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Abstract: An appropriately designed sensor network is crucial for the success
of any fault diagnostic strategy. In previous works (Bhushan and Rengaswamy,
2002a,b) strategies for optimally locating sensors based on criteria of reliability
maximization and cost minimization have been devised. These opposing objectives
were treated in a lexicographic (a special type of multiobjective optimization)
manner. Signed digraph (SDG) based process models were used to generate the
cause-effect information and fault occurrence and sensor failure probabilities were
used to calculate a measure of reliability of a sensor network. While reliability
and cost were considered in selecting the optimal sensor network, the robustness
of the selected network with respect to uncertainties/errors in the underlying
signed directed graph models and the available probability data was not considered
explicitly. In this article, lexicographic formulations which incorporate some
robustness enhancing criteria while designing cost-optimal sensor network for
reliable fault diagnosis are presented. Some robustness to modeling errors in the
SDG can be incorporated by choosing a distributed sensor network. Robustness
to available probability data can be incorporated by maximizing reliability of
the faults involving uncertain probability data. Integer linear programming (ILP)
formulations incorporating these criteria in a lexicographic manner along with
overall reliability-maximization and cost-minimization objectives are presented.
The utility of the proposed approach is demonstrated through application to the
Tennessee Eastman case study.
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1. INTRODUCTION

For safe and optimal operation of a chemical
plant, it is essential to quickly detect and identify
faults when they occur. Hence an efficient fault di-
agnosis methodology is very useful for modern day
chemical plants. The efficiency of any diagnostic
system depends critically on the location of the
sensors monitoring important process variables.
With hundreds of process variables available for

measurement in a typical chemical plant, selec-
tion of crucial and optimum sensor positions is
an important problem with possibly significant
implications for various fault diagnosis strategies.

While the area of sensor location in general has
been popular among researchers for quite some-
time now, the area of sensor location from a
fault diagnosis perspective has not received ade-
quate attention. Even though related, there are



significant differences in these two areas. The
aim of sensor location problem as posed and
solved in literature has been to identify vari-
ables to be measured such that various require-
ments on observability (ability to estimate values
of all/important variables), estimation accuracy
for key variables/parameters, and reliability (the
probability of being able to estimate a variable)
amongst others, are met, while the aim of sen-
sor location from fault diagnostic perspective is
to identify variables to be measured such that
various faults when they occur can be detected,
and diagnosed. Criteria such as resolution (ability
to differentiate between different faults) achieved,
cost and reliability of the sensor network, speed of
detection and diagnosis, and false alarm rate are
some of the criteria that can be incorporated in
this approach.

In previous work, optimization formulations for
sensor network design for reliable fault diagnosis
have been presented (Bhushan and Rengaswamy,
2002a). These formulations incorporate various
constraints on the sensor network design problem,
as well as utilize quantitative information such as
fault occurrence and sensor failure probabilities,
and cost of sensors. In this article, formulations for
incorporating robustness to the data (fault occur-
rence probability and sensor failure probability)
used in the problem, are presented. Robustness
to modeling errors/uncertainties is also consid-
ered. These formulations are presented in a lexico-
graphic optimization framework. The application
of the proposed formulations is demonstrated on
the Tennessee Eastman case study.

2. RELATED PREVIOUS WORK

Bhushan and Rengaswamy (2002a) posed sensor
location problem as a constrained lexicographic
optimization problem based on the concept of un-
observability minimization. The unobservability
of a fault is defined as the probability of the fault
occurring and remaining undetected and can be
calculated as:

Ui = fi

n∏
j=1

(sj)(dijxj) (1)

Here index j is for the variables which can be
potentially measured, xj is the number of sensors
placed to measure variable j with probability
of failure of each sensor being sj , index i is
for the faults with fi being the probability of
occurrence of fault i, Ui is the unobservability
of fault i, constant dij = 1 if fault i affects
variable j and is zero otherwise. Construction of
matrix D (with elements dij) is based on fault
simulation either in the process DG, the process
SDG, or the process SDG with gains (Bhushan

and Rengaswamy, 2002b). For the case study
presented later in this article, SDG with gains is
used to generate the D matrix.

