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Abstract: Simulation of hybrid systems is considerably more complex than pure
continuous-time systems due to blocking states, exceptions due to discrete events,
and Zeno-type behavior. Rather than esoteric, hybrid systems are actually the
norm for industrial process simulation when including the possibility of tanks
running dry, vessels overflowing etc. This paper compares two modelling tools; (one
block-diagram, one causal) for a simple, but typical process engineering problem.
Matlab/Simulink illustrates a traditional block diagram modelling tool, while
MathModelica with its strong emphasis on objects and symbolic manipulation
was used to demonstrate a novel approach to modelling.
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1. INTRODUCTION

Process simulators have long been considered an
essential tool in the chemical processing indus-
try. Commercial simulators are now mature prod-
ucts with detailed libraries of unit operations,
advanced control options, historians, and quality
assurance programs. At their very core, chemical
plants are often best described as interconnections
of tanks and vessels, partially filled with liquids
and it is essential that any simulator can robustly
cope with this.

The typical chemical plant model is large, sparse,
with a small number of important instances of
highly nonlinear relations all with soft and hard
constraints. While the importance of constraints
and the nonlinearities does depend on the crite-
ria of the simulation scenario under investigation,
increasingly it is the unusual operating conditions
such as start up and shut downs, recovery from
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major disturbances that effect the overall eco-
nomics or where the payoff is to be found.

A good example of an industry that has modest
demands for thermodynamics or esoteric unit op-
erations is a paper mill. Here the key intermediate
is dilute pulp which has rheological properties sim-
ilar to water. Perhaps it is due to the low toxicity
or the low relative value of the material, but in our
experience in the pulp and paper industry, vessels
regularly overflowed, or ran dry during operation.
For this reason we are interested in simulation
tools that reliably handle simple flow dynamics
and events such as tanks running dry.

Our motivation to challenge the status quo of
modelling tools is a direct result of the mediocre
impact of a comprehensive pulp and paper simu-
lation project reported in (Wilson and Balderud,
2000; Haag and Wilson, 2001; Balderud and Wil-
son, 2003). At the time, we favoured a block-
diagram cause and effect modelling paradigm and
used the dedicated simulator Simon’s Ideas spe-
cially tailored for the pulp and paper industry,



(McGarry et al., 1997). In hindsight we have
questioned that decision, and some comparisons
and challenges have been raised in (Haag and
Wilson, 2003). For example, Fig. 1 illustrates the
small, but annoying simulation artifact of persis-
tently oscillating levels in a scenario where we
model the level of liquid in two interconnected
tanks at the default tolerances and step sizes using
a commercial process simulator.

(a) Level trends of two connected tanks when valve is opened.

(b) Zoom version of Fig. 1(a) showing a persistent oscillation.

Fig. 1. Simulation results of levels in two intercon-
nected tanks using Ideas.

Consequently we were interested in the poten-
tial of ‘acausal’ modelling, perhaps best realised
in the product Dymola, (Åström et al., 1998).
Causal/acausal tools represent an alternative clas-
sification for modelling tools from the block-
oriented/equation-oriented division traditionally
used by say (Marquardt, 1996). Acausal modelling
tools combine object oriented thinking with a
symbolic manipulator relieving the modeller from
having to decide apriori information flow direc-
tions, i.e. what is an input, and what is an output.
It is argued that this is a more natural way to
build models, particularly for engineering staff
whom may not be experienced modellers.

Our second interest was to explore the similar-
ity between our immediate problem of interest
(simulating levels and flows with possible un-
derflow/overflow) with hybrid systems. Systems
where continuous dynamics interact with discrete
events are termed hybrid. The study of hybrid
systems is an active research area due to the in-
creasing importance of digital control, embedded
systems and the modelling of phenomena that
does not lend itself readily to differential equation
type descriptions.

This has led some to take the approach that if
one is not interested in logic circuits or bang-bang

control policies, and avoids through good operat-
ing practice events such as tanks emptying, then
process simulators that are primarily designed to
solve large, sparse ODE systems are sufficient.

However we believe that rather than being esoteric
or of only specialised interest, hybrid systems
are actually far more prevalent in process control
applications than seems generally appreciated.
Certainly other process modelling texts such as
(Hangos and Cameron, 2001) recognise the both
the challenge and ubiquity of hybrid systems.

