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∗ Institute for Systems Theory in Engineering, University
of Stuttgart, Pfaffenwaldring 9, D-70550 Germany,

e-mail: {vargas,allgower}@ist.uni-stuttgart.de

Abstract: While models of high complexity are very useful for simulation and pre-
diction purposes in the process industry, they may not be adequate for controller
design. This paper proposes a procedure for model complexity reduction for this
specific purpose by combining several nonlinear identification and optimization
techniques. The available complex simulation model is used as surrogate plant to
generate control relevant input and output trajectories and both an optimization of
the input and an iterative nonlinear identification procedure are used. The results
are illustrated on a nonlinear exothermic copolymerization reactor example.
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1. INTRODUCTION

In the process sector, detailed models of very
high fidelity are almost always needed during the
design phase. They are usually first principles
models based on physical and/or chemical con-
siderations (Ogunnaike and Ray, 1996). Such sim-
ulation models give a good approximation of the
real process behavior, but tend to be too complex
to be used for advanced process controller design,
mainly because they are not explicitly developed
for this purpose.

Assuming a given fully characterized first prin-
ciples model, this paper proposes an iterative
procedure for model complexity reduction from
dedicated simulations (experiments) on the com-
plex model. The novelty in the approach lies in
combining several black-box empirical modeling
techniques (Ljung, 1999; Nelles, 2001; Pintelon
and Schoukens, 2001) with a certain knowledge
of the plant, which permits optimizing the input
design phase and building the model step by step
in an iterative manner. This might be unthink-

able in the usual identification setting, where the
number of experiments is a main limitation and
furthermore all signals are corrupted by noise.

The main assumption made on the system is
that it admits a Volterra representation (Schetzen,
1980). It is a sufficiently general system class to
fit the input/output behavior of many system
processes and furthermore, at least several model
based controllers can easily be designed based on
this representation (Doyle III et al., 2002).

Three known results from system identification
are used by the proposed procedure: frequency
domain identification in the presence of nonlin-
earities (Schoukens et al., 1998), the theory of
generalized orthonormal bases for system repre-
sentation (Ninness et al., 1999), and the forward
selection orthogonal least squares methods (Chen
et al., 1989; Chen et al., 2003). The procedure is
additionally iterative, and on each step the pole of
a basis function is chosen and the input excitation
for identification is optimized.



In the next section the assumptions on the in-
put/output behavior of the system are given,
which concern mainly the Volterra representation
and its parametrization with respect to basis func-
tions. Section 3 gives an overview of the linear
and nonlinear identification tools used, namely
frequency domain identification and orthogonal
least squares techniques. The proposed procedure
for model complexity reduction is fully explained
in Section 4, while in Section 5 the procedure is
tested on the model of a copolymerization reactor.
Finally, some conclusions are presented. Through-
out the text, R and C denote the real and complex
sets, respectively, 〈·, ·〉 denotes scalar product, and
ξ denotes the complex conjugate of ξ.

2. ASSUMPTIONS ON THE PROCESS

Given an input time sequence u(t), the output
y(t) can be obtained through simulation of the
given complex model S, i.e. y(t) = S[u(t)]. It
is assumed that initial conditions are always the
nominal operating conditions. The aim is thus to
obtain a (possibly nonlinear) model M,

ŷ(t) = M[u(t)] ≈ S[u(t)] = y(t), (1)

that is useful for process control design. This
paper limits the reduced model M to be discrete
and, without loss of generality, t is taken as
normalized discrete time, i.e. τ = tTs, where Ts

is the sampling period and τ is real time.

Most control systems satisfy the assumption that
their input/output behavior S can be sufficiently
well approximated by a Volterra series (Lesiak and
Krener, 1978). The finite discrete Volterra series
is given by (Doyle III et al., 2002)

ŷ(t) = y0 +
n∑

j=1

vj
m(t), (2)

with vj
m(t) = vj

m (u(t− 1), . . . , u(t−m)) the j-th
order terms with memory length m, i.e.

vj
m(t) =

m∑
i1=0

· · ·
m∑

ij=0

αj(i1, . . . , ij)
j∏

k=1

u(t− ik).

(3)
The coefficients αj(i1, . . . , ij) are called the j-th
order kernels. It is a well known fact that fading
memory systems (Boyd and Chua, 1985) may be
approximated uniformly on bounded input sets by
a finite Volterra system with n and m sufficiently
large. Notice, however, that the number of terms
can become quite large.

