m  b =  l , . . . , B  

*b and  set Y k + s  - -  Y k + s  for 8 < 0 to condi t ion  the  
prediction interval on the last p observations 

*b which are supposed to be known. The ek+ j a r e  

random draws from F~. 
S tep  4 Estimate the prediction intervals from 

• b . Sev- the empirical distribution function of Y k + j  

eral methods may be applied, see (Hall, 1988) 
for a comprehensive treatment. Here, Efron's 
percentile method is used. Define the cumula- 
tive empirical distribution as 

, 1 B 

- a . ( h ) -  Z z(y < h) 
b=l 

with the indicator function 

2 ; ( y < h ) -  l 1  i f y < h ,  

( 0 else 

the symmetric 100a%-prediction interval is 

[Q~ ( l - a ) ( l + a )  
2 ,QB 2 (4) 

with Q~ - GB -1. 

This procedure does not account for the uncer- 
tainty in the neural network parameters. Exten- 
sions are presented to cope with this fact. The 
extended method is denoted B o o t - P U .  

Step  1-2 As above. 
S tep  3a Simulate /3 bootstrap time series y,b 

of length n + p with the nominal model f(0). 
Choose a random block of length p as initial 
values or fix them to y l , . . . ,  yp .  

Step  3b Estimate /3 neural networks with pa- 
rameters 0,b for each ~y,b. 

S tep  3c Simulate /3 bootstrap continuations re- 
cursively for the m-step-ahead prediction 

• b ( o , b , b  ,b ) ,b 
Y k + j  - -  f , + • ' '  Y k + j - p  Y k + j - 1 ,  , e k + j ,  

(5) 
j =  l , . . . , m  b =  l , . . . , B  

with the same settings as in eq. (3). 
S tep  4 As above. 

Note that all B bootstrap models are trained 
in advance and that the potentially high num- 
ber of neural networks does not rule out online 
applications as the evaluation of the network is 
comparatively fast in contrast to its training. 

3. EXTENSIONS TO NARX MODELS 

In the former section, the model class was re- 
stricted to nonlinear AR(p) models. The eval- 
uation of the prediction uncertainty has gained 

considerable attention in the field of econometrics 
where exogenous inputs play a minor role. Control 
applications on the other hand demand for ex- 
tensions to incorporate external inputs. Basically, 
there are three possible approaches. Assume that 
the model is of type 

Y k  - f ( O , Y k  - l , . . . , Y k  - p , 

g k - 1 , . . . ,  U k - p )  + ]~k.  (6) 

Depending of the class of input signals, different 
strategies for resampling in Step 3a of the B o o t -  

P U method can be applied. If the input signal 
is a deterministic one like sinusodial, chirp or 
rectangular, bootstrapping the empirical distribu- 
tion function of the input sequence will produce 
signals with completely different spectral densi- 
ties. As a consequence different process dynamics 
are excited and the estimated model most likely 
does not coincide with the nominal one. In this 
case it seems best to keep the input signal fixed 
or just shift it in phase. The resulting models 
and prediction intervals will thus be conditioned 
on the specific realization { u k }  rather than the 
distribution Fu of the input signal. 

For random signals with unknown distribution 
Fu, resampling from { U l , . . . ,  U n + p - - 1  } will also 
generate bogus signals. A promising solution is 
the use of the empirical difference distribution 
F/x~. A bootstrap sample is most likely to have 
the same properties (e.g. spectral densities) as the 
original one and only rescaling of the bootstrap 
input signal might be necessary. 

If the distribution of the input signals is known, 
it is obviously best to take random draws from 
the distribution function F~. Step 3a is therefore 
extended as follows" 

S tep  3a, r ev i sed  Simulate B bootstrap time se- 
ries with the nominal model f(0) to obtain y,b 
of length n + p. 

• b ((~ ,b ,b 
Yk - f , Y k - 1 ,  . . . , Y k - p ,  \ 

~t;b__l,..., ~t~b__p) -~- e;  b, (7) 

k - p +  1 , . . . , p +  n. 