The outline of the remainder of the paper is as
follows: section 2 introduces a simple, but repre-
sentative process simulation model. Important hy-
brid considerations are summarised in section 2.1.
Simulation results for a variety of schemes using
standard tools are given in section 3. Finally some
general observations relevant to process simula-
tion are given in sections 4 and 5.

2. LEVEL IN A SPHERICAL TANK

The modelling of liquid level in a spherical vessel
as shown in Fig. 2 is a minor modification of
a classical exercise in process modelling. The
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Fig. 2. Spherical tank/flow system

volume is given by a mass balance

dV

dt
= Fin − Fout, V0 = V (t = 0) (1)

where V0 is the initial liquid volume in the tank,
Fin is the flow rate into the tank, and the outflow,
Fout, follows Torricelli’s theorem

Fout = β
√

h (2)

where β is a constant. The volume of liquid at
height h in a spherical tank is

V =
π

3
h2(3r − h) (3)

and is physically meaningful in the range 0 ≤ h ≤
2r. Eqns 1–3 define the process to be simulated.

There are two implementation issues with this
index-1 DAE system. One is the presence of mul-
tiple roots due to the inversion of Eqn. 3 as shown
in Fig. 3, and the other is how to reliably simulate
events such as the tank emptying.
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Fig. 3. The relationship between level, h, and
volume, V for a spherical tank with radius
r = 1, Eqn. 3.

2.1 Hybrid modelling

From a hybrid perspective, the process model is
not simply Eqns 1–3 as stated above. The hybrid
automaton given in Fig. 4 gives a more complete
description by including the three discrete states,
Q ∈ {partially full, empty, overflowing}, that
characterize the system.

V̇ = Fin − β
√

hV̇ = 0

II

V̇ = 0

R

V ≤ 0

Fin 6= 0

overflow
h ≤ 2r

empty
R

Fig. 4. Hybrid automaton for the tank level system

Under certain scenarios, the simulator rapidly
switches between two discrete operating states, ef-
fectively stalling the simulation. This phenomena
known as Zeno executions, (Zhang et al., 2001), is
unique to hybrid systems and is clearly of practical
importance to simulators. In addition to accuracy
and simulation time concerns, Zeno systems, or
those sufficiently close to Zeno, can lead to a
false sense of security when checking the hybrid
system for criteria such as blocking states. This is
because Zeno behaviour is not a true reflection of
any physical system, rather it is an artifact of the
modelling process.

There are two further challenging characteristics
of the emptying tank simulation that are not
shared by other common benchmark hybrid prob-
lems such as relays or bang/bang control prob-
lems. The first is that the continuous state (vol-
ume) becomes complex if the ODE system is ap-
plied outside the valid operating space. This poses
problems for the numerical integrator routine that
is attempting to accurately establish the emptying
event location by using the standard zero crossing
algorithms. The second problem is that the gra-

dient of dV/dh at V or h = 0 is infinite causing
further difficulties to the numerical root finder.

3. SIMULATION EXPERIENCES

For the purposes of illustration, we have chosen
two general-purpose modelling environments. The
first is Matlab/Simulink which is a widely used
directed block-diagram language clearly show-
ing its classical control engineering heritage.
MathModelica, (Jirstrand, 2000), is an acausal
modelling product and, as the name suggests, is a
hybrid of the computer algebra system Mathemat-
ica and the Modelica language compiler Dymola.

In the simulations that follow we model the emp-
tying of a spherical tank with r = 1, β = 0.09 with
no inflow, Fin = 0.

3.1 Retaining the implicit expression for h

From the modeller’s perspective, the preferred
option is to simply leave h as an implicit function
of V and require that the simulation environment
compute h when required. Both Simulink and
MathModelica support DAE problems.

Fig. 5 illustrates the usage of the Algebraic Con-
straint option in Simulink to solve Eqn. 3. The
advantage of such an approach is that the block
diagram follows directly from the governing dy-
namic equations. The drawback is evident in the
simulation results presented in Fig. 6. As the tank
empties, h becomes negative, and Simulink qui-
etly converts

√
h to sign(h)

√
|h| thereby retain-

ing real, as opposed to complex, numbers. From
this point on, increasing volume corresponds to
decreasing level which is clearly nonsense.
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Fig. 5. Dynamic system in Simulink using the
implicit Eqn. 3.

