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Abstract: The adsorption isotherm is the most important parameter in chromatographic
separation process. In this paper, a numerical isotherm estimation method based on neural
networks is proposed. As not the absolute values but the slopes of the isotherms are most
important in process simulation and optimization, the slopes of the isotherm instead of
the absolute values are taken as the outputs of the neural network. A tailored method is
used to initialize the neural network. The parameters of the neural network are adjusted
to minimize the difference between the simulated and the measured profiles. The issue
of the design of the experiments, which decides the amount of the isotherm information
contained in the profiles, is discussed. Simulation and experimental studies illustrate the

potential of the proposed method.
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1. INTRODUCTION

The adsorption isotherm describes the distribution of
the solute between the two phases of a chromato-
graphic system. Different components can be sepa-
rated because they have different adsorption isotherms.
In analytical applications of chromatography the con-
centration of the analyte in the mobile phase usu-
ally is very small. Therefore the assumption of lin-
ear isotherms is justified for these processes. In most
preparative applications, however, the concentration
range of interest is wide and therefore the linearity
assumption is no longer valid. The functional rela-
tionship between the equilibrium concentrations in the
two phases can become very complex, depending on
the concentration range, the retention mechanism, and
the phase system. Furthermore, in the case of multi-
component mixtures, an additional complexity results
from the competition between the different compo-
nents for interaction with the stationary phase.

The identification of the adsorption isotherm is very
important for applying model-based methods to the
optimization and the operation of chromatographic
separation processes. Adsorption isotherms can be de-
termined by static and dynamic experimental meth-
ods (Ruthven, 1984; Guiochon et al., 1994). Static
methods consist of near-equilibrium measurements
of the extent of adsorption at specified, constant
adsorbate concentrations. The extent of adsorption
has been measured by methods including microbal-
ance gravimetry, infrared absorption, and thermo-
gravimetry. Static methods are tedious and time-
consuming and require a large amount of mate-
rial. Dynamic methods consist of frontal analysis
(FA) (James and Phillips, 1954; Schay and Szekely,
1954; Gluckauf, 1955), frontal analysis by character-
istic points (FACP) (Gluckauf, 1947), peak-maxima
methods (Kipping and Winter, 1965), elution by char-
acteristic point (ECP) (Cremer and Huber, 1961), and
step-and-pulse (minor disturbance) methods (Helfferich
and Peterson, 1963). Among them, the frontal analy-



sis (FA) and step-and-pulse can be extended to mea-
sure multicomponent isotherms. The simple wave
method can also be used for the determination of
binary isotherms in cases in which the deviation of
isotherm from the Langmuir model is moderate (Ma
et al., 1990). These experimental methods need large
volumes of concentrated solutions. This is expensive
for valuable substances. Moreover, the long exper-
imental period is another drawback. An alternative
approach is to approximate the adsorption isotherm
numerically. The isotherm functional form is chosen
at the outset. Then by minimizing the difference be-
tween calculated and experimental profiles, the pa-
rameter values are adjusted until a best fit to the
experimental data is found. Dose et al. determined
the equilibrium isotherms of N-benzoyl-(D,L)-alanine
and N-benzoyl-(D,L)-phenylalanine on immobilized
bovine serum albumin from the peak shapes of single
component (Dose et al., 1991). They used a modi-
fied simplex algorithm to find the best parameters of
Bi-Langmuir isotherms and found a good agreement
with the isotherms determined with frontal analysis.
James and Sepllveda developed a more sophisticated
algorithm for the estimation of the isotherm param-
eters by the inverse method (James and Sepilveda,
1994; James et al., 1999). They used the conjugate
gradient algorithm for the minimization of the ob-
jective function that - besides the conventional least
squares - took into account the difference between
the first moments of the peaks, as well. This algo-
rithm was applied to the estimation of the competi-
tive Bi-Langmuir and Moreau isotherms of Ketopro-
fen enantiomers on a Chiracel OJ column, as well
as of the competitive Langmuir isotherm of benzyl
alcohol and 2-phenylethanol on a Cig column from
individual band profiles. The competitive isotherms
estimated with the inverse method agreed well with
the data obtained from conventional methods. Felinger
et al. derived the parameters of competitive isotherms
from the band profiles of a racemic mixture of the 1-
phenyl-1-propanol enantiomers by means of a nonlin-
ear least-squares method (Felinger et al., 2003). The
isotherms determined from the overloaded band pro-
files matched extremely well the isotherms determined
by frontal analysis.

The numerical methods transfer the experimental ef-
fort to the computational effort. Compared with the
experimental methods, they are more economical be-
cause only a small amount of concentrated solution
is used. At the same time, the computational time is
shortened by using high-speed computers. However

the functional form of the isotherm must be assumed
prior to the numerical approximation. If there is a
structural mismatch between the assumed functional
form and the actual isotherm, the numerical methods
cannot guarantee a good result. In practice, several
isotherm forms should be tried in order to estimate the
most suitable model. On the other hand, a universal
form of the isotherm should be used when there is no
knowledge about the isotherm. This leads to the idea
of using a neural network to represent the isotherm
model and of estimating the neural network parame-
ters from the experimental band profiles. This idea was
first described in (Daniel et al., 2002). In this paper,
a systematic way to use neural network to identify
isotherm is introduced.