Finite Volterra models are BIBO stable, have pe-
riodic responses to periodic inputs without sub-
harmonic generation, and can exhibit input mul-
tiplicities (same steady state output ys for distinct
steady state inputs us), but no output multi-
plicities (one us leads to various ys). They also

preserve asymptotic constancy, i.e. if u(t) → us

as t → ∞, then y(t) also approaches a constant
limit ys.

If the memory m is allowed to be infinite, then
the Volterra class may encompass more com-
plex nonlinear behaviors, but this is impossi-
ble to implement directly. Therefore the follow-
ing parametrization in terms of generalized or-
thonormal basis functions (GOBFs) is considered
(Ninness and Gustafsson, 1997).

Given a set of poles {ξ1, ξ2, . . . , } satisfying
∞∑

k=0

(1 − |ξk|) = ∞, |ξk| < 1,

ξk ∈ C =⇒ ξk+1 = ξk,

(4)

the k-th GOBF is given by

Bk(z) =

√
1 − |ξk|2
z − ξk

k−1∏
i=1

1 − ξiz

z − ξi
. (5)

The basis {B1(z), B2(z), . . .} is complete and the
GOBFs are orthonormal, i.e.

〈Bi, Bj〉 =
1
2π

∫ π

−π

Bi(ejω)Bj(ejω)dω = 0 (6)

for i �= j and 〈Bi, Bi〉 = 1. This set of basis
functions generalizes the Laguerre basis (ξk = α
for all k), the Kautz basis (ξk,k+1 = γ exp(±jφ))
and the finite impulse response basis (ξk = 0).

If the Volterra kernels αj(i1, . . . , ij) vary regularly
as functions of their arguments, then they can be
expanded as

αj(i1, . . . , ij) =
∞∑

r1=1

· · ·
∞∑

rj=rj−1

γj(r1, . . . , rj)
j∏

k=1

brk
(ik). (7)

where γj(·) are kernels (i.e. parameters) and bi(t)
is the inverse z-transform of Bi(z), i.e.

bi(t) = Z−1 {Bi(z)} . (8)

Such an expansion is exact if the j-th order kernel
is stably separable and strictly proper (Seretis and
Zafiriou, 1997), which basically means that it
can be expressed as the product of j first order
kernels and αj(i1, . . . , ij) = 0 for i1 · · · ij = 0. A
direct substitution of (7) in (3) with m = ∞ and
regrouping leads to

vj
∞(t) =

∞∑
r1=1

· · ·
∞∑

rj=rj−1

γj(r1, . . . , rj)×

×
j∏

k=1

( ∞∑
i=0

brk
(i)u(t− i)

)
. (9)

Defining

ψr(t) =
∞∑

i=0

br(i)u(t− i) (10)



and truncating the sums up to q, the finite GOBF-
Volterra series is finally given by:

ŷ(t) = y0+ (11)

+
n∑

j=1

q∑
r1=1

· · ·
q∑

rj=rj−1

γj(r1, . . . , rj)
j∏

k=1

ψrk
(t).

Compared to the finite Volterra series (2), this
parametrization usually requires only q 	 m basis
functions for comparable accuracy, provided the
poles are chosen adequately. Notice (10) is the
response of the (linear) r-th GOBF to the input
u(t), so it quite easy to generate all required
responses ψr(t) by implementing a realization of
the linear system with transfer function matrix

B(z) =
[
B1(z) · · · Bq(z)

]T
. (12)

Having these responses, identification of the pa-
rameters γ(·) is simplified substantially, since (11)
is linear in the parameters and usual least squares
techniques may be used (Nelles, 2001). The dif-
ficulty lies in adequately selecting the poles and
the number of GOBFs used. For linear systems
it is known that poles close to the dominating
frequencies will yield a more compact represen-
tation (Gómez, 1998). The proposed procedure
iteratively selects these poles based on frequency
response data, using a best linear identification of
the error system.

3. SYSTEM IDENTIFICATION TOOLS

Linear system identification theory is a very ma-
ture subject (Ljung, 1999). Its main objective
is to obtain a system model under restrictive
experimental conditions, which basically pertain
to measurement and generator noise. Under the
framework studied here these problems do not
appear, but the complexity (e.g. nonlinearity) of
the system S makes the task no less difficult.