A good sensor network should lead to low un-
observability values for the faults. The measure
of process unobservability chosen (Bhushan and
Rengaswamy, 2002a) is the maximum unobserv-
ability among all faults. Apart from unobservabil-
ity minimization, cost minimization was also con-
sidered, and these two objectives were combined
in a lexicographic manner. The sensor location
design problem was posed as an integer linear
programming (ILP) problem as follows:

Formulation I: One-Step Optimization consid-
ering unobservability and cost

min
(xj)

[U − α xs] (2)

subject to,

U ≥ log Ui, i = 1, ...,m (3)
n∑

j=1

cjxj + xs = C∗ (4)

xj ∈ Z+, j = 1, ..., n (5)
xs ∈ R+ (6)

In the above problem, the first term in the objec-
tive function U is the maximum unobservability
among all faults (this is captured by constraints
3), C∗ is the available cost (resources) for perform-
ing sensor location, and cj is the cost of installing
one sensor on variable j . The problem is linear in
the decision variables (xj) since instead of unob-
servability Ui (as given by equation 1) for a fault,
the log of unobservability is being used. Hardware
redundancy is incorporated in the above formula-
tion by not restricting the decision variables to
be binary, but rather allowing them to take any
non-negative integer value. The variable xs is the
slack in the cost constraint, which takes non-zero
real values. The higher the value of the variable
xs, lower is the cost used for sensor location. α is
a positive constant which has to be chosen such
that the primary objective (minimizing unobserv-
ability) still attains its earlier optimal value. For
such a case, negative contribution of the second
term (α xs) in the objective function will ensure
that among all solutions which yield minimum
unobservability, the one which has highest xs will
be chosen. Thus, if the constant α is appropriately
chosen, the solution to Formulation I will give
a sensor network, which will have the least cost
among all the networks which yield the minimum
unobservability. A sufficient range for the value
of α was given as: 0 < α < 1/(aC∗), where a is a
constant that can be calculated based on the given
fault and sensor probabilities. The optimization
problem as presented above is known as lexico-
graphic optimization , where the idea is to arrange



multiple objectives in a lexicographic order. This
ordering means that the more important objective
is infinitely more important than a less impor-
tant objective (Miettinen, 1998). Sherali (1982)
has presented an algorithm for selecting suitable
weights for combining multiple objectives in a
lexicographic manner. The selection of constant α
as presented above by Bhushan and Rengaswamy
(2002a) is similar to the approach used by Sherali
(1982). Bhushan and Rengaswamy (2002a) have
also pointed out that the sensor network design
problem as presented above can be solved not
only for the basic fault observability case, but also
for other cases, such as single or multiple fault
resolution. The basic idea is to convert any given
scenario into a suitable fault-observability case by
generating appropriate pseudo-faults. The same
holds true for formulations to be presented next
in this article. Also, similar to formulation I, all
the formulations presented in the next section are
ILP problems.

3. ROBUST SENSOR NETWORK DESIGN

The formulation I for sensor location requires fault
occurrence and sensor failure probability data,
and assumes that this data is accurately known. In
practice, this may not always be the case. Also, it
is possible that the underlying fault-models (SDG
with gains for this article) are not accurate and
have errors/uncertainties in them. In this section,
some criteria to incorporate robustness to these
factors will be considered.