2. THEORY
2.1 Chromatographic separation process

In a batch chromatographic separation process, one
charge of the mixture to be separated is injected
into the column together with a suitable solvent. The
charge is carried through the column by continuously
injecting additional desorbent. Due to the different ad-
sorption affinities, the different components have dif-
ferent migration velocities and are gradually separated
while moving along the column. The concentrations
of the components are measured at the outlet of the
column (Fig. 1).

The mathematical modelling of the chromatographic
separation process has been extensively described in
the literature by several authors, and is in most cases
based on a differential mass balance. The most general
1-dimensional model, which takes into consideration
all important effects, is the general rate model:
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These two partial differential equations describe the
concentrations in the mobile phase (cj) and in the
stationary phase (g; and cp;). Adsorption isotherms
are used to relate the concentrations g; (in the solid
of the stationary phase) and cp; (in the liquid of the
stationary phase):
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Fig. 1. lllustration of a chromatographic separation process.



It should be noted that in the isotherm equations,
the concentration cp; is usually denoted by c;. This
does not mean that they are the same. An efficient
numerical solution for the general rate model incor-
porating arbitrary nonlinear isotherms was proposed
by Gu (Gu, 1995). The mobil phase and the stationary
phase are first discretized using the finite element and
the orthogonal collocation methods respectively. The
resulting ODE system is solved using an ODE solver
that is based on the Gear’s method. The numerical
solution yields the concentrations of the components
in the column at different locations and times. The
concentrations at the outlet of the column are used
to generate the band profiles. From the model (1),
it is obvious that the derivatives dq;/oc; and not the
absolute values of the isotherm are critical.

2.2 Neural network isotherm

Two-layer neural networks with sigmoidal neurons in
the hidden layer and linear neurons with bias in the
output layer are used to describe the isotherms. The
outputs of the neural networks are the slopes of the
isotherms 0q;/oc;, instead of the values g;. Fig. 2
depicts the structure of a simple neural network for
binary chromatography.
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Fig. 2. Structure of neural network isotherm model.

2.3 ldentification of the neural network isotherm

The identification principle is shown in Fig. 3. The
neural network isotherm is used in the general rate
model to simulate the band profiles. The experimental
band profiles are compared with the simulated band
profiles by evaluating the distance function
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where i is the index of component, j is the index of the
sampling points. The parameters of the neural network
isotherm are adjusted to minimize the distance, using
the Levenberg-Marquardt method with line-search.

A simple method is proposed to initialize the neural
network isotherm. The weights of the input layer are
set to random numbers in (0,1). The weights of the
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Fig. 3. Principle of neural network-based isotherm
identification.

output layer are set to 0. The biases of dg;i/dc; (i = j)
are set by a trial and error procedure. They are adjusted
until the simulated band profiles have roughly the
same position as the experimental band profiles. The
biases of 0g;/dc; (i # j) are set to arbitrary negative
numbers in (—1,0). The steps in the solution of the
identification problem are as follows:

(1) Analysis of the chromatographic process and de-
sign of proper experimental conditions, i.e. the
operating parameters, the input concentration,
and the choice of multi injection or single injec-
tion. Running the experiment and measuring the
band profiles.

(2) Selection of the neural network structure. Be-
sides the above structure, other more complex
structures are also possible.

(3) Choice of the number of neurons in the hidden
layer. The number of the neurons in the hidden
layer decides the ability of the neural network
to approximate a nonlinear function. An iterative
procedure is used to determine this number.

(4) Estimation of the parameters using the Levenberg-
Marquardt method with line-search.

(5) Validation of the neural network isotherm by
comparing simulations of eq. (1) to measured
data.

3. RESULTS AND DISCUSSION

The neural network isotherm was first checked in a
simulation study, and then it was applied to estimate
isotherms from experimental data.
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Fig. 4. Overloaded band profiles of the single injec-
tion, 1:1 feed mixture.



3.1 Simulation study

In the simulation study, an separation process which
exhibits a strongly nonlinear adsorption isotherm was
considered (Hanisch, 2002). The competitive adsorp-
tion to the solid phase of the two components is de-
scribed by a Bi-Langmuir isotherm:
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By simulating the general rate model with the Bi-
Langmuir isotherm band profiles were acquired. They
are regarded as the “experimental” band profiles in
the identification procedure. Fig. 4 shows the band
profiles for an overloaded injection. Different numbers
of neurons in the hidden layer were tried. The results
are listed in table 1. From this, the number of the
neurons in the hidden layer is set to three.