In the iterative procedure to be outlined in the
next section, two identification techniques are
used. First the identification of a best linear sys-
tem is performed, and then an orthogonal least
squares technique for structure selection and pa-
rameter estimation is implemented. The first iden-
tification has as objective to select a set of can-
didate GOBFs based on the significant poles of
the linear approximation to the difference be-
tween the complex model and the current re-
duced model. It is based on the following result
(Schoukens et al., 1998).

Assume a nonlinear system with a convergent
Volterra representation (2) is excited with a ran-
dom multisine, i.e. a periodic signal with fixed
amplitude spectrum, but random phase spectrum.
Then the measured frequency response function

(FRF) will have the following decomposition un-
der ideal measurements

G(jωk) = G0(jωk) +GB(jωk) +GS(jωk). (13)

The measured FRF is the quotient Y (k)/U(k) of
the measured output spectrum and the measured
input spectrum, whereby k is an index for the
excited frequency lines. The term G0(jωk) in (13)
corresponds to the underlying linear system and
is independent of the spectra of the input signal.
The second term corresponds to the systematic
nonlinear contributions, which depend only on the
(deterministic) amplitude spectrum but not on
the random phases. The third term corresponds
to the stochastic nonlinear contributions, which
are completely dependent on the (random) input
spectrum, so that YS(k) = GS(jωk)U(k) behaves
like noise, uncorrelated with the input and with
zero mean. For this reason, the response of the
nonlinear system (2) to a random multisine can be
regarded as the response through a related linear
dynamical system GR(jωk) = G0(jωk)+GB(jωk)
plus some nonlinear noise due to the stochastic
contributions.

There are a host of techniques available for sys-
tem identification in the frequency domain (see
e.g. the book by Pintelon and Schoukens (2001)
and the references therein), given either the mea-
sured data Y (k), U(k) or the measured FRF
G(jwk) and certain noise assumptions. Subspace
algorithms implemented in the frequency domain
(McKelvey et al., 1996) are used in the present
approach. These produce a state space realization
(Â, B̂, Ĉ, D̂) for the fit Ĝ(z) to the FRF G(jωk).
On one hand, a consistent estimate of GR(jωk)
with respect to the nonlinear noise is guaranteed
as the number of realizations of the same random
multisine tends to infinity. On the other hand,
being based on principal component analysis, the
dynamic order must not be fixed a priori. This is
important in the proposed procedure, since only
significant candidate poles should be tested and
these are directly given by the eigenvalues of Â.

The other nonlinear identification scheme used in
the procedure pertains structure selection and pa-
rameter estimation using orthogonal least squares
techniques (Chen et al., 1989). The assumed struc-
ture for the system is linear in the parameters, i.e.

y(t) = ϕT (t)θ + e(t) (14)

where θ ∈ Rr is the parameter vector, ϕ ∈ Rr

is the regressor vector, and e(t) stands for the
modeling error. The regressors must be functions
of the measured data (e.g. filtered inputs). From
(11) it is clear that grouping all possible γ(·) in
θ, the regressor vector is composed of products
of the type

∏
i ψri(t). Notice that the number

of regressors for (11) can be quite large, namely
r =

(
n+q

q

)
, so estimating θ as the least squares so-



lution may be numerically difficult. Furthermore,
it would contradict the reduced complexity goal.

The identification scheme considers

y = Φθ + e = Wϑ+ e (15)

where the data is given asN time domain samples:

y =
[
y(1), y(2), . . . , y(N)

]T
, (16)

and the t-th row of the N × r matrix Φ corre-
sponds to the regressorϕT (t). Assume Φ has been
orthogonally decomposed, i.e.

Φ = WA, ϑ = Aθ (17)

where A ∈ Rr×r is an upper triangular ma-
trix with ones in the main diagonal and W =
[w1, . . . ,wr] is a matrix with orthogonal columns.

The main aspect about orthogonal least squares
techniques is that each orthogonal regressor wi

contributes independently to minimizing the quad-
ratic cost function of the output error and ϑ̂i =
ϑ̂i(wi,y). Assume w1 is the most significant re-
gressor in this sense and wr is the least sig-
nificant one. To obtain a good balance between
model complexity —measured by the number of
regressors— and good prediction capabilities (a
small error), consider only the first, say ρ, orthog-
onal regressors. In essence most structure selection
algorithms iteratively reorder the columns of the
matrix Φ so that the reduced model is given by

y ≈ W̃ ϑ̃ and ϑ̃ = Ãθ̃, (18)

where W̃ comprises the first ρ columns of W and
Ã comprises the upper left ρ×ρ sub-matrix of A.

