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Abstract: According to one industrial engineer, “reconciliation of mass balances
to monitor chemical tank inventories is a struggle even at the best of times”. This
paper is concerned with the design of an offline and online fault detection and
diagnosis monitoring system for the caustic tank inventory process at a pulp and
paper company. Even with limited instrument redundancy, the offline monitoring
analysis was able to correctly detect and diagnose sensor calibration errors. The
scheme is now undergoing online implementation tests.
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1. INTRODUCTION

Modern chemical plants are usually equipped with
hundreds of instruments and many complex pro-
cessing units. Therefore, even if only one single
element of the whole plant does not function nor-
mally, the whole process performance and opera-
tion can degrade. In order to avoid this and run
the whole process more efficiently, a scheme which
can monitor the “health” of all the instruments
and processing units is necessary from operation
point of view.

The basic idea in process monitoring is to timely
check the newly measured process variables and
to see if they are consistent with the process
models under the fault free situation. If there is
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a large deviation between these two then a fault
is said to be detected. This is usually referred as
“fault detection”. Further, by manipulating the
deviation, the location of the fault can be obtained
by comparing it with the preset fault signatures.
This is known as “fault isolation”.

Two elements are essential for fault detection and
isolation (FDI): process models and process mea-
surement. For the purpose of robust and yet ac-
curate FDI, one has to obtain appropriate process
models. Once the process measurements are found
to be inconsistent with respect to these models,
one can then infer that the instruments or the pro-
cess equipment are abnormal without bothering to
consider the possibility of model inaccuracy. For
example physical relationships, such as mass and
energy balances can be used as a process model for
FDI. For fault diagnosis, process measurements
need to have a level of redundancy or the mod-
els need have extra degrees of freedom, i.e. each
measured process variable can be inferred from
the other measured variables as well as process



models. This type of redundancy is also referred
as “analytical redundancy” (Chow and Willsky,
1984).

Data reconciliation (DR), which has been well
studied in recent years (Mah 1990, Madron 1992,
Crowe 1996, Bagajewicz 2000, Narasimhan and
Jordache 2000), is concerned with the validation
of process variables that satisfy physical con-
straints of the process. However, to obtain accu-
rate estimates, some action has to be taken to
eliminate the influence of gross errors. Hypoth-
esis testing has been extensively used for detec-
tion, isolation and identification of gross errors.
Therefore, gross error detection (GED) is closely
related to DR. Literature surveys of GED can
be found in Narasimhan and Mah (1987), Mah
(1990), Madron (1992), Sánchez and Romagnoli
(2000) and Narasimhan and Jordache (2000).

This paper is organized as follows: section 2 pro-
vides the theoretical background on offline and
online process monitoring system design; the pro-
cess of interest is introduced in section 3; the
detailed description of offline and online analysis
and results are presented in section 4; and the
paper ends with concluding remarks in section 5.

2. SENSOR CALIBRATION ERROR
DETECTION AND ISOLATION

Suppose the fault-free process measurement vec-
tor y(k) ∈ <m can be described by:

y(k) = x(k) + ε(k) (1)

where x(k) ∈ <m is the vector of true values
at time k and ε(k) ∈ <m is a zero mean nor-
mal distributed random vector representing the
measurement noise, i.e. ε(k) ∼ N (0,Σ) where
Σ ∈ <m×m is the covariance matrix of noise
ε(k). In most cases, the noise vector is mutually
independent, i.e. Σ is a diagonal matrix.

Assume that the process model is given by

Ax(k) = 0 (2)

where A ∈ <q×m is a known matrix and q is
the number of constraints. If sensor(s) are suf-
fering from calibration problems, their measure-
ments may be different from x. Different types
of calibration errors as illustrated in Fig. 1 are
possible. In this paper, the most general case - a
bias plus slope error - is considered and described
mathematically as:

yi(k) = αixi(k) + βi + εi(k) (3)

where αi and βi are calibration parameters associ-
ated with slope and bias errors respectively, and xi
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Fig. 1. Illustration of different types of calibration
errors

and yi denote the ith element of vector x and y. In
the fault diagnosis literature (Gertler, 1988), the
slope error is classified as a multiplicative fault,
while the bias error is referred to as an additive
fault. In the fault-free case, αi = 1 and βi = 0.

To detect the sensor calibration error, one can
directly project the constraint matrix A on the
measured variables y(k) and check the residuals
r(k) = Ay(k). Obviously, if the sensors do not
have any calibration error, the residuals will be
only related to the measurement noise, i.e. r(k) =
Aε(k). Therefore, the residuals will be zero-mean,
i.e. r(k) ∼ N (0, Σr). However, if some of the
sensors suffer from calibration errors, the residuals
will not be zero-mean. Thus, one can easily detect
possible sensor calibration error(s) by checking
the mean of residuals.

