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Abstract: Model order reduction is applied to a population balance equation (PBE)
describing the particle size distribution in an emulsion copolymerization reactor. The
reduced order model is used in linear model predictive control. The performance of
controllers with different controlled outputs is compared in the presence of two classes of
disturbances, one related to the nucleation mechanism and the other affecting the growth
rate, to determine the most robust control strategy for the regulation of the distribution at
the final time.
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1. INTRODUCTION

Several control strategies for polymer properties,
including molecular weight distribution, copolymer
composition, and particle size distribution, have been
developed to improve the end-use properties of a poly-
mer product. Some of strategies are based on the track-
ing of trajectories calculated off-line using optimiza-
tion methods (Choi and Butala, 1989; Saldivar and
Ray, 1997; Crowley et al., 2000) and on-line feedback
algorithms have been applied to overcome the limita-
tions of open-loop optimal trajectory tracking (Kozub
and MacGregor, 1992; Echevarria et al., 1998; Vicente
et al., 2001). However, on-line feedback-based con-
trol of particle size distribution (PSD) in particulate
systems is rarely reported as the process is highly
nonlinear and numerical solution techniques for the
population balance equation lead to a high dimen-
sion problem. Therefore, most research work has fo-
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cused on the control of lumped properties (Zeaiter et
al., 2002; Chiu and Christofides, 1999).

In this study, model order reduction based on principal
component analysis (PCA) is applied to the first-
principles model, and a control strategy is developed
for tracking the reference trajectory in an effort to
control the final PSD in an emulsion copolymerization
system. This modeling and control is more difficult
than the homopolymerization case because the two
monomers influence the stability of the particle in
different manners.

2. SEMIBATCH VAC/BUA EMULSION
COPOLYMERIZATION REACTOR

A mechanistic model of a semibatch VAc/BuA emul-
sion copolymerization reactor developed by Immanuel
et al. (2002) is summarized in Table 1. This model has
several advantages in that the size-dependent growth
rate is taken into account and the average number of
radicals per particle is calculated via a balance be-
tween the rates of entry, desorption and termination of



Table 1. Model equations for a semibatch emulsion copolymerization system

Mass balance equations
Oxidizer d([Iw]Vaq)/dt = −kd1[Iw][Y r

1 ] + vIw

Reducer d([Y2]Vaq)/dt = −rIkd1[Iw][Y r
1 ] + vY2

Initiator radical d([Rw]Vaq)/dt = kd1[Iw][Y r
1 ] − Vaq

2
∑

i=1

kri[Rw][Mi]w − Vaqkw
tav [Rw]

(

jcr−1
∑

l=0

[Pw]l + [Rw]

)

Monomers
dMj

dt
= vMj

−

2
∑

i=1

(kw
pij + kw

trij)pwi[Pw][Mj ]wVaq −

2
∑
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(kpij + ktrij)pi[Mj ]p
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n̄(r, t)F (r, t)dr

Population balance equation
Density function ∂

∂t
F (r, t) + ∂

∂r

(

F (r, t)Rgrowth(r, t)
)

= Rnuc(r, t) + Rcoag(r, t)

Growth rate Rgrowth(r, t) = dr
dt

= 3
4πr2ρp

2
∑

i=1

2
∑
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kpijpi
n̄(r,t)
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Nucleation rate Rnuc = Rmicellar + Rhomo =
jcr−1
∑

l=0

2
∑
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Coagulation rate Rcoag(r, t) = H(ruppper − r)Rformation(r, t) − H(rcutoff − r)Rdepletion

Rformation(r, t) = 1
Vaq

∫

β(r′, r′′)F (r′, t)F (r′′, t) r2

(r3−(r′)3)2/3
dr′

Rdepletion(r, t) = 1
Vaq

∫ rmax
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β(r, r′)F (r, t)F (r′, t)dr′ where β(r, r′) = c14πD0(r + r′)/Ws

Output functions
Weight averaged PSD W (ri, t) = r3

i Fi

/
∑

i
r3
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∫ rb,i
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F (r, t)dr
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∑

i
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(
∑

i
4πr3

i ρpFi/3
)

/mT

radicals. The kinetic rate constants and physical con-
stants were drawn from the literature (see Immanuel et
al., 2002 and references) and Immanuel et al. (2002)
investigated the parametric sensitivity on the distribu-
tion at the final time of the batch.