Most orthogonal least squares algorithms select in
a forward manner the most significant regressors
while following an orthogonalization procedure,
e.g. Gram-Schmidt (Chen et al., 1989). A recent
paper (Chen et al., 2003) proposes to combine
the modified Gram-Schmidt procedure with local
regularization, together with a D-optimality de-
sign in order to obtain a sparse model. The lo-
cal regularization aims at minimizing over-fitting
the model with spurious regressors, while the D-
optimality criterion aims at maximizing the infor-
mation content of the selected regressors, much
as it is done with Akaike’s (1974) well known
information criterion (AIC).

4. ITERATIVE PROCEDURE FOR MODEL
COMPLEXITY REDUCTION

The rationale behind the proposed procedure is
the following: GOBF poles are selected based on
measuring the FRF of the error system, the iden-
tification input is then optimally selected to inval-
idate the current model, and finally an orthogonal
least squares procedure is used to select a reduced
number of regressors.

The proposed methodology starts with κ = 1
and the candidate nonlinear model M(0) = 0
(iterations are denoted by parenthesized indices).

Step 1. Measure the frequency response function
GE(jωk) of the error between simulation S and
current model M(κ−1) and fit a linear model
ĜE(z) to it using a subspace algorithm.

Step 2. For each pole of ĜE(z) build a set of can-
didate filters B(κ−1)

i (z) by adding a generalized
basis function to the current filter B(κ−1)(z) of
already selected GOBFs (see (12)).

Step 3. Design an optimized control relevant in-
put u(κ)(t) to invalidate the current model
M(κ−1) with respect to S. Build the signals
y(κ−1)(t) and ψ(κ−1)

i (t) as the outputs of S and
each B(κ−1)

i (z) to this input.
Step 4. For each i construct the columns of the

regressor matrix Φ(κ), considering a certain
nonlinear order n in (11). Then perform a
structure selection and parameter estimation
using orthogonal least squares techniques to end
up with a set of candidate models M(κ)

i .
Step 5. Cross-validate each candidate model and

select the “best” one as M(κ); also update
B(κ). If the model is adequate enough, then
stop. Otherwise return to Step 1 (add another
GOBF) or Step 4 (increase nonlinear degree).

Regarding Step 1, the error is defined as

e(κ)(t) = E(κ)[ū(κ)(t)] (19)

= S[ū(κ)(t)] −M(κ−1)[ū(κ)(t)]

Since M(κ−1) is a Volterra model and S is as-
sumed to have a Volterra representation, then
so does E(κ) and (13) is valid for random mul-
tisines. It is recommended to design ū(κ)(t) as a
random multisine with odd frequency components
in order to minimize the effect of even nonlin-
earities (Schoukens et al., 1998). Furthermore, to
minimize the effect of “nonlinear noise” several
realizations of ū(κ)(t) should be considered and
the FRF averaged over these measurements.

With respect to Step 2, minimal state space
realizations for a set of basis functions are easy
to derive (Gómez, 1998). Furthermore, adding a
candidate basis function B

(κ−1)
i (z) to B(κ−1)(z)

in order to build B(κ−1)
i is straightforward. How-

ever, care should be taken when pairs of complex
conjugate poles are considered to avoid complex
parameters (Ninness and Gustafsson, 1997).

Step 3 comprises one of the main features of this
procedure. The previous model M(κ−1) is the best
possible model for a GOBF-Volterra structure of
some nonlinear order and some basis functions
B(κ−1)(z). From (11) it can be seen that adding
a basis function B

(κ)
i (z) simply adds more terms

to the structure of M(κ−1), which by themselves



may compose a model for E(κ). By designing
an input that somehow maximizes the output
of such an error system, the current nonlinear
model M(κ−1) is being invalidated. To carry on
this input design, multisines are again considered,
given their reported success for nonlinear Volterra
system identification (Evans et al., 1996).