Choose a random block of length p as initial 
value or fix it to {y l , . . . , yp ,  u l , . . . , u p } .  The 
e~ b is a random draw from F~. The input signals 
may be obtained by" 
(1) Set u*k b - u k _ q . ~  to use the same input 

sequence as in y with a potential (random) 
phase shift q,V. 

(2) Generate a difference data set AU - {u2 - 
?_tl , . . . , ?_tn+p_ 1 --  ?_tn+p_ 2 } with correspond- 
ing distribution function Fzx~. The input 
sequence will be u~ b - u~ b-1 + Au~ b where 

Au*k b is a random draw from FA~. U~ b can 
be zero or any value from F~. The boot- 
strap input sequence U *b should be rescaled 
to have the same range as U. 



(3) If Fu is explicitly known, the input se- 
quence { ,b u k } is just a realization of U. 

4. LINEARIZATION-BASED APPROACH 

The nominal neural network is linearized around 
an input vector [ y k - 1 ,  . . . , y k - p ,  u k - 1 ,  . . . , Uk -p] .  

This yields 

Yklk-1 = 5 + ¢1Yk-1 + " "  + C p Y k - p  

Jr- ~ lUk-1  Jr-''" Jr- ~pUk-p Jr- Ek ( 8 )  

where Y k ] k - 1  denotes the prediction obtained 
from a linearized model at instance k -  1. As both 
input process U and parameters ~;1...p and ¢1...p 
are assumed to be known exactly, the approxi- 
mated distribution of the m-step-ahead prediction 
is given by 

P 

rk+j " ;V( h+jl 2 + Z (9) 
i - - 1  

with v a r ( Y k + j - i )  - 0 for j < i and variance 
^2 estimated from the residuals between training O- e 

data and neural network output.  The resulting 
prediction interval is then 

[#k+j - #k+j + (10) 

where z~ is the quantile of the normal distribution 
with (#(z~) = a. The interval is symmetric about 
Yk4-j" The linearized method does not account for 
the uncertainty in the parameter  estimates and 
for the possibly skewed distribution of Y k + j .  

5. SIMULATION EXAMPLE 

5.1 M o d e l  D e s c r i p t i o n  

In this example, a continuous bioreactor bench- 
mark is considered as described in (Puskorius and 
Feldkamp, 1994). The nonlinear coupled differen- 
tial equations are given by 

~11 - - y l u  + y l ( 1  - y 2 ) e  y2 / r  

~]2 - - y 2 u  + y l ( 1  - y 2 ) e  y2 / r  
1 + / 3  

1 + / ~ - y 2  

(11) 

(12) 

where the state variables yl and y2 represent the 
cell mass and nutrients conversion in dimension- 
less form. The exogenous variable u is the flow rate 
of nutrients into the constant volume tank and the 
nominal values of the parameters are F = 0.48 
and /3 = 0.02. The process exhibits strong non- 
linearities and has a tendency for instability and 
collapsing behavior (Yl,2 -+ 0 for constant u) for 
increasing flow rates. Fig. 1 shows the nonlinear 
behavior and reveals the necessity of a nonlinear 
model for e.g. model predictive control. 
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Fig. 1. Step responses of the bioreactor with initial 
values yl,0 - 0.12 and y2,0 - 0.88 

5.2 N e u r a l  N e t w o r k  T r a i n i n g  

The scope of this paper is not to find the best 
neural network structure and parameters for the 
problem of dynamic modeling of the bioreactor 
but to assess a neural network that  has been 
obtained by standard methods. 

(1) 

(2) 

(3) 

(4) 

The rigoros process model is implemented 
in Matlab and simulated with the ode23s- 
integrator. 
The input signal for the training data  set 
is an amplitude modulated pseudo random 
binary signal (APRBS) with a maximum flow 
of 0.85, a minimum of 0.1 and a switching 
time that  is equally distributed over the in- 
terval ts C [12.5s; 25s]. The sampling interval 
is 0.5s. For validation, the same type of signal 
is used with similar settings but different 
realizations. 
The feedforward neural network has one hid- 
den layer with three neurons and sigmoidal 
activation functions. The order of the process 
(p) is four and the overall number of network 
parameters is 31. The process is simulated for 
500 seconds which results in approximately 
1000 training patterns. This is a relatively 
small number, in comparison (Puskorius and 
Feldkamp, 1994) use 10.000 points. An in- 
crease of generalization was obtained by the 
application of a ridge regression training pro- 
cedure. 
Several networks with random initialization 
of the network parameters were trained and 
the one with the lowest root mean squared 
error on the training data  set was selected. 

