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Abstract: The choice of perturbation inputs is critical in the identification and model
building exercise. Accurate identification requires that the input be persistently exciting
so as to excite all modes or frequencies of interest. However, there are multiple objectives
that need to be considered. Multi-harmonic signals are a convenient choice for frequency
domain identification. Multi-objective optimization formulations for synthesis of multi-
harmonic signals are presented.
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1. INTRODUCTION

One of the primary goals of system identification is
to ensure that the identified model has good predictive
capabilities and the model parameters are accurately
estimated. It is common practice to perturb the system
with specially tailored inputs and the consequential
input output data are used to build the system model.
The quality of the model depends strongly on the ex-
periment design and identification and hence the input
used for perturbing the system should be carefully
selected.

Researchers have paid considerable attention to sys-
tem identification and input signal design and a num-
ber of excellent reviews in these fields are available
(Godfrey, 1993; Ljung, 1999; Pintelon and Schoukens,
2001). The theory of statistical experiment design has
been applied to system identification to synthesize
maximally informative inputs in the time and fre-
quency domains (Goodwin and Payne, 1977; Kalaba
and Spingarn, 1982; Mehra, 1981).
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Frequency domain synthesis of the optimal input sig-
nal involves determination of the input spectrum that
minimizes a scalar criterion of the uncertainty of the
parameters to be estimated. Multi-frequency binary
signals and multi-harmonic (sum of sines) signals are
commonly used to realize the signal with the desired
power spectrum. There are many advantages to using
multi-sine signals with low crest factors (Guillaume et
al., 1991; Pintelon and Schoukens, 2001; Solomou et
al., 2002).

The concept of plant friendly identification that is rel-
atively less hostile to operating conditions in process
plants has received attention amongst members of the
process control and identification community recently
(Narasimhan et al., 2003; Parker et al., 2001; Rivera
et al., 2003). Different measures of plant friendliness
have been proposed in literature.

There has been some recent application of multi-
objective optimization based methods to identification
and control (El-Kady et al., 2003; Johansen, 1996;
Johansen, 2000). However, a multi-objective approach
to input design has been proposed only recently by the
present authors. Illustrative formulations for optimal



design of input signals that characterize the multi-
objective nature of the design problem are presented
in this contribution.

2. OBJECTIVES

2.1 Preliminaries

Consider a Linear Time Invariant system described by
the Impulse Response Model of the following form

y(t) =
∫ Ts

0
u(t − τ)h(τ)dτ +n(t) (1)

where y(t), u(t), n(t) are the output, input and noise
respectively and h(τ) is the impulse response of the
system. The frequency response function H( jω) can
be estimated as Y ( jω)/U( jω) where Y ( jω) and
U( jω) are the Fourier transforms of the output and
input respectively. One of the primary objectives of
a good system identification exercise is to accurately
estimate the unknown parameters by reducing the bias
and the variance of the parameter estimates. For input
design purposes, it is convenient to assume that the
estimator is efficient and unbiased. This implies that
that the covariance of the parameter estimates can
be calculated from the Cramer-Rao bound, viz., the
inverse of the Fisher information matrix M. Optimal
input signal design in the frequency domain thus in-
volves determination of the optimal input spectrum
that minimizes a scalar norm of M−1, like tr(M−1)
or detM−1 or λmax(M−1) where λ is an eigenvalue of
M−1.

Calculation of the optimal input spectrum requires
a priori knowledge of the the noise characteristics
and transfer function of the system which is supplied
through an initial estimate. An analytical expression
for the optimal spectrum can be calculated only for
some problems. Iterative algorithms for optimization
of the input power spectrum have been proposed
(Pintelon and Schoukens, 2001). In general, it is diffi-
cult to realize a signal with an arbitrary spectrum and
so, it is convenient to restrict the frequency space to
a finite, discrete, harmonically related set of frequen-
cies. A multi-harmonic having Nu distinct harmonics
{ωu} (Ref equation 2) can then be generated that has
the desired amplitude spectrum.