3.1 Robustness to available probability data

For a given process, it is quite possible that
some fault occurrence probabilities are accurately
known (based on experience or past plant data),
and for others only approximate values are avail-
able. Sensor failure probability data would be
comparatively easier to obtain as there are several
possible sources of such data, such as vendors,
instrumentation handbooks, or lab/pilot scale ex-
periments. However, similar to fault occurrence
probability data, it is quite possible that depend-
ing on the source/reliability of information, values
for some sensor failure probabilities are only ap-
proximately known (for example, the values cal-
culated using lab experiments may not be exactly
same as that obtained during the actual process
operation). Hence it is desirable to incorporate
some robustness to such data mismatch in the
sensor location formulations. In this section, two
scenarios are considered: (i) inaccuracies in oc-
currence probabilities of some faults (all sensor
probabilities accurately known) and (ii) inaccu-
racies in failure probabilities of some sensors (all

fault occurrence probabilities accurately known).
In the rest of the article, to simplify the notation,
a fault whose unobservability calculation involves
inaccurately known data, will be referred to as
”inaccurate” fault. A fault can be inaccurate for
either of the two scenarios.

The central idea is again based on the concept
of lexicographic optimization. The primary ob-
jective still is to minimize system unobservabil-
ity (maximum unobservability amongst all faults)
calculated using nominal values for fault occur-
rence and sensor failure probabilities. The sec-
ondary objective is to try to maximize the slack in
the unobservability constraints (3) of inaccurate
faults. The idea here is that since the system
unobservability characterizes only the maximum
unobservability amongst all faults, a process with
two different sensor networks can have the same
system unobservability with both the networks,
and yet have different unobservabilities for some
faults. Amongst these two networks, one would
like to choose the network which yields lower
unobservability for the inaccurate fault. For a
given overall system unobservability, the higher
the slack in the unobservability constraint of a
fault, the lower is its individual unobservability.
In general, there can be more than one inaccurate
fault. The secondary objective is then to maximize
the minimum slack amongst all the slack vari-
ables in the unobservability constraints of these
faults. With optimization of these two objective
functions (overall system unobservability mini-
mization and slack maximization for inaccurate
faults), it is still possible to obtain multiple opti-
mal solutions with possibly different cost required
for each solution. The third objective is then to
minimize the cost used. The three objective func-
tions are combined in a single-weighted objective
function using appropriately computed weighting
constants.

The formulations for the two scenarios are pre-
sented next. Even though the basic idea for the
two scenarios is the same, there are some differ-
ences.

Formulation II: Robustness to Inaccurate Fault
Occurrence Probability Data

min
(xj)

[λ1U − λ2φ− xs] (7)

subject to,
n∑

j=1

cjxj + xs = C∗ (8)

U ≥ log(Ui), i = 1, ...,m1 (9)

U = log(Ui) + φi, i = m1 + 1, ...,m (10)

φ ≤ φi, i = m1 + 1, ...,m (11)

xj ∈ Z+, (xs, φi, φ) ∈ R+ (12)



In the above formulation, φi is the (positive)
slack variable of the unobservability constraint for
the ith fault. This slack variable is added to the
unobservability constraints of those faults (faults
m1 + 1, ...,m) whose occurrence probabilities are
not accurately known. The secondary objective is
to then maximize the minimum slack (φ) amongst
all the faults with inaccurately known probabili-
ties. Constraints 11 and maximization of φ in the
objective function ensures that φ is equal to the
minimum value amongst all individual φi values.
Positive constants λ1 and λ2 ensure that the solu-
tion to Problem II solves a lexicographic optimiza-
tion problem with unobservability minimization,
slack maximization and cost minimization as the
objectives in decreasing order of preference. The
values for λ1 and λ2 can be derived using the idea
presented by Sherali (Sherali, 1982) and are:

λ1 = (1 + M)(1 + C∗) (13)

λ2 = (1 + C∗) (14)

where the constant

M = max
(i=m1+1,...,m)

(φ∗i ) (15)

The constants φ∗i are defined in the next para-
graph. For the sake of brevity, the procedure fol-
lowed in deriving the above values is not discussed
in this article.