Table 1 shows results for the validation data  set. 
In the first column, the desired coverage proba- 
bility a from eq. (4) is given, the second column 
denotes the method and the third one shows the 
actual coverage. An actual coverage of e. g. 88% 
means that  88% of the neural network five-step- 
ahead predictions for the validation data  set lie 



within the calculated prediction intervals. If the 
methods for calculating the prediction intervals 
are (asymptotically) correct, then for large data 
sets and large bootstrap samples the actual cov- 
erage tends to the nominal one. 

lim lim Prob [Ytrue e eq. (4)] = ct 
n--+ oc B--+ oc 

(13) 

The fourth column shows the width of the pre- 
diction intervals averaged over all validation data 
points. The standard deviation of the width is 
given in brackets (~). 

Table 1. Coverage for five-step-ahead 
prediction for Validation Data Set. 

Nominal  Actual  Average 

Coverage Method Coverage Wid th  (~) 

50% Linear 51.05% 0.52 (3.89) 

Boot 51.65% 0.01 (0.01) 

Boot -PC 58.54% 0.01 (0.03) 

80% Linear 64.34 % 0.99 (7.38) 

Boo t  81.12% 0.02 (0.04) 

Boot-PU 85.41% 0.02 (0.06) 

9 0 %  Linear 65.63% 1.27 (9.48) 

Boot 88.11% 0.03 (0.05) 

Boot-PU 90.61% 0.04 (0.08) 

9 5 %  Linear 67.13% 1.51 (11.30) 

B o o t  9 2 . 1 1 %  0 .04  (0 .07 )  

Boot-PU 94.61% 0.05 (0.10) 

9 9 %  Linear 70.83% 1.98 (14.84) 

Boot 96.70% 0.07 (0.10) 

Boot-PU 97.70% 0.08 (0.17) 

The method based on linearization constantly 
underestimates the prediction interval leading to 
far too optimistic results. The poor coverage and 
the relatively wide interval width originates from 
the fact that  only symmetric intervals can be 
calculated due to the normality assumption. The 
large standard error ~ is a consequence of the 
linearization as the estimated variance is rather 
high when step changes on the input variable 
occur and the nonlinearity of the process has a 
significant effect on the prediction. The bootstrap 
method which only uses random draws form the 
empirical residual distribution F~ for the predic- 
tion (denoted Boot) and therefore conditions them 

on the nominal network parameters 0 shows much 
better coverage than the linear method with the 
advantage of small average interval widths. It 
is only outperformed by the bootstrap method 
which accounts for the parameter uncertainty 
(hence denoted Boot-PC) which shows very good 
coverage with a slight tendency to overestimate 
the prediction intervals for low nominal coverage. 

To illustrate the empirical distribution functions 
and the variation of the prediction intervals with 

time, the five-step-ahead prediction is compared 
with the plant behavior. Fig. 2 shows about 15% of 
the validation data set. The neural network shows 
good approximation abilities of the true process 
behavior. As the order of the NARX process 
is four, the five-step-ahead prediction Yk+51k is 
calculated completely from former neural network 
predictions because the values Yk+4lk,... ,Yk+ll k 
are not known at time instance k. Only the large 
step at t = 10 see causes a large error of the neural 
network prediction. 