u(t) =
Nu

∑
u=1

au cos(ωut +αu) (2)

where ωu = 2πku/T and ku are monotonically increas-
ing harmonic numbers (ku ∈ N, u = 1,2, . . .Nu) and
{au} is the specified amplitude spectrum. The advan-
tage of using a multi-sine or multi-harmonic signal is
that it is periodic and easy to generate for any given ar-
bitrary spectrum. The steady state output of the system
when subjected to the above input is

y(t) =
Nu

∑
u=1

au|G( jωu)|cos(ωut +αu +φu) (3)

where, |G( jωu)| and φu = arg(G( jωu)) are the ampli-
tude ratio and phase shift of the system respectively,
evaluated at the frequency ωu = 2πku/T .

For a linear q input, p output system, the ith output yi,
i = 1,2, . . . p is given by

yi(t)=
q

∑
l=1

Nu

∑
u=1

alu|Gli( jωlu)|cos(ωlut +αlu +φli( jωlu))

(4)
where |Gli( jωlu)| and φli( jωlu) are the gain and phase
shift introduced between input l and output i at fre-
quency 2πklu/T . It can be seen that if the inputs are
chosen so that the spectral lines klu do not coincide for
any pair of inputs l = 1,2, . . .q,

|Yi( jωlu)| = |Gli( jωlu)|alu (5)

Thus, ensuring that the spectral lines of the inputs do
not overlap allows the MIMO system to be broken into
pq SISO systems.

2.2 Crest factor minimization

Signals with a specified spectral distribution {au} may
be realized in different ways in the time domain. For
instance in a multi-sine, the spectral characteristics
are described by {au} alone and the phases do not
affect the spectral characteristics. However, the choice
of phases can affect the time domain behaviour of
the signal. It is possible that an inappropriate choice
of phases results in a signal with large magnitude
peaks. A more compact or compressed signal would
have a small signal amplitude between the peaks. The
time domain compression or compactness of a multi-
sine signal x(t) with a specified amplitude spectrum is
described by the crest factor, (C f ), or the peak factor
(P f ) (Godfrey, 1993).

P f =
xmax − xmin

2
√

2xrms
(6)

C f =
max |x|

xrms
(7)

where xmin,xmax,xrms denote the minimum, maximum
and rms values of the signal respectively. The ad-
vantage of synthesizing a minimum crest factor input
signal is that large peaks are avoided. Further, it has
been shown that the number of averages required to
measure a signal with a specified accuracy is propor-
tional to the crest factor (Godfrey, 1993). In addition, it
has been reported that reducing the crest factor has the
added advantage of reducing the effect of distortions
due to certain nonlinearities (Solomou et al., 2002).
For a specified amplitude spectrum {au}, it is pos-
sible to synthesize an input signal with a low crest
factor by a suitable choice of phases αu. Different
algorithms for crest factor minimization have been
reported, the most efficient and common being the L∞
algorithm based on a generalization of Polya’s algo-
rithm (Guillaume et al., 1991). The crest factor is thus



the ratio of the L∞ norm and the L2 norm where the
general Lp norm of the function x(t) over the interval
[0,T ] is defined as

Lp(x) =

[

1
T

∫ T

0
|x(t)|pdt

](1/p)

(8)

and the L∞ norm is max |x(t)|. The crest factor of the
output y(t) can be defined in a similar manner. The
output y(t) is a multi-harmonic signal represented by
Equation 3 for ease of calculation since the steady
state output is a phase and amplitude modulated ver-
sion of the multi-harmonic input signal. Thus the L∞
algorithm can be applied to minimize the crest factor
of the output if the system transfer function or an
estimate is available.

2.3 Plant friendly identification

Multi-variable model based control strategies are
commonly used in chemical process industries. Plant
friendly identification has received the attention of
researchers in recent times (Narasimhan et al., 2003;
Parker et al., 2001; Rivera et al., 2003). Identifica-
tion experiments in process industries are carried out
on running plants. While a persistently rich excita-
tion with high signal to noise ratio is theoretically
preferred, operational, safety, environmental and eco-
nomic considerations have to be taken into account
during identification.