Formulation II as presented has one small prob-
lem. It can lead to solutions where extra cost is
spent in increasing φ to meaningless high values.
To understand this, consider a process with one
inaccurate fault with nominal fault occurrence
probability of 10−2. In the worst case, the actual
occurrence probability of this fault will tend to
100 = 1. Considering constraint 10 for this fault,
it can be seen that if φi for this fault is equal to 2,
then even in the worst case, the system unobserv-
ability will not be higher than the value calculated
using nominal fault occurrence probability data.
Hence, spending extra cost to increase φ above
2 for this case is not required. This is achieved
by replacing constraints 11 by the following set of
constraints

φ ≤ M (16)

φ ≤ φi + Myi, i = m1 + 1, ...,m (17)

Pyi ≥ φi − φ∗i , i = m1 + 1, ...,m (18)

P (yi − 1) ≤ φi − φ∗i , i = m1 + 1, ...,m (19)

yi ∈ {0, 1}, i = m1 + 1, ...,m (20)

In the above constraints, P is a large positive
constant (such as 100), yi is a binary variable, and
φ∗i is the maximum meaningful value of the slack
variable for the ith inaccurate fault (2 in the above
example). The basic idea behind introducing vari-
able yi is that if for a fault i, the slack variable
φi > φ∗i , then the value φ is not restricted by value
of φi, and increasing φi further will not increase

φ. Constraints 18 and 19 ensure that yi = 1 for
this case, and this ensures that φi (constraint 17)
does not limit the upper value of φ. For the case
when φi < φ∗i , constraints 18 and 19 force yi to
be 0, and this reduces constraint 17 for fault i to
φ ≤ φi as it should be. For the case when φi = φ∗i ,
constraints 18 and 19 allow yi to be either 0 or 1,
but maximization of φ in the objective function
ensures that yi = 1, if the maximum value of φ is
being restricted by φi (constraint 17). Constraint
16 ensures that the maximum value for φ is not
more than the maximum meaningful value among
all the slack variables.

To summarize, the formulation that is proposed
for incorporating robustness to fault occurrence
probability data is: Formulation II with con-
straints 16-20 used in place of constraints 11.
Formulation to incorporate robustness to sensor
failure probability data is considered next.

Formulation III: Robustness to Inaccurate Sen-
sor Failure Probability Data

min
(xj)

[λ1U − λ2φ− xs] (21)

subject to,
n∑

j=1

cjxj + xs = C∗ (22)

U = log(Ui) + φi, i = 1, ...,m (23)

φ∗i = −
∑
j∈Su

dij(log sj)xj , i = 1, ...,m (24)

Pyi ≥ φi − φ∗i , i = 1, ...,m (25)
P (yi − 1) ≤ φi − φ∗i , i = 1, ...,m (26)

φ ≤ φi + Myi, i = 1, ...,m (27)
φ ≤ M (28)

xj ∈ Z+, (xs, φi, φ) ∈ R+, yi ∈ {0, 1} (29)

In the above formulation, Su is the set of sensor
with uncertain failure probabilities, constant M is
the maximum meaningful value for φ for a given
problem, and P is a large positive constant (for
example, 100). The constant M is now given as

M = max
i

∑
j∈Su

dij(log sj)x∗j (30)

where x∗j is an upper bound on the maximum
number of jth sensors that can be selected, and
can be calculated as quotient of C∗/cj . Constraint
24 is written for each fault, and it calculates
the maximum meaningful value of slack required
in a fault unobservability constraint, based on
the chosen sensors. For example, suppose that
the unobservability calculation of a fault does
not depend on any sensor with inaccurate failure
probability. Then no slack is required for this fault
constraint. As can be seen from equation 24, φ∗i
for this fault will be 0. Constraints 25-28 are same
as the constraints used in Formulation II.