0.25 

~ 0.2 

o~ 
Q_ 

_c o.15 
g 

g o.1 
o 

0.05 

0 II 

o 

t l  . . . .  Plant 
i~iii - -  5-step-ahead prediction 

,.. .... Plant !nput/4 - = ~  

:ii~i~iii iiiiii ii~: . :iiiiiiiiiii: ~iiiiii~ ~iiiiii~ .~iiii~ i 
.'i.:.: .:.ii.'.'i~:':.i ! :  -- i ~ iiii ii ii~ii; iiiiii~ : ~iiiii~ ~iiii~:~i~ii ?~iii: ~iiiiiiiiii:,::iiiiiiiii~:,.;:~ : -- : ............. 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii U~iiiii [."~ 
::::::::::::::::::::::::::::::::::::::: :iiiii . . . . .  :IN ..... 

i :+i ........... ......... ii:: ii 

10 20 30 40 50 60 70 
Time [sec] 

Fig. 2. Plant step response and neural network 
five-step-ahead prediction. The area shaded 
in gray is the 95% prediction interval of the 
Boot-P U method. 

The distribution of the bootstrap predictions, 
the corresponding 95% confidence intervals as 
well as the normal approximations for the point 
indicated in Fig. 2 as validation point are shown 
in Fig. 3. The non-stationarity of the process at 
this point causes the linear method to estimate 
a large prediction uncertainty, whereas the neural 
network exhibits a sufficient performance there. 
The bootstrap distribution of the five-step-ahead 
prediction is slightly skewed to larger values of 
the predicted variable indicating that  the nominal 
neural network may underestimate the true value. 
In comparison to the linear method, the width 
of the prediction interval is rather small. Both 
bootstrap methods yield almost equal intervals 
here. 

Another important  aspect is the asymptotic be- 
havior and the rate of convergence to the limiting 
distribution. Table 2 shows the actual coverage for 
different nominal coverage with respect to an in- 
creasing number of bootstrap predictions B. The 
use of more than 400 bootstrap predictions does 
not increase the coverage accuracy significantly. 

6. CONCLUSION 

In this paper, a method has been introduced to 
evaluate the prediction uncertainty of neural net- 
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Fig. 3. Distribution functions at the point indi- 
cated in Fig. 2. The bars show the empiri- 
cal distribution of the bootstrap predictions, 
the solid vertical line is the neural network 
prediction, the dash-dotted line is the real 
process output, the dashed lines are the 95% 
bootstrap intervals and the bell-shaped curve 
(normalized to the maximal bootstrap value) 
is the normal approximation of the error dis- 
tribution that results from the linearization 
based method. 

Table 2. Influence of the number of 
bootstrap samples 

Validation Data Set 

Nominal coverage 80% Nominal coverage 95% 

Boot Boot-PU Boot Boot-PU 

20 78.3% 82.1% 85.3% 89.0% 

100 80.2% 83.5% 90.7% 92.8% 

400 81.0% 85.1% 92.0% 94.6% 

1000 81.1% 85.4% 92.1% 94.6% 

works for modeling of nonlinear dynamic systems. 
This aspect has not yet attracted the necessary 
attention even though unreliable predictions can 
lead to erratic behavior of e.g. nonlinear model 
predictive controllers. 

The bootstrap as a tool from computational 
statistics is used to circumvent the limitations 
that are imposed by the nonlinearity of the ap- 
plied neural network models and by the normal- 
ity assumption of the error distributions. The in- 
novation improves the coverage largely and nar- 
rows the width of the prediction intervals as non- 
symmetric intervals are possible. 

Although the proposed method gives additional 
insight into the prediction uncertainty of neural 
networks, further research is necessary to improve 
the estimation of prediction intervals. Using eq. 
(1) tacitly assumes that the data generating pro- 
cess lies in the class of neural networks used 
for modeling. If this assumption is not justified, 

the effects on the prediction intervals have to be 
examined as the empirical error distribution is 
potentially biased. Another aspect is the uncondi- 
tionality of the empirical error distribution which 
implies that the variance of the error process does 
not depend on the current neural network input. 
If the neural network operates in ranges with low 
training data, sampling from the empirical error 
distribution might be too optimistic and if it op- 
crates in a range with high training data density 
sampling from the same distribution might be 
too pessimistic. Conditioning the empirical error 
distribution on the current point of operation will 
improve both the actual coverage of a complete 
data set and reduce the conservativeness of the 
empirical distribution of the multi-step-ahead pre- 
diction errors. 
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