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Abstract: This work focuses on developing nonlinear multirate model algorithmic 
controllers for nonlinear processes using a closed-loop observer. Conditions for the 
observer function and a gain corrector function, which is necessary to ensure that the 
resulting control structure has integral action, are given. The control action is  calculated 
using the corrected states. The resulting structure is a two-degree-of-freedom multirate 
controller. The performance of the proposed method is evaluated through simulation of a 
chemical process. 
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1. INTRODUCTION 

Many industrial processes have measurements that 
are available at different rates. Temperatures, 
pressure, and flow rates can typically be measured 
with a short sampling interval. Compositions and 
product properties usually cannot be made available 
as rapidly. In the continued drive to operate chemical 
processes more efficiently and effectively, increasing 
demands are put on automated process control 
algorithms to make the best use of measurements 
made at different rates, as well as compensate for the 
inherent nonlinearities the systems possess. Both 
linear and nonlinear Model Predictive Control 
approaches have been proposed for multirate 
systems (Lee, et al, 1992, Ohshima, et al, 1994, 
Bequette, 1991). More recently, an approach based on 
Model Algorithmic Control (MAC) methods (Richalet, 
et al, 1978, Mehra and Rouhani, 1980, Soroush and 
Kravaris, 1996) was proposed for nonlinear multirate 
processes (Niemiec and Kravaris, 2002). Like the 

general MAC formulations, this work used an open-
loop observer for estimates of the process states.  

Methods developed recently for nonlinear single rate 
processes have made use of a closed-loop observer in 
a model-state feedback structure (Wright and 
Kravaris, 2000, Wright and Kravaris 2001). This 
extends the class of systems to which the method is 
applicable as well as providing an improved set of 
state estimates. The goal of the present work is to 
derive a nonlinear multirate Model Algorithmic 
Control structure along the lines of Niemiec and 
Kravaris (2002), but using the closed-loop observer as 
in Wright and Kravaris (2001). The resulting control 
algorithm is a two-degree-of-freedom control law, in 
the sense that the control action is not a function of 
the error only, but the output and set point are 
processed in different ways. Once developed, the 
proposed method will be applied to a chemical reactor 
system and its performance will be evaluated by 
simulation. 



  

2. SYSTEM DESCRIPTION AND ASSUMPTIONS 

Consider the nonlinear discrete-time MIMO system 
represented by: 

 ))k(,)k(()1k( uxx Φ=+  (1) 
 ( ) (k)h = (k) xy  

where Φ :ℜnxℜm→ℜn, h: ℜ n→ℜm are smooth 
functions, x ∈ ℜn is the system state, u ∈ ℜm are the 
system inputs, and y ∈ ℜ m are the system outputs. It 
is assumed that the system has locally well-defined 
steady-state characteristics, and the relative orders of 
the m controlled outputs, r1, …, rm, are all finite. 

With each time k∆t, where k is an integer and ∆t is the 
time step of the model, the manipulated inputs are 
actuated. Of the m outputs, q are considered fast, 

qI
f ℜ∈y , meaning that they are sampled at every 

time instant. The remaining p = m – q outputs are 
considered slow, pI

s ℜ∈y , meaning they are sampled 
regularly but at a rate slower than every time instant. 
For each time that is a multiple of Ni∆t, where Ni is an 
integer constant, the output measurement i

I
sy  is 

received. Ni is defined as the ratio of the ith output 
sampling period to the input actuation period: 

 
actuationinput  of period

iinput   theof period sampling
N i =  (2) 

In addition, there may be l  secondary outputs, 
lℜ∈II

fy , (where 0≥l )  which are sampled at every 
time instant. There are no slow secondary outputs. 

3. NONLINEAR MULTIRATE MODEL-
ALGORITHMIC CONTROL 

A main point of departure for the current work is the 
nonlinear multirate model-algorithmic controller 
(MAC) of Niemiec and Kravaris (2002). The complete 
structure of the controller developed in that work is 
shown in Figure 1. 

In this structure, the vector of model states xM is  
obtained by simulating the process model (1) online: 

 ))k(,)k(()1k( MM uxx Φ=+  (3) 

From the process model, future changes of the 
outputs can be predicted. The predicted changes of 
the output can be added to the latest available output 
measurement to obtain predictions of each output. 
For each of the outputs, a reference trajectory can be 
defined according to: 

 ( ) )1rk(ŷy1)rk(ŷ iiiispiii −+α+α−=+  (4) 

where sp denotes the output set point and  is a 
tunable scalar parameter such that 0≤αi<1. Matching 
the output predictions with the reference trajectories  
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Figure 1: Structure of Nonlinear Multirate 
MAC 

gives a set of nonlinear algebraic equations that must 
be solved numerically online for the input vector: 
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where [k/Ni] denotes the integer part of k/N i. The 
output measurement yi is taken only at the time 
instants [k/Ni]Ni, but the manipulated inputs are 
actuated at every k. This equation utilizes the best 
available information, which is the most recent 
measurement at [k/N i]Ni, to predict the future values 
of the slowly sampled output yi. Using this structure, 
a controller can be derived that not only includes the 
necessary information for good control of outputs 
sampled at the lowest rates but also exhibits good 
disturbance rejection for outputs sampled at faster 
rates. For measurements available at a sampling 
period equal to the input actuation period (Ni=1), 
[k/Ni]Ni will reduce to k in the notation. 