Initialising the simulation with the tank 100% full
leads to a similar phenomenon. Here the solver
again ‘slips’ into the wrong region and returns
values of h higher than the top of the tank
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Fig. 6. Simulation result from Fig. 5 showing
unrealisable levels.

indicating that decreasing volume corresponds to
increasing level.

Both these phenomena are clearly artifacts due to
how the model was implemented. The solver of
the implicit algebraic equation is unaware of the
physically valid limits of h. Adding a saturation
block to constrain h to the interval [0 2r] avoids
the case where the level becomes physically un-
realisable, but at the expense of a spike at the
emptying event, Fig. 7.

0

0.5

1

V
ol

um
e,

 V

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

he
ig

ht
, h

time

Fig. 7. Level and volume trends when saturating
the level.

This crude method of trying to limit h is clearly
suboptimal as it only cuts the algebraic equation
solver’s guess of h, ĥ, at the limits. It does not
actually limit the solver’s search region. Once the
solver searches outside the limits, the input is
effectively decoupled from the output, making any
evaluation impossible.

3.2 MathModelica

One of MathModelica’s design aims was to lever-
age Mathematica’s symbolic capability within a
simulation environment. In the MathModelica
listing below, one simply lists the constituent
equations leaving any necessary re-arrangement to
the solver leading to a modelling approach many
process engineers would be immediately comfort-
able with. To help ensure physically meaningful
results, we specify the valid ranges for h and V .

model SphereTank "Spherical tank model"

// Constants

constant Real pi=3.141592;

constant Real g=9.81;

// Parameters

parameter Real r=1.0 "Radius [m]";

parameter Real beta = 0.02*sqrt(2*g);

parameter Real Fin=0.0 "Inflow [m^3/s]";

// Variables

Real V(min=0.0, max=4/3*pi*r^3,

start=4/3*pi*r^3*0.5) "Volume of fluid [m^3]";

Real h(min=0.0, max=2*r, start=2*r*0.5) "Level [m]";

Real Fout "Outflow [m^3/s]";

equation

V = pi*r*h^2 - pi*h^3/3; // volume-level eqn

Fout = beta*sqrt(abs(h)); // flow out

der(V) = Fin - Fout; // Conservation of mass

end SphereTank;

Fig. 8 indicates that MathModelica can easily
manage the DAE, but as the level approached
zero, the simulation stalled. Studying the diag-
nostics from the integrator routine revealed that
it was still attempting to use negative numbers for
h regardless of the specified valid range for h. Such
Zeno-like behaviour is unsatisfactory in a process
simulator.
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Fig. 8. MathModelica simulation stalling at the
emptying event, t ≈ 20s.

Subsequent communication with the developers
confirmed that the Dymola kernel solver does not
support the maximum/minimum attributes (as
stated in the documentation), but rather only
tests the valid range at t = 0.

3.3 Explicitly solving for h

The algebraic constraint, Eqn. 3, is a cubic equa-
tion which can be solved analytically, perhaps



using a computer algebra tool, for h

h1 = r +
21/3πr2

M
+

M

21/3π
(4)

h2 = r − (1 + i
√

3)πr2

22/3M
− (1− i

√
3)M

3
√

16π
(5)

h3 = r − (1− i
√

3)πr2

22/3M
− (1 + i

√
3)M

3
√

16π
(6)

where

M =
3
√

2π3r3 − 3π2V + π2
√

3
√

3V 2 − 4πr3V
(7)

Not obvious from the above equations is that while
all three roots for h are real in the region of
interest 0 ≤ V ≤ 4πr3/3 as shown in Fig. 3, it
is only h3 that gives physically meaningful values.
This can be proved from the observation that
it is only dh3/dV that is positive in the valid
range. The Simulink implementation in Fig. 9
incorporates the explicit solution of Eqns 6 and 7.
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Fig. 9. Simulink model using the explicit expres-
sion for h given V .

Not surprisingly given the manual intervention
required to construct the analytical inversion of
Eqn. 3, the simulation performs as expected with-
out the artifacts exhibited by the previous meth-
ods. However as the trends in Fig. 10 show, even
this scheme is not completely robust. The ‘hic-
cups’ evident in the level, and to a lesser degree
in the volume when the vessel is practically empty
are almost two orders of magnitude above the
requested numerical tolerance of 10−4.