• An input requiring aggressive and frequent move-
ment of valves and actuators is not desirable as
this can lead to equipment wear and tear.

• Identification experimentation time has to be
kept to a minimum so as to minimize off-spec
products and consumption of utilities. Tests us-
ing the popular Pseudo-Random Binary Signals
(PRBS) usually require days to conduct (Smith,
2003).

• Output deviations should be reduced to ensure
that the product quality differs as little as possi-
ble from the set point

The input spectrum is chosen either by optimization
with respect to the criteria discussed above or based
on the user’s experience. Given an input spectrum,
a convenient measure of plant friendliness (both the
input and output) is the crest factor defined above. It
must be noted that a minimum crest factor input signal
does not necessarily imply a minimum crest factor
output signal. Thus, from a practical consideration, it
is necessary to use an input signal that has a low Input
Crest factor and results in an Output with low crest
factor.

2.4 Distortion due to nonlinearities

The linear convolution integral can be generalized
to describe a general, causal, time invariant stable
nonlinear system in the following manner

y(t) =
∞

∑
i=1

∫

hi(τ1, . . . ,τi)
i

∏
j=1

u(t − τ j)dτ j (9)

where hn(τ1, . . . ,τn) is the n dimensional nth order
Volterra kernel and can be viewed as an n dimensional
impulse response.

The corresponding frequency domain representation
of an nth order system is

Y (s1,s2, . . . ,sn) =
n

∑
i=1

Hi(s1, . . . ,si)
i

∏
j=1

U(s j) (10)

where Hn(s1, . . . ,sn) is the corresponding n dimen-
sional Laplace transform of hn(τ1,τ2, . . . ,τn). When
such a system is subjected to a multi-sine as described
in equation 2, the output will contain frequencies other
than the test or input frequencies. The frequency con-
tributions due to the nonlinearities can be classified as
Type I (arising from pairs of equal positive and nega-
tive frequencies) and Type II (which are not accounted
by Type I) contributions. It is possible to suppress even
order nonlinearities by considering only odd harmon-
ics, as the nonlinear contributions of the even order ef-
fects will fall at even harmonics (Solomou et al., 2002)
and hence will be distinct from the linear and higher
odd order contributions. Hence, for illustrative pur-
poses, a simple cubic static nonlinearity with unit gain
is considered. The nonlinear contribution of the output
corresponding to a multi-sine input can be expressed
in the frequency domain as

Ynl( jω) =
Nu

∑
m=−Nu

m6=0

Nu

∑
n=−Nu

n6=0

Nu

∑
o=−Nu

o6=0

amanao exp( j(αm +αn +αo))

×δ (ω − (km + kn + ko)2π/T ) (11)

The extent of distortion due to nonlinearity at the test
frequencies can be quantified by

E =
1

Nu

Nu

∑
u=1

|Ynl( j
2πku

T
)| (12)

If the primary aim of the identification experiment is
to identify the linear kernels accurately, it is possible
to reduce the contribution of the nonlinearities by a
suitable choice of phases.

Thus, from an optimization point of view, one could
require that the phases of the input multi-sine signal be
chosen so that the input crest factor is minimized and
the nonlinear contributions at the test frequencies are
also minimized. Again, it must be noted that minimum
crest factor signals do not necessarily minimize the
nonlinear contributions.

In the previous sections, two design scenarios for
input signal design, each with multiple objectives
were described. Since, both objectives need not be
attainted simultaneously, the problem is inherently
multi-objective in nature and should be treated as
such. In the succeeding sections, some common tech-



niques for solution of a multi-objective optimization
problem are described.