The corresponding implicit algebraic function defined 
as  the solution to (5) is given by 

 [ ])k(),k()k( M wxu Ψ=  (6) 

where Ψ[*,*] is the same function as that in the 
single-rate MAC controller and 
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With the model states obtained by simulating (3) 
online, the resulting nonlinear multirate model-
algorithmic controller can be expressed as: 

 [ ]( ))k(,)k(,)k()1k( MMM wxxx ΨΦ=+  

 [ ])k(,)k()k(u M wxΨ=  (8) 

Note that the calculation of wi(k) involves a hold 
operation on both yi(k) and h[xM(k)]: 
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where H is a hold operator. 

Closed-loop properties of the complete structure 
shown in Figure 1 are proven in Niemiec and Kravaris 
(2002). 

4. MODEL-STATE FEEDBACK WITH CLOSED-
LOOP OBSERVER 

In Wright and Kravaris (2001), a model-state feedback 
control structure  is developed for nonlinear discrete-
time SISO systems using a closed-loop observer. 
Closed-loop observers, in general, do not preserve 
the steady-state gain between the manipulated inputs 
and process states. Incorporating only a closed-loop 
observer into a model-state feedback structure would 
result in a controller that did not possess integral 
action. By analogy with linear static state feedback 
controllers, a gain correction function is designed 
that restores the steady-state gain and the corrected 
states are used in the calculation of the manipulated 
input. The complete control structure is shown in 
Figure 2. 

In this structure, the reference input v is calculated by 

 ))k(x(h)k(y)k(y)k(v csp +−=  (10) 

The manipulated inputs are calculated by a static 
state feedback of the form: 

 ))k(v),k(x()k(u cΨ=  (11) 

where Ψ:ℜnxℜ→ℜn, is a smooth scalar function, with 
the property: 

 v)x(h))v,x(,x(x =⇒ΨΦ=  (12) 

which insures unity steady-state gain between v and 
y. 

In determining the closed-loop observer and gain 
correction functions, it is first necessary to define 
what will be considered an observer for a nonlinear 
process (where ))k(x̂(h)k(y)k( −=ρ ): 

Definition: (Lin and Byrnes, 1995) A dynamic 
system of the form 

 ))k(),k(u),k(x̂()1k(x̂ ρΠ=+  (13) 

is called an observer for (1) if the function 
Π(x,u,ρ): ℜnxℜxℜ→ℜ n has the property that 
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Figure 2: Model-state feedback structure 
with closed-loop observer 

Specifications do not determine the functions Π(x,u,ρ) 
and ω(x,ρ) uniquely. The Π and ω functions must 
satisfy the following properties:  

(P1) Π(x,u,0) = Φ (x,u) 
(P2) Π(x,u,ρ) = 0 ⇒ Φ (ω(x,ρ),u)=0 

(P3) the eigenvalues of 
x
h

x ∂
∂

ρ∂
Π∂

−
∂
Φ∂

 

evaluated at reference conditions must 
assume desirable values. 

A convenient functionality for the observer can be 
postulated which is affine in the residual with 
constant coefficients: 

 Π(x,u,ρ) = Φ (x,u) + Lρ (14) 

This automatically satisfies property (P1). It is 
straightforward to show that the adjustable 
parameters L can be easily selected to satisfy (P3). 
The challenge is to find the ω-function to satisfy 
property (P2), which, for the above choice of the 
observer, becomes 

 Φ (x,u) + Lρ = 0 ⇒ Φ (ω(x,ρ),u)=0 

This can always be solved, but only numerically. 

Alternatively, one could start by specifying the form 
of the correction function and then determine the 
observer function Π to satisfy properties (P1) and 
(P2). The simplest choice is the linear function: 

 ω(x,ρ) = x - Mρ (15) 

where M is a constant vector of adjustable 
parameters. Then, the choice 

 Π(x,u,ρ) = Φ (x-Mρ,u) + M ρ (16) 

will make properties (P1) and (P2) be satisfied. Finally, 
the requirement in (P3) translates into 
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having desirable eigenvalues. 