Once a calibration problem is detected, the next
step is to proceed to the diagnosis stage, i.e. to de-
termine the exact location and type of the sensor
calibration error. In this step, one has to catego-
rize the process variables into two sets: suspected
xs(k) ∈ <m1 and unsuspected xu(k) ∈ <m2 .
Thus, the process model A can be rearranged as
A = [As Au] where As and Au correspond to
xs and xu respectively. Therefore, Eqn. 2 can be
re-written as:

Asxs(k) + Auxu(k) = 0 (4)

with the assumption of

ys(k) = Λxs(k) + ∆ + εs(k)

yu(k) = xu(k) + εu(k)

where Λ ∈ <m1×m1 is an unknown diagonal
matrix and ∆ ∈ <m1 is an unknown vector.

When one applies the above assumption on the
process constraint Eqn. 4, the following can be
obtained:



Table 1. Measured variables of chemical
tank inventory system

Names Descriptions Units

L Tank level %
F1 Flow rate in outflow #1 L/min
F2 Flow rate in outflow #2 kg/min
F3 Flow rate in outflow #3 kg/min
F4 Flow rate in outflow #4 L/min
F5 Flow rate in outflow #5 kg/min
F6 Flow rate in outflow #6 kg/min
P1 Valve position of outflow #1 %
P2 Valve position of outflow #2 %
P3 Valve position of outflow #3 %
P4 Valve position of outflow #4 %
P5 Valve position of outflow #5 %
P6 Valve position of outflow #6 %

r(k) = Auyu(k) + AsΛ−1ys(k)−AsΛ−1∆

= AsΛ−1εs(k) + Auεu(k) (5)

Then, the problem can be formulated in the form
of a least-squares optimization problem as follows:

J = min
Λ,∆

rT (k)r(k) (6)

Please note that only 2m1 parameters need to
be determined by the optimization routine as Λ
is a diagonal matrix. By observing the estimated
value of the diagonal elements of Λ and ∆, one
can determine which sensor(s) are mostly likely
to suffer from calibration errors by comparing the
estimates with the fault-free case.

3. PROCESS DESCRIPTION

The process of interest is a caustic tank inven-
tory system at Millar Western Forest Products
Ltd., Whitecourt, Canada. The process serves as
a buffer to supply the caustic usage for the whole
plant. The simplified schematics of the tank in-
ventory system is illustrated in Fig. 2.

In the process, caustic is delivered by transporta-
tion trucks at periodic intervals depending on the
plant chemical usage. Therefore, the inlet flow rate
is not continuous and hence not measured. There
are 6 independent outlet flow control loops. Each
pipeline supplies caustic to different parts of the
plant and the flow rates in the outlet pipes are
controlled independently.

The level of the tank is not controlled but mea-
sured. The tank is a vertical cylinder tank with a
diameter of 6.8 meters and a height of 6 meters.
Thus the nominal volume is 218 cubic meters. The
level sensor is located 0.45 meters above the tank
bottom. Therefore, the measurable volume of the
tank is about 200 cubic meters. All the related
measured variables are listed in Table 1.

Notice from Table 1, that the six flow rate sensors
do not use the same measurement units. Two

of them (F1 and F4) are volume flow sensors
in L/min, while the other four are mass flow
sensors in kg/min. In this paper, it is assumed
the delivered caustic having a constant density:
ρ = 1.52kg/L.

Furthermore, all six valves are equal percentage
valves, which are essentially nonlinear valves. The
characteristic of equal percentage valve are de-
scribed in the literature (Johnson 1988). All flow
rate, level and valve position data are sampled
every 1 minute, i.e. Ts = 1 min.

4. MONITORING SYSTEM DESIGN AND
DIAGNOSIS RESULTS

4.1 Process model description

4.1.1. Mass Balance The relationship between
the volume of caustic in the tank and the inlet
and outlet flow rates can be represented by the
following equation:

ρ
dV (t)

dt
= ρFin(t)− ρFout(t) (7)

where V (t) is the chemical volume in the tank,
and Fin(t) and Fout(t) are the inlet and outlet
volume flow rates respectively.

In discrete time domain, the above equation can
be written as:

r(k) = V (k)− V (k − 1)− (Fin(k)− Fout(k))Ts

= 0 (8)

where r(k) is defined as the “mass balance resid-
ual”. This discrete-time representation implies
that the inlet and outlet flow rates do not change
in between samples. In this process, since the sam-
pling interval is relatively large, this assumption
does not hold most of the time. Therefore, when
this discrete-time model is used, small deviation
of the residuals from zero can be expected due to
this systematic model-plant mismatch (MPM).