3. MULTI-OBJECTIVE OPTIMIZATION

In traditional single objective optimization problems,
the aim is to find a globally optimal solution, if
it exists. Unlike single objective optimization prob-
lems, in optimization with possibly conflicting ob-
jectives, there is no unique optimal solution. System
and real world design usually involves tradeoffs be-
tween different objectives and more than one decision
maker. A fair amount of subjectivity and user influ-
enced decision making are characteristics of multi-
objective problems. There are several possible ap-
proaches for solving a multi-objective optimization
problem (Miettinen, 1998).

Single weighted cost function: One simple and com-
mon approach to multi-objective optimization is to
formulate a single weighted objective function from
the individual costs Ji.

J = α1J1 + . . .+αnJn (13)

such that the weights αi ≥ 0. The resulting problem
can be solved by standard methods of optimization.

Goal programming: In goal programming, a goal or
aspiration value, γi is associated with each objective
function and the weighted deviation from the target is
minimized. These goals are not constraints, but only
aspiration levels that may or may not be satisfied.
Given an objective function Ji and goal γi, the devi-
ation variable δi can be written as the difference of
δ−

i (negative deviation or underachievement) and δ +
i

(positive deviation or overachievement) . It is neces-
sary only to minimize the weighted sum of positive de-
viation variables δ +

i for minimization problems where
δ+

i are the individual weights.

Minimize{∑w+
i δ+

i } s.t















Ji +δ−
i −δ+

i = γi ∀i
L j ≤ 0 ∀ j
Ek = 0 ∀k
δ+

i , δ−
i ≥ 0 ∀i

(14)
where Ek and L j are equality and inequality con-
straints respectively.

Pareto solutions: The above techniques essentially
convert a multi-objective optimization problem into a
single objective problem. Unlike single objective opti-
mization, in optimization with conflicting objectives,
there is no single optimal solution. The interaction
among different objectives gives rise to a set of solu-
tions, called the Pareto optimal solutions (Ref Fig. 1).
Solutions A, D, B form a Pareto optimal front and no
one solution in this set can be said to be better than an-
other in pure quantitative terms. However, solution C
is dominated by solution D as solution D is better than
C in both objectives. A set is called a global Pareto-
optimal set, if no solution in the search space dom-
inates any member in it. The optimization algorithm

should attain two goals :- search for the global Pareto-
optimal front, and maintain population diversity in the
optimal front so that no bias towards any particular ob-
jective function exists. The final solution that is chosen
for implementation is based on some other criteria.
Evolutionary algorithms have been particularly use-
ful in solving multi-objective optimization problems
(Deb, 1999).

Fig. 1. Pareto optimal sets

Thus, in input signal design, there are multiple ob-
jectives, some of which cannot be satisfied simulta-
neously. In the subsequent section, two Pareto so-
lutions corresponding to different cost functions are
presented.

4. GENERATION OF PARETO FRONTS

4.1 Input-output crest factor minimization

Consider a 15 harmonic multisine described by equa-
tion 2 with a flat amplitude spectrum au = 1, u =
1,2, . . . ,15 and ku = 1,2, . . . ,15, with a fundamental
harmonic equal to 0.0625 rad/sec. It is required to
minimize the crest factors of the input and output
where the system transfer function is

H(s) =
s

s3 +2s2 +2s+1
(15)

The phases of the respective harmonics are chosen so
as to minimize the input and output crest factors. As
mentioned previously, use of a minimum input crest
factor signal does not necessarily result in a minimum
output crest factor. The L∞ algorithm can be applied
to compress the input and outputs simultaneously by
defining a common norm of the input u(t) and output
y(t) (Guillaume et al., 1991). By suitably weighting
the inputs and outputs, signals with different (not nec-
essarily minimum) crest factors can be synthesized.
However, the above method is not guaranteed to gen-
erate the complete Pareto front, since the solutions
obtained by solving the weighted problem are weakly
Pareto optimal. Another disadvantage is that it is nec-
essary to solve a single valued objective optimization
problem several times by varying the weights.