  

5. TWO-DEGREE-OF-FREEDOM NONLINEAR 
MULTIRATE CONTROLLERS 

A nonlinear multirate controller using a closed-loop 
observer will now be developed using results from 
the two previous sections. Since the observer and 
state corrector of the previous section were for a 
SISO system, the first task is to generalize the results 
for multiple measurements. Consider the p + l  fast 
measurements in (1) given by: 
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A single-rate observer and state corrector with 
multiple measurements can be developed driven by y. 
The observer and corrector functions must satisfy the 
following properties (where ))k(ˆ(h)k()k( xy? −= ): 

 (P1) Π(x,u,0) = Φ (x,u)  
(P2) x = Π(x,u,ρ ) ⇒  ω(x,ρ ) = Φ (ω(x,ρ ),u)  
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evaluated at reference conditions must 
assume desirable values.  

Using the second alternative from the previous 
section, a simple choice is to start by specifying a 
correction function of the form: 

 ω(x,ρ ) = x - Mρ  (18) 

where M is a constant matrix of adjustable parameters. 
Then, the choice 

 Π(x,u,ρ ) = Φ (x-Mρ ,u) + Mρ  (19) 

will make properties (P1) and (P2) be satisfied. Finally, 
the requirement in (P3) translates into 
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having desirable eigenvalues. 

The resulting corrected state estimates are then used 
in the model-algorithmic multirate controller in place 
of the model values. Following the same 
development, future changes of the output can be 
predicted by: 
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where yic is the ith controlled output, i.e. 
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and is calculated on the basis of the corrected state 
estimates. The predicted changes of the output can 
be added to the latest available output measurement 
to obtain the following predictions of the output yi: 
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The output measurement yi is taken only at the time 
instants [k/Ni]Ni, but the manipulated inputs are 
actuated at every k. For each of the outputs, a 
reference trajectory can be defined according to (4). 



  

Matching the predictions with the reference 
trajectories gives a set of nonlinear algebraic 
equations that must be solved numerically online for 
the input vector:  
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The corresponding implicit algebraic function defined 
at the solution to the previous set of equations is 
given by 

 [ ])k(),k(ˆ)k( c wxu Ψ=  (24) 

where Ψ[*,*] is the same function as that in the 
single-rate MAC controller and 
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The structure of the complete closed-loop system is 
shown in Figure 3. 

6. A SIMULATION EXAMPLE 

The nonlinear control methodology will now be 
applied to a chemical process. The system consists of 
a CSTR, where the exothermic reaction A +B→C takes 
place. The reactants flow into the CSTR in separate 
streams. The jacket inlet temperature and the flow rate 
of B can be manipulated to control the outlet 
temperature and the outlet concentration of B. The 
reactor outlet temperature is measured at every time 
instant, but the measurement of the outlet 
concentration of B is measured only every N time 
steps. A model for this process is as follows:  
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Figure 3: Structure of Nonlinear Multirate 
MAC with closed-loop observer 
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where the symbols used are common in chemical 
reactor engineering. The initial steady-state values of 
the outputs are T  = 350 K and CB = 0.781 kmol/m3. The 
corresponding steady-state values of the inputs are 
Tji = 358.4 K and FB = 0.00013 m3/s. The value used for 
each of the parameters is given in Table 1. 

The observer and corrector were derived from the 
model equations (26) using (18) and (19). The 
observer was tuned using (20) and standard pole 
placement routines to calculate values for the M 
vector. The characteristic matrix of (26) is singular. 
The system was extended by adding a state equation, 

)k()1k(FB ζ=+ , and using )k(ζ as the manipulated 
input. The relative orders in the extended system are 
equal to 2 for both outputs, the characteristic matrix is 
nonsingular, and the inputs  can be calculated from 
(23).  

The response of the closed-loop system to 
simultaneous errors in three initial conditions of the 
observer states are shown in Figures 4 through 6. 
These figures show the tracking of the observer and 
the rejection of the initial condition errors. 

Table 1: Parameter values for the example process 

V = 1 m3 -∆H = 60000 kJ/kmol 
FA = 0.000325 m3/s  R = 8.345 kJ/(kmol K) 
TA0 = 300 K E = 82800 kJ/kmol 
CA0 = 5 kmol/m3 k0 = 1.2 x 109 m3 kmol-1 s -1 
UA = 1.4 kJ/(s K) ρ = 850 kg/m3 
Cp = 3.5 kJ/(kg K)  CB0 = 9 kmol/m3 

TB0 = 320 K mj = 500 kg  

Cpj = 4.2 kJ/(kg K) ρj = 100 kg/m3 
? t  = 10 seconds N = 20 



  

349.8
350

350.2

350.4
350.6

350.8
351

351.2

0 0.5 1 1.5 2
Time (hr)

T
em

pe
ra

tu
re

Ts p

T

T̂
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in initial condition 
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Figure 7 : Response of C B to a -10%  step in 
CB set point concentration 

The response of the closed-loop system to a -10% 
step decrease in the set point of CB concentration is  
shown in Figure 7. The proposed controller results  in 
a decoupled response, there fore there is no deviation 
from set point in T. This figure has been omitted for 
brevity.  

The slower rate of sampling of CB is evident from 
Figure 7. Simulation results showing the ability of the 
proposed controller to reject unmeasured 
disturbances have also been omitted for brevity. 
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