Having chosen a frequency grid with N lines,
the input signal u(κ)(t) is parametrized by its
(complex) input spectrum U(k). The optimization
problem to solve is

U∗(k) = arg sup
U(k)∈U

∥∥∥(S −M(κ−1)
)

[u(t)]
∥∥∥2

(20)

whereby U refers to the set where the input
spectrum is to be constrained, e.g. by fixing a
maximal RMS value of the signal, and ‖ · ‖ is
some norm. To solve this constrained optimization
problem only a finite number of elements in the set
U is considered and the sup-operator is replaced
by a max-operator. The solution may be need
to be found by exhaustive search or using global
optimization strategies (Nelles, 2001).

Several candidate models M(κ)
i with ρ

(κ)
i param-

eters/regressors are obtained in Step 4 using the
same input/output data. In Step 5 a validation is
performed to select the model that has better pre-
diction capabilities. Each model is excited with L
realizations u(κ)

� (t) of a random multisine with the
fixed amplitude spectrum of U∗(k). The following
performance index is then calculated:

J(M(κ)
i ) = g(ρ(κ)

i )+

+
1
L

L∑
�=1

N∑
t=1

∥∥∥S[u(κ)
� (t)] −M(κ)

i [u(κ)
� (t)]

∥∥∥2

(21)

where g : N → R+ is a monotonically increas-
ing function that penalizes a large number of
parameters ρ(κ)

i . The “best” model is chosen as
M(κ) = M(κ)

i∗ with i∗ = arg mini J(M(κ)
i ).

5. EXAMPLE

The procedure is illustrated on the model of a con-
tinuous copolymerization reactor with exothermic
kinetics. The model has 15 states, 6 inputs, and
7 outputs (Bindlish, 1999). The inputs are the
feed rates of the inhibitor (m-dinitrobenzene),
the transfer agent (acetaldehyde), and the two
monomers (vinyl acetate and methyl methacry-
late), plus the coolant and feed temperatures.
The outputs are the effluent compositions of the
two monomers and the solvent (benzene) in the
separator, the copolymer composition, its intrinsic
viscosity, the reactor temperature, and the poly-
mer production rate.

Although the proposed procedure is extensible to
MIMO systems, for simplicity it was applied in
this example to an equivalent SISO system. The
system was set to certain operating conditions and
only one input was made time-varying, while only
one output was measured. The main nonlinearity
of the system is due to the temperature depen-
dent kinetics of Arrhenius type, so to make the
problem more interesting, the coolant tempera-
ture was chosen as input. The output chosen was
the copolymer production rate.

The sampling time was set to Ts = 2.5 min.
For Step 1 the input used was an odd random
multisine with maximum frequency fmax = 255f0
and base frequency f0 ≈ 3.9 × 10−4min−1. Input
deviations of ±15K were considered. Two periods
were measured, but only the last one was consid-
ered for identification to account for transients.

The procedure was tested several times and con-
sistently only two iterations were sufficient to ob-
tain a satisfactory reduced complexity model. The
GOBFs resulted with the following ordered poles:

{0.8546± j0.1934, 0.8955± j0.2451}, (22)

which leads to a fourth order system. Before the
nonlinear identification procedure was carried out,
the gain of the GOBF filters was adjusted so that
ψi(t), i = 1, . . . , 4, was normalized for the optimal
input generated in Step 3. The reduced resulting
structure for the system has only five terms:

y(t) = θ1ψ1(t) + θ2ψ2(t) + θ3ψ3(t)+
+ θ4ψ1(t)ψ2(t) + θ5ψ1(t)ψ4(t) (23)

with parameter vector

θ =
[
0.148, 0.0149, 0.0513,−0.0801,−0.0627

]T
.

(24)

After the identification, the resulting model was
tested on a completely different validation input,
namely a random step input (Pearson, 1998). The
output of both the complex simulation model and
the model (23) is shown in Fig. 1, whereas the
error between both signals is shown in Fig. 2.
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Fig. 1. Output of complex simulation model
(solid) and reduced complexity model
(dashed) to a random step input.
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Fig. 2. Error between complex and reduced com-
plexity models.

6. CONCLUSIONS

A procedure for complexity reduction combin-
ing frequency domain linear identification, con-
strained input optimization techniques, and sub-
structure selection and parameter estimation meth-
ods has been proposed. Testing the procedure on
a realistic example shows promising results and
further investigations are under way to refine it.
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