The population balance equation (PBE) is solved nu-
merically using the solution technique proposed by
Immanuel and Doyle III (2003a), in which the contin-
uous PSD is divided into a finite number of sections
within which an integral quantity of the distribution is
defined. To discretize the population balance equation
for the particle density function (cf. Table 1), 250
elements (or grids) with a width of 2 nm are used
and ordinary differential equations for mass balance
equations of two monomers, aqueous phase volume,
surfactant, oxidizer, reducer and initial radicals are
calculated using the ODE solver (ode45) in MATLAB.

3. MODEL ORDER REDUCTION

The finite discretization of the governing PBE leads
to very high order, ill-conditioned and uncontrollable
dynamical systems, thus motivating the application of
model order reduction (MOR) methods to the mech-
anistic model for semibatch VAc/BuA copolymeriza-
tion. In general, MOR methods involve the projection
of the full order states onto a state space with a suitable
reduced order through a linear transformation:

x = Pz (1)

where z is a q-th order projection of state x ∈ RN

in the reduced order state space, and P represents
an orthonormal matrix for a transformation from the
reduced one to the original state space. There are
a number of methods to select the transformation
matrix P. In the present study, principal component

analysis (PCA) (Sharaf et al., 1986) is applied. PCA
is one of several multivariate statistical projection
techniques in which the original number of (possibly)
correlated variables are transformed into a (smaller)
number of uncorrelated variables known as principal
components. This technique has several advantages in
that it addresses limitations due to measurement noise,
correlated variables and unknown variables, and the
data set dimensionality problem can be managed.

Some key issues in applying the transformation ma-
trix to a nonlinear system are associated with stor-
age and evaluation (Park and Doyle III, 2004). To
solve this problem, the nonlinear model is linearized
at every sample time using a nominal point and the
zero-order hold is used to calculate discrete system
matrices (Ak, Bk, and Hk) under the assumption
that the state between sample times is not changed
significantly (Garcia, 1984; Gattu and Zafiriou, 1992).
The transformation matrix P in Eq. (1) is applied to
the linearized model and consequently the following
reduced order model is obtained:

z̄k+1 = A
r
kz̄k + B

r
kūk and ȳk = H

r
kz̄k (2)

where A
r
k = P

T
AkP, B

r
k = P

T
Bk and H

r
k =

HkP, respectively. The over-bar represents the devia-
tion from the nominal value.

4. RESULTS AND DISCUSSION

In order to generate the database for the calculation
of the linear transformation matrices, pseudo random
multi-level signals are introduced to the plant (the first
principles model) with the assumption that this signal
produces representative responses over the region of
interest. At every sample time, the input is changed
with the probability of 7% and the value is chosen
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Fig. 1. Weight averaged particle size distribution at the final time
generated by pseudo random 4-level signals (60 batches).

among 4-level values (0, 3.5 × 10−4, 7.0 × 10−4,
1.05 × 10−3 for u1 and 0, 1.66 × 10−4, 3.32 × 10−4,
4.97 × 10−3 for u2). The corresponding responses,
including states and outputs, are saved in the database
at every sample time (1 min). Experimental conditions
and additional details are listed in Table 2.

Table 2. Conditions for semibatch VAc/BuA copoly-
merization system

Initial reactor charge
Water 1.0L
VAc 52g
Ferrous ammonium sulphate 0.1g
Sodium benzoate 1.12g

Reactor temperature 67.5oC
Flow rates of feed solutions [mol/s]

BuA feed 2.81 × 10−4
→ 0 at 94 min

Oxidizer feed 5.4 × 10−4
→ 9.0 × 10−4 at 107 min

Reducer feed 4.86 × 10−4
→ 8.09 × 10−4 at 107 min

Operating range of inputs [mol/s]
VAc flow rate (u1) 0 ∼ 1.05 × 10−3

surfactant flow rate (u2) 0 ∼ 4.97 × 10−3 mol/s

Figure 1 shows the results of weight averaged parti-
cle size distribution at the final time for 60 batches.
Since the inputs are specified between upper and lower
bounds, this figure accounts for the reachable region
of the system under the current operation condition.
Due to the slow supply of surfactant, the amount
of free surfactant in the reactor is below the critical
micelle concentration (cmc), thus only homogeneous
nucleation takes place in the early stage while micellar
nucleation becomes dominant after the surfactant con-
centration exceeds the cmc (Immanuel et al., 2002).
Hence the PSD at the final time shows a bimodal
distribution; the primary peak in right-hand side by
homogeneous nucleation and the secondary peak in
left-hand side by micellar nucleation.