Formulation II incorporated robustness to inaccu-
rate fault occurrence probabilities (assuming all
sensor failure probabilities were exactly known),
and formulation III considered robustness to in-
accurate sensor failure probabilities (assuming
all fault occurrence probabilities were exactly
known). A formulation where both types of un-
certainties are considered can also be formulated
as a combination of the two formulations. This
formulation is not presented in this article.

3.2 Robustness to Modeling Errors

Formulations to incorporate robustness to inaccu-
rate probability data were presented above. It can
also be the case that the effects of faults on the
measurable variables (matrix D with elements dij

in our formulations) as used in the formulation are
not accurate. This may happen since the process
may not be exactly known and/or the simulation
procedure to obtain the matrix D may make some
restrictive assumptions (such as steady state gains
for SDG with gain model). Also, since the effects
of process/sensor noise, fault magnitude, and sam-
pling times for sensors have not been included
in the formulations, the effects of various faults
predicted on the variables may not match exactly
with those measured in the plant. The efficacy
of a selected sensor network will then be affected
by these unknown factors. In order to incorporate
some robustness to such modeling errors, it is pro-
posed that a distributed sensor network should be
preferred, since for a given fault, even if effects on
some variables are wrongly modeled, the chances
of correctly diagnosing that fault would be higher
since some other variables being effected by that
fault are also being measured. Once again, this
is done in a lexicographic framework, and the
formulation that is proposed to achieve this is as
follows:

Formulation IV: Lexicographic formulation for
achieving a distributed sensor network when some
fault occurrence probabilities are inaccurately
known

min
(xj)

[α1U − α2φ− α3xs −N ] (31)

subject to
n∑

j=1

cjxj + xs = C∗ (32)

U = log(Ui) + φi, i = 1, ...,m (33)

φ ≤ M (34)

φ ≤ φi + Myi, i = m1 + 1, ...,m (35)

Pyi ≥ φi − φ∗i , i = m1 + 1, ...,m (36)

P (yi − 1) ≤ φi − φ∗i , i = m1 + 1, ...,m (37)

nj ≤ xj , j = 1, ..., n (38)

N =
n∑

j=1

nj (39)

N,xj ∈ Z+, j = 1, ..., n (40)

xs, φi, φ ∈ R+ (41)

nj ∈ {0, 1}, j = 1, ..., n (42)

yi ∈ {0, 1}, i = m1 + 1, ...,m (43)

In the above formulation, N is the total number of
variables measured in the process (different from
total number of sensors used since a variable may
have more than one sensor), and characterizes
the sensor distribution in the process. Variable
nj is a binary variable, which is 1 if variable j
is measured (irrespective of the number of sensors
used to measure variable j), and is 0 if variable
j is not measured. This is ensured by constraints
38, 39 and maximization of N in the objective
function. Constraints 33-37 are the same as those
used in Formulation II. α1,α2 and α3 are positive
constants which ensure that solution to Problem
IV is optimal in the lexicographic sense with un-
observability minimization, slack maximization,
cost minimization, and network distribution max-
imization being the four objectives in decreasing
order of priority. These constants can be calcu-
lated using the algorithm by Sherali (1982) as:

α1 = (1 + N∗)(1 + C∗)(1 + M) (44)

α2 = (1 + N∗)(1 + C∗) (45)

α3 = (1 + N∗) (46)

where N∗ is an upper bound on the maximum
number of different sensors that can be selected
in the process for a given available cost C∗, and
can be calculated based on the given data. Even
though theoretically sound, depending on the val-
ues of constants N∗, C∗,M , in the case study
section, for some cases scaling problems were en-
countered, which were handled by appropriately
scaling some variables (such as N). Alternatively,
for this case, one can obtain the lexicographic
solution by solving more than one problem in
sequence (Sherali, 1982).

Formulation IV is posed assuming that the some
fault probability data is inaccurately known. In-
case, some sensor failure probabilities are not ac-
curately known, a formulation similar to Formu-
lation IV can be posed, with constraints borrowed
from Formulation III. This formulation is referred
to as formulation V in the case study section.