Fout(k) can be easily calculated by summing all
the outlet flow rates. V (k) can also be obtained
from the tank level sensor L and a priori knowl-
edge of the total volume of the storage tank. How-
ever, Fin(k) is not measured. Therefore, according
to the essential elements of process monitoring
mentioned in the introduction section, the process
measurements are not “redundant”.

Nevertheless, this does not mean that one can
not design a monitoring scheme on the current
system. Once we take a closer look at the current
system, the operation can be categorized into two
stages - “during delivery” and “zero delivery” -
with different Fins as below:
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Fig. 2. The schematics of chemical tank inventory process at Millar Western Forest Products Ltd.

Fin(k) =
{

0, zero delivery
unknown, during delivery (9)

Thus, during the period of “zero delivery”, one
exactly knows Fin even though there is no mea-
surement. Therefore, when there is no delivery, the
“redundancy” condition can be satisfied. One can
make use of this “redundancy” for the purpose of
process monitoring. The details are shown later in
this paper.

4.1.2. Valve characteristics All control valves in
this process are equal percentage valves. Theoreti-
cally, the flow rate and valve position should obey
the following relationship (Johnson 1988):

F = FminRS/Smax (10)

where R =
Fmax

Fmin
is referred to as rangeability,

Fmax and Fmin are the maximum and minimum
flow rates respectively, F is flow rate passing
through the valve, and S and Smax are the stem
position and maximum stem position.

By taking logarithm of Eqn. 10, we obtain:

log F =
S

Smax
· log R + log Fmin (11)

By doing this, the nonlinear equal percentage
valve characteristic has been transformed into
a linear framework. Both the flow rate F and
the valve position S/Smax are measured in this
system. Therefore, there are some measurement
redundancies with respect to the valve character-
istic. The estimates of the unknown parameters
log R and log Fmin can be obtained through least
squares estimation by using archived process data
of flow and valve position measurements, provided
these measurement do not contain any bias. Once
the parameter estimates have been obtained, the

valve equations provide the necessary redundancy
for fault diagnosis even during delivery periods.
Due to limited space, the details of the parameter
estimates are omitted.

However, the models of control valves are different
from the mass balance model in the following
aspects. Firstly, unlike mass balance, valve char-
acteristic cannot be guaranteed to be valid for
ever. Due to wear and tear, the parameters of the
valve model may change with time. This can be
treated as a parametric fault and distinguished
from sensor biases using the available data. The
diagnosis problem becomes more complex, but it
is solvable. Secondly, the mass balance equation
is known exactly. But for the valve characteris-
tics, the unknown parameters, such as log R and
log Fmin, need to be determined from the data.
Because of these differences, these two types of
models need to be treated differently in the later
analysis.

4.2 Offline analysis for detection and diagnosis of
sensor calibration errors

After selecting the data portion corresponding to
the “zero delivery” case, Eqn. 8 becomes:

r(k) = V (k)− V (k − 1) + Fout(k)Ts (12)

where Fout(k) =
∑

i=1,4

Fi(k) +
1
ρ

∑

i=2,3,5,6

Fi(k) and

V (k) = 200, 000× L(k).

Thus, the mass balance residual at each time in-
stant can be obtained. The mass balance residual
for a period of 40,000 data points is shown in
Fig. 3. From this figure, note that the mean of
the residual is negative, and it is not stationary
throughout the range. After consulting with the
process engineer and confirming that no leakage is
taking place, we suspected that the problem may
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Fig. 3. Mass balance residual before calibration
correction

possibly be due to flow sensor calibration error.
The target was then to find out which sensor(s)
have the calibration problem and what is the
magnitude of this calibration problem.

In order to confirm the suspicion, it is assumed
that the level sensor is accurate, while all the flow
sensors may suffer from bias plus slope calibration
errors, i.e. F f

i (k) = αiF
◦
i (k) + βi + εi(k), ∀ i =

1, · · · , 6, where F f
i (k) and F ◦i (k) denote the ith

measured and true flow rates respectively, αi and
βi are constant coefficients, and εi(k) are zero
mean normally distributed measurement noise. If
the ith flow rate sensor works fine, then ideally
αi = 1 and βi = 0. Therefore, the mass balance
equation can be further written as

r(k) = V (k)− V (k − 1) +
6∑

i=1

Ts

αi
F f

i (k)

−
6∑

i=1

βi · Ts

αi
=

6∑

i=1

Ts

αi
εi(k) (13)

Since all the βi are included in the same sum-
mation operator, one cannot distinguish the βis

from each other. Thus, define β =
6∑

i=1

βi

αi
. From

the objective function shown in Eqn. 6, it is
simply a least-squares problem. Then, from Eqn.
13 through the least-squares estimation, the esti-
mated coefficients and their confidence limits are
shown in Table 2.