To simplify the calculations of the linear time vary-
ing transformation matrices, all the data are mean-
centered and scaled to unit variance. For the prin-
cipal component analysis, the Statistics Toolbox for
MATLAB is used. The number of principal compo-
nents (PCs) is determined so that the transformation
matrix constitutes more than 99.9% of the total vari-
ance because the PCs for 90.0% fail to approximate
the entire distribution (Park and Doyle III, 2004). In

general, the PCs for 80% or 90% variance predict
the behavior of original system in most of the results
reported in the literature, while the PCs for 99.9%
are used in this system. It is worth emphasizing that
PCA approach described in this paper employs the
nonlinear fundamental model directly, hence the un-
usually large variance is reasonable. If, on the other
hand, data were employed to generate the PCs, a lower
variance would be more practical to avoid capturing
noise effects (Park and Doyle III, 2004). The number
of PCs for the particle density function (F ) is chosen
to be 16 at every sample time while the number of
PCs for the weight averaged PSD that predicts more
than 99.9% cumulative variance is determined to be
15. The state variables for the mass balance equa-
tions, such as monomer concentration, are not pro-
jected to the latent variable space but are normalized
as xnormalized = (x − xmin)/(xmax − xmin). After
the transformation matrices are obtained, the reduced
order model is used in the prediction equation of linear
model predictive control (MPC).

Immanuel and Doyle III (2003b) suggested a con-
trol strategy where time varying reference trajecto-
ries for the total number of particles (Np) and solid
content (Sc) can be used for the control of the nu-
cleation rate and the growth rate, respectively. They
applied the Nondominated Sorting Genetic Algorithm
(NSGA) (Bhaskar et al., 2000) to calculate the optimal
input trajectories to track the reference trajectories for
Np and Sc. Meanwhile, Park and Doyle III (2004)
introduced a control strategy that drives the weight
averaged particle size distribution directly to its time
varying reference trajectory using a model predictive
control based on the reduced order model. In this
study, the performance of these strategies is evaluated
for the case when a disturbance or a model mismatch
exists in the system.

Three control strategies are compared in this study:
(strategy 1) the utilization of Np and Sc time varying
reference trajectories; (strategy 2) the utilization of
weight averaged PSD time varying reference trajec-
tory; and (strategy 3) the utilization of all of the refer-
ence trajectories. For all cases, it is assumed that the
state variables are available by feedback and the 250
original state variables in the particles density function
(F ) are projected onto the latent variable space. The
total number of particles is scaled using the normal-
ization method with high and low bounds as 1 × 1018

and 0, respectively, and the weight averaged PSD is
reduced using PCA.

The controller is tuned to exhibit acceptable perfor-
mance in rejecting a disturbance in the surfactant feed
concentration (the concentration of surfactant feed in
the plant is less than that in the model by 10%), and
the weighting matrices are determined by trial and
error (listed in Table 3). State variables are assumed to
be available by state feedback. For all strategies, the
prediction and control horizons are 25 and 15, respec-



Table 3. Weighting matrices for each control strat-
egy

weights on the control error (Λy)
Strategy 1 81 × I15×15

Strategy 2 diag([5.5 × 103, 1.0 × 103])

Strategy 3 diag([94 × I15×15, 5.5 × 103, 1.0 × 103])

weights on the control input (Λu)
Strategy 1 diag([0.1, 0.51])

Strategy 2 diag([0.1, 0.12])
Strategy 3 diag([0.1, 0.22])

tively, and the sampling time is 1 min. Constraints on
the input magnitude are specified with the operating
range given in Table 2, and the rate of input change is
constrained as follows:

Constraints on the rate of input change

−4.0 × 10−4 ≤ ∆u1 ≤ 4.0 × 10−4 [mol/s]
−2.0 × 10−3 ≤ ∆u2 ≤ 2.0 × 10−3 [mol/s]

(3)

Figures 2–4 illustrate the controlled distribution at the
final time of the batch and the corresponding input
trajectories determined by each strategy. As the results
in Figure 2 indicate, the direct feedback of variables
that are sensitive to the disturbances leads to the use
of both inputs to eliminate the disturbance. The con-
troller in strategy 2 uses the flow rate of surfactant feed
solution primarily to drive the total number of particles
to its time varying reference trajectory as the distur-
bance in the surfactant feed solution mainly effects
Np. As a result, different levels of control performance
are observed between strategies 1 and 2, in that strat-
egy 1 shows better performance in the secondary peak
than the primary peak, while strategy 2 results in sat-
isfactory performance in both peaks. Considering the
characteristics of the controller as well as the system,
the different results of the controllers are attributed
to the limitations of each controller; strategy 1 has a
disadvantage in that different control weights cannot
be used for different peaks because the distribution
is projected to a latent variable space, and the short-
coming of strategy 2 is that, even after the deviated
trajectories of Np and Sc due to the disturbance are
converged to their respective reference trajectories, the
effect of deviations in the early stage still remains in
the weight averaged particle size distribution at the
final time.