4. CASE STUDY: TENNESSEE EASTMAN
PROCESS

To illustrate the utility of the ideas presented in
this article, the Tennessee Eastman (TE) process
(Downs and Vogel, 1993) is used as a case study.



Table 1. Results for inaccurate fault
occurrence probability data

Form. C∗ Cost U φ N Sensors

Used Selected

I 2900 2100 -5 0 5 2,8,9,13,58

5400 4200 -8 0 5 2(2),8(2),9(2)

13(2),55(2)

II 2900 2200 -5 2 6 1,2,8,9,13,58
5400 4300 -8 2 8 1,2(2),5,7,8,

9,13(2),57(2)

IV 2900 2200 -5 2 6 1,2,8,9,13,54

5400 4300 -8 2 9 1,2(2),5,7,8,
9,13(2),57,58

Based on a reduced model of this process pro-
posed by (Ricker and Lee, 1995), Bhushan and
Rengaswamy (2002b) developed a signed digraph
with gains for this process, and used it to generate
the cause-effect information required for sensor
network design. This cause-effect information is
used in this section to design sensor networks for
problems posed in this article. In this process, 61
potential measurements and 15 faults are consid-
ered. These possible locations of sensors, sensor
failure probabilities, sensor costs, faults consid-
ered and probabilities of their occurrences and the
diagraph based cause-effect model used, are taken
from (Bhushan and Rengaswamy, 2002b) and are
not presented here. All the results presented in
this section are only for the single fault resolution
(Bhushan and Rengaswamy, 2002a) case and were
obtained by solving the formulations in the integer
linear programming package LINDO.

Case I Robust design in the presence of inac-
curacies in fault occurrence probability data: It
is now assumed that the occurrence probabilities
for faults F14 and F15 (with nominal values of
10−2 and 10−1 respectively) are not accurately
known. Sensor location is performed for different
cases and the some typical results are summarized
in Table 1. Comparing the results of formulation I
and II for available cost C∗ = 2900 units, it is seen
that for formulation II (where slack maximization
for inaccurate faults is considered), the selected
sensor network ensures that even if the true proba-
bility of the inaccurately known faults (F14, F15)
were to be higher by 2 orders of magnitude (than
their nominal values used in the optimization),
the overall system unobservability will not change.
The same cannot be said about the sensor loca-
tion obtained with Formulation I. Comparison of
results for C∗ = 5400 for formulations II and IV
indicate that the network is more distributed for
formulation IV than for II, thereby incorporating
robustness to some amount of modeling error as
compared to Formulation II.

Case II Robust design in the presence of inaccu-
racies in sensor failure probability data: Results
for cases when failure probabilities of sensors S13
and S60 (with nominal values of 10−3 each) are

Table 2. Results for inaccurate sensor
failure probability data

Form. C∗ Cost U φ N Sensors

Used Selected

III 2900 2700 -5 6 5 2,8,9,13(3),55

5400 5400 -8 12 5 2(2),8(2),9(2),

13(6),58(2)

V 2900 2700 -5 6 5 2,8,9,13(3),57
5400 5400 -8 12 8 2(2),5,7,8,

9,13(6),55,57

inaccurately known are presented in Table 2. Con-
clusions regarding utility of various formulations
similar to Table 1 can be derived based on this
Table also.

5. CONCLUSIONS

A solution to the problem of designing robust
sensor networks for fault diagnosis has been at-
tempted in this article. Depending on the require-
ments of the fault monitoring system, appropriate
optimization problems have been posed. The pro-
posed formulations incorporate various criteria,
such as reliability (in terms of unobservability),
cost, and robustness to fault/sensor probability
data and process-model mismatch, in a lexico-
graphic optimization framework. In the case study
section, the results of the application of the var-
ious formulations to the Tennessee Eastman pro-
cess are compared. These demonstrate the utility
of the various optimization objectives presented
in this article.
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