Since Genetic Algorithms (GA) work with a popula-
tion of points, it is natural to use GAs for obtaining the
set of non-dominated solutions simultaneously. GAs



Table 1. GA Parameters

Parameter Crest factor Nonlinear error
Mutation probability 0.05 0.07
Crossover probability 0.9 0.9

Population size 500 500
Number of generations 350 500

Crossover Distritution index 50 60
Mutation distribution index 50 60

do not use gradient based techniques and so, the non-
differentiable nature of the L∞ norm does not pose
any analytical problems. For a specified amplitude
spectrum and given system transfer function, the L2
norm is invariant with respect to the phases, and so
minimization of the crest factor is equivalent to mini-
mizing the respective L∞ norms. The L∞ norm of the
function f (t), t ∈ [a,b] is approximated by determin-
ing the maximum of | f (t)| over a discrete number of
points in the interval [a,b]. The real coded variable
version of the Nondominated Sorting Genetic Algo-
rithm (NSGA-II) (Deb et al., 2002) is used to generate
the Pareto front of input and output crest factors. The
Pareto front for the input and output crest factors at
the end of 350 generations is shown in Fig. 2 (A).
Parameters used for the solution are tabulated in Table
1. In order to verify that the solution is close to the
true Pareto optimal solution, the following metric is
defined

d =
Np

∑
i=1

( f 2
1i + f 2

2i) (16)

where [ f1i, f2i]
t is the ith non-dominated objective vec-

tor and Np is the number of non-dominated solutions
in the current population. In this particular example,
they are the input and output crest factors respectively.
Fig. 3(A) shows the evolution of the distance metric
d evaluated for all the non-dominated solutions in
every generation. It is seen that the metric d does not
increase with subsequent generations, thus confirm-
ing that the solutions are reasonably close to the true
Pareto optimal solution. It must be noted that while the
NSGA -II algorithm aims to preserve diversity among
the population, it is possible that the front obtained is
a subset of the whole front, since the true Pareto front
is not known.

4.2 Reducing the effects of nonlinear distortions

Consider a muti-sine subjected to a simple nonlinear
element

y(t) = u(t)+u(t)3 (17)

Thus, the nonlinear distortion at the test frequencies is
caused solely by the cubic element and can be quan-
tified by equation 12. The objectives are to choose
the phases in a 15 harmonic multi-sine with a flat
amplitude spectrum au = 2, u = 1,2, . . . ,15 and ku =
1,2, . . . ,15 so as to minimize the input crest factor
and the nonlinear distortions. As above, the multi-
objective optimization problem is solved using the

NSGA-II algorithm (Deb et al., 2002) with the param-
eters mentioned in Table 1. The corresponding Pareto
front and the evolution of the metric d is presented in
Fig. 2 (B) and Fig. 3 (B).

Thus, it is clear from the above figures that there ex-
ists a trade-off between the different objectives. It is
possible to sacrifice the input friendliness to achieve
a lower value of the output crest factor. Likewise,
for a relatively small change in the nonlinear error, it
is possible to reduce the input crest factor. Standard
techniques of input signal design do not allow the user
the flexibility to tailor an input signal that satisfies sev-
eral objectives or consider the trade-offs. Solution of
the appropriate multi-objective optimization problem
results in the Pareto set of non-dominated solutions.
The final choice of the input signal is made by the
user. It must be noted that computing the output crest
factor requires knowledge of the system transfer func-
tion. In a practical system identification setting, this is
unknown or only an estimate is available. The effect of
uncertainty of the transfer function on the output crest
factor needs to be investigated. The effect of dynamic
nonlinearities and a multi-optimization formulation to
reduce the distortion of non-linearities also needs to
be investigated.

5. CONCLUSION

Input signal design for system identification typically
requires that multiple objectives be satisfied. Multiple
objectives that arise in the design of multi-harmonic
input signals were discussed and appropriate prob-
lems were formulated. A Genetic Algorithm based
approach was used to solve for the Pareto front of non-
dominated solutions.
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