As Modelica has no intrinsic support for com-
plex numbers, the implementation of equations
6 and 7 requires substantial re-working. While it
is possible to manually define a complex number
as a struct and develop the corresponding com-
plex arithmetical libraries, this was considered too
much work in general.

3.4 Casting level as the state

As this problem is an index-1 DAE, (refer (Ascher
and Petzold, 1998, p232)), then a standard index
reduction method is to differentiate the constraint
equation, Eqn. 3, once and solving for dh/dt,

dh

dt
=

Fin − β
√

h

πh(2r − h)
(8)

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

V
ol

um
e 

&
 h

ei
gh

t

time

V
h

30 40 50 60 70
−0.01

0

0.01

0.02

Fig. 10. Volume and level trends using the explicit
expression from Fig. 9. The zoom portion in
the insert shows evidence of chattering.

giving an index-0 problem. This is equivalent to
considering level as the state variable as opposed
to volume.

This eliminates the DAE problem, and by defin-
ing Fout = βsign(h)

√
|h|, as was done inad-

vertently in Fig. 6, then one can employ stan-
dard zero crossing detection techniques which is
the commonly recommended solution approach
to hybrid problems. One integrates up until the
state-dependent event, stops and possibly adds or
removes state dynamics, and then subsequently
restarts until the next exception. The redefinition
for Fout is even correct physically in the case
where the height reflects the pressure differential
between the bottom of the tank and atmospheric,
and a reverse flow is possible. However changing
the corresponding level dynamics from Eqn. 8 to
(Fin − β

√
h)/(π|h|(2r− h)) introduces a singular-

ity at the event which cannot be integrated past
using an adaptive scheme such as Runga-Kutta-
Fehlberg.

4. DISCUSSION

The modelling of vessels emptying should be a
trivial simulation exercise. However combining
non-standard vessel shapes with the possibility
of running dry, causes admittedly small, but still
annoying, simulation hiccups. The emptying of a
spherical tank combines implicit constraints with
important exceptions. These problems are not
just limited to tanks running dry, similar process
scenarios are models involving implicit friction
factor expressions operating across different flow
regimes, reaction kinetics coupled with thermody-
namics, and mechanical systems with friction.

While the emptying of a tank is clearly a toy
problem, a full paper machine such as reported in
(Balderud et al., 2001) is not. In this application,
adaptive error control was needed to complete the



simulations in a reasonable time, but it should
not stumble or exhibit Zeno-like behaviour when
reaching underflows and overflows.

If approximate trends suffice, then crude integra-
tors without error control typically suffice, obliv-
ious of the numerical subtleties of the problem.
To obtain clean results takes considerably more
effort, effort that a modern process simulation
environment could in principle do.

It is possible with manual intervention, employing
analytical solutions where possible, judicious use
of ‘G-stops’ and resetting the integrator, we can
circumvent some of the simulation hiccups. How-
ever when using specific analytical solutions, one
must take care that small changes to the problem
formulation (such as plant rebuilds) do not neces-
sitate major changes to the solution methodology.

Our Simulink simulations typically delivered a
level trend, but not always the trend expected.
When faced with complex levels,the automatic
corrective action taken is justifiable. Adding sat-
uration gives reasonable trends before and after
the event, but spikes at the event causing severe
problems to any derivative based level controller.

MathModelica, with the potential to combine
symbolic manipulation and numerical calculation
failed to simulate past the emptying event, and
it lacked support for complex numbers making
the alternative approach (solving the constraint
equations off-line) unwieldy.

5. CONCLUSIONS

The realisation that the hybrid system is impor-
tant in process simulation and not just appropri-
ate in discrete logic circuits or discrete manufac-
turing is, we believe, important. The hybrid na-
ture stems from both events that have often tradi-
tionally been sidestepped, if not outright ignored,
in process simulation such as tanks emptying, in
combination with the numerical integrator within
the process simulator environment.

This paper investigates the potential of acausal
modelling tools for process engineering applica-
tions that use symbolic manipulation as a means
to ease the modeller’s development task. Acausal
tools have not yet quite reached the point where
the modeller can simply specify the various dy-
namic and constraint equations, and confidently
leave the resultant solution to the executive. Is-
sues such as singularities and Zeno executions are
still common in any non-trivial process simulation.
Notwithstanding, we believe that process simula-
tors that make use of symbolic manipulators are
the way to achieve this goal.
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