Since the estimated value of β is small in compar-
ison with the flows, it can be deduced that there
are no additive biases in any of the flow sensors
(in the absence of bias cancellations). Also from
the estimated values of αs for all sensors except
F2, it can be inferred that the corresponding flow
sensors do not have a slope error. The estimated
value of α2 which is significantly greater than
unity, indicates a slope error in the corresponding
flow sensor.

The afore-mentioned analysis results were further
confirmed by the process control engineer. The
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Fig. 4. Mass balance residual after calibration
correction

problem was traced to inconsistency in the sensor
ranges in the DCS system and the sensor. It
was determined that the flow rate sensor F2 was
changed and re-calibrated to the range of 0 -
15 L/M. Whereas, the conversion range in the
DCS system still remained at the original 0 - 25
L/M. Therefore, this gives the scaling factor to be
25/15 = 1.67, which is close to the estimate 1.73.
The residual after calibration correction shown in
Fig. 4 is more or less zero mean.

4.3 Online monitoring design and implementation

In order to provide online monitoring scheme for
the caustic tank inventory process, the possible
abnormal situations that are considered in this
paper are listed below:

• Sensor faults: the whole process is equipped
with 13 sensors. All of these sensors could
potentially malfunction during the operation.

• Process faults: this type of fault include any
malfunction of the process equipment other
than instrument errors, e.g. tank leakage.

To correctly detect and further isolate the afore-
mentioned faults, analytical redundancy has to be
used. In this project, there are totally 7 equations
representing various relationships among mea-
sured variables. They consist of one mass balance
and six valve characteristic equations. For detec-
tion, as long as one of these equations becomes
invalid, one can infer that a fault has occurred,
i.e. a fault is detected. For isolation, since differ-
ent types of faults affect different equations, one
can determine the root cause by observing which
equations are affected. Table 3 shows how differ-
ent faults affect different equations. The following
remarks regard to Table 3:

• The Y-axis denotes possible faults.
• The X-axis denotes different equations - MB

stands for mass balance and Vi represents the
valve characteristic of valve i.

• ‘×’ denotes the intersection where a fault
affects the corresponding equation.



Table 2. Estimated calibration coefficients

α1 α2 α3 α4 α5 α6 β

Estimates 1.0410 1.7354 1.0437 1.0532 1.0084 1.0478 -0.2708
Upper bound 1.2808 2.0551 1.2129 1.3327 1.1965 1.3356 1.2430
Lower bound 0.8011 1.4157 0.8745 0.7737 0.8203 0.7600 -1.7846
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Fig. 5. Residuals when an alarm was generated

Table 3. Fault isolation logic

MB V1 V2 V3 V4 V5 V6

L ×
F1 × ×
F2 × ×
F3 × ×
F4 × ×
F5 × ×
F6 × ×
P1 ×
P2 ×
P3 ×
P4 ×
P5 ×
P6 ×
Process ×

• If an intersection is blank then there is no
fault affecting the corresponding equation.

• Different faults affect different combinations
of equations. Thus, if one or more equations
are not valid, one can look up Table 3 to find
out the root cause of the fault.

• One cannot distinguish the difference be-
tween level sensor and process faults because
they affect the process model in the same way
due to the limited degrees of freedom.

On May 29 2003, one alarm was generated by
the afore mentioned monitoring scheme. Fig. 5
shows the 7 residuals during that period of time.
From Fig. 5, the valve characteristic equation of
flow loop #5 was found to be invalid as well as
the mass balance residual, while the other valve
characteristic equations are still valid. Therefore,
according to the fault isolation logic presented in
Table 3, the flow sensor F5 was suspected to have
measurement problem during that period of time.
This online analysis result was also confirmed by
process control engineer.

5. CONCLUDING REMARKS

In this paper, the detection and diagnosis of sensor
calibration error has been proposed and experi-
mentally evaluated on an industrial caustic tank
inventory monitoring process at Millar Western
Forest Products Ltd. The proposed method uses
a first order model to represent the calibration
error and applied optimization routine to perform
diagnosis of this problem. The effectiveness of this
method has been proved by successfully isolating
a mis-calibrated sensor. It is shown that even if
additive faults cannot be isolated with the given
level of redundancy in a system, it is possible to
isolate multiplicative faults, by suitably exploiting
the nonlinear effect of these faults. In addition, an
online monitoring scheme has been designed and
implemented by making use of the process model
structure presented in Table 3. The effectiveness
of this online monitoring scheme has also been
verified.
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