To compensate for the disadvantages of each con-
troller in strategies 1 and 2, all the outputs (the dis-
tribution, Np, and Sc) are utilized in the strategy 3 and
the result is indicated in Figure 4. It is noted that the
same control weights as those in the previous strategy
are used for Np and Sc, but the VAc feed flow rate
between 20 and 40 min shows higher values while the
surfactant feed flow rate becomes smaller compared
to the input trajectories in strategy 2. This feature
indicates that the utilization of the distribution as a
controlled output compensates for the error in strategy
2 and consequently, the controlled distribution in strat-
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Fig. 2. The performance of the controller in strategy 1 (a) the
weight averaged particle size distribution (b) the total number
of particles (c) the solid content (d) the input trajectory (VAc)
(e) the input trajectory (surfactant).

egy 3 shows a better level of performance than those
of strategies 1 or 2.

To evaluate robustness, the performance of the con-
trollers is compared when disturbance magnitudes are
varied (controller tuning is fixed). The following rela-
tive error is used for comparison

‖Wi(tf ) − Wi,desired‖
2

2

‖Wi,desired‖
2

2

(4)

where Wi denotes the sampled version of the weight
averaged PSD and the result is presented in Figure 5
(surfactant disturbance). When the disturbance is less
than 0.9, the performance of strategy 1 becomes worse
and the magnitude of the difference in relative errors
between strategies 1 and 2 is increased. Therefore,
utilization of the distribution hinders the performance
of strategy 3 compared to that of strategy 2. However,
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Fig. 3. The performance of the controller in strategy 2 (a) the
weight averaged particle size distribution (b) the total number
of particles (c) the solid content (d) the input trajectory (VAc)
(e) the input trajectory (surfactant).

in the region of disturbance larger than 1.0 (nominal
case), the performance of strategy 1 becomes best
whereas strategy 2 as well as 3 (including Np and Sc)
performs worse. As the magnitude of the disturbance
is increased, the output trajectories for Np and Sc

deviate from the reference trajectories and then con-
verge to them again. However, the deviation of lumped
parameters in the middle of the reaction causes a de-
viation of the PSD at the final time. Therefore, the
utilization of lumped parameters in the controlled out-
puts results in worse performance compared to the
direct tracking of the PSD reference trajectory. From
the results, it is inferred that the direct use of the
distribution in the controller is robust to the different
magnitudes of disturbances.

Figure 6 shows the performance of strategies when
a different disturbance from the previous case is im-
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Fig. 4. The performance of the controller in strategy 3 (a) the
weight averaged particle size distribution (b) the total number
of particles (c) the solid content (d) the input trajectory (VAc)
(e) the input trajectory (surfactant).
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Fig. 5. Comparison of performance between strategies in the
presence of a disturbance in the surfactant feed.
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Fig. 6. Comparison of performance between strategies in the
presence of a disturbance in the initial VAc charge.

posed on the system. In this case, a disturbance is
introduced in the initial charge of VAc. This type of
disturbance brings about an error in the growth rate
while the disturbance in the previous case is related to
the nucleation rate. In this case, the result also shows
the effectiveness of strategy 1 since it utilizes most
effectively both control inputs. The presence of the
disturbance in the early stage of the reaction is also
responsible for the inferior performance of strategies
2 and 3 because the tracking of Np and Sc trajectories
produces a deviation in the initial stage.

5. SUMMARY

A model order reduction method based on principal
component analysis (PCA) is applied to a nonlinear
mechanistic model for a semibatch VAc/BuA emul-
sion copolymerization reactor. The resulting model is
used to design a model predictive controller. Strategies
using different controlled outputs are compared in the
presence of disturbances on the basis of particle size
distribution at the final time of the reaction. The results
show that the performance of the controller utilizing
lumped parameters is satisfactory in the region of
“optimal” tuning. However, compared to the strategy
utilizing the direct measurement of particle size dis-
tribution, a lumped parameter-based method leads to
inferior performance for various disturbances (a prac-
tical situation for the application of the controller to
industrial processes). In summary, the strategies using
the reduced order model and trajectory tracking for
the distribution are proven to be most effective for the
generation of a desired distribution at the final time.
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