Table 1. Estimation results for different
numbers of neurons in the hidden layer

Number of neurons  Residual  Iterations  Function
in the hidden layer %500 count
1 9.2085 29 438
2 0.1886 33 714
3 0.1184 40 1087
4 0.0409 49 1625

The estimated neural network isotherms were com-
pared with the original Bi-Langmuir isotherm in
Fig. 5. The neural network isotherm approaches the
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Bi-Langmuir isotherm in all four derivatives. The dif-
ference between them can be explained as insufficient
isotherm information contained in the “experimental”
band profiles. To show this, all the combinations of
concentrations which are involved in the numerical
solution of the model (1) are depicted in Fig. 6. The
“experimental” band profiles are only the concentra-
tions at the outlet of the column. Most of the points
are along a closed curve in the concentration space.
To improve the neural network isotherm, the exper-
iment should be specially designed so that enough
information is contained in the band profiles. As a first
attempt, a multi injection was simulated. The injection
consisted of three pulses, as shown in Fig. 7. For every
pulse, there is different feed concentration ratio (1:1,
3:1 and 1:3). The concentration combinations in the
numerical solution are shown in Fig. 8. Compared
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Fig. 6. Concentration combinations in the column,
single injection, 1:1 feed mixture.
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Fig. 5. Comparison of the Bi-Langmuir isotherm and the estimated neural network isotherms, black surface: Bi-
Langmuir isotherm, light grey surface: neural network isotherm (single injection), dark grey surface: neural

network isotherm (multi-injection).
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Fig. 7. Band profiles of the multi injection, (1:1), (3:1)
and (1:3) feed mixture.
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Fig. 8. Concentration combinations in the column,
multi-injection.

with the single overloaded injection, a much larger
area is covered. The same neural network isotherm
model (3 neurons in the hidden layer) was used in the
identification procedure. As Fig. 5 shows, the neural
network isotherm model was remarkably improved.

3.2 Estimating from experimental data

The experimental data was supplied by the chair of
process and plant design (Lehrstuhl fiir Anlagentech-
nik, Universitat Dortmund, Germany). The separation
of EMD53986 on a chiral stationary phase is consid-
ered. For the measurement of the EMD53986 a prepar-
ative UV detector cell was used. The band profiles
were calculated from the UV signals.

The experimental data consists of five sets of band
profiles for different injection volumes. The neural
network isotherm was identified from the most over-
loaded band profiles (Fig. 9) and was tested using
the remaining band profiles. The results are shown
in Fig. 9 and Fig. 10, and compared with an opti-
mized Bi-Langmuir isotherm. In Fig. 9, the simulated
band profiles using the neural network isotherm match
the experimental band profiles well, while with the
Bi-Langmuir isotherm large errors are seen because
of its fixed structure. In Fig. 10, the neural network
isotherms give a better prediction in the overlapping
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Fig. 9. Comparison of measurement and estimation for
injection volume of 120 ml, solid lines: measure-
ment, dashed lines: estimation of neural network
isotherm (4 neurons in the hidden layer), dotted
lines: estimation of Bi-Langmuir isotherm.

region than the Bi-Langmuir isotherm. This is impor-
tant for model-based control and optimization because
the purities of the products are determined by the over-
lap of the profiles.

4. CONCLUSIONS

Numerical isotherm identification methods have at-
tracted considerable attention in preparative chro-
matography. This paper studies the possibility of using
neural networks as the isotherm functional form in the
numerical methods. The isotherm slopes are generated
as the outputs of a neural network. By increasing the
number of hidden layer neurons the neural network
can represent any adsorption isotherm. The simula-
tion and experimental studies prove that adsorption
isotherms can be estimated well from band profiles by
using neural networks as the isotherm functional form.
The key issue is to design the experiment to generate
enough information for the identification. The opti-
mization of the experiment will be the focus of future
research.

ACKNOWLEDGEMENTS

The work of the first author was supported by a schol-
arship of the NRW Graduate School of Production
Engineering and Logistics at Universtitdt Dortmund.
This support is very gratefully acknowledged.

REFERENCES

Cremer, E. and H. F. Huber (1961). Measurement of
adsorption isotherms at high temperature with the
help of gas-solid elution chromatography. Angew.
Chem., 73, 461-465.

Daniel, G., J. Dienstuhl, S. Engell, S. Felske, K. Goser,
R. Klinkenberg, K. Morik, O. Ritthoff and
H. Schmidt-Traub (2002) Novel learning tasks,
optimization, and their application. In: Advances



Concentration [g/1]

0 1000 2000 3000
a Time [s]

Concentration [g/l]

0 1000 2000 3000
c Time [s]

,"‘\'i
3 -
e
s2
8
c ST
(@]
O ¢
S
0
0 1000 2000 3000
b Time [s]
3
=
52
IS
<
81
c
@)
@)
0 =
0 1000 2000 3000
d Time [s]

Fig. 10. Model validation for injection volumes of 100 ml, 80 ml, 60 ml and 40 ml, solid lines: measurements,
dashed lines: simulation of neural network isotherm, dotted lines: simulation of a Bi-Langmuir isotherm.

in Computational Intelligence: Theory and Prac-
tice (H.-P. Schwefel, 1. Wegener and K. Wein-
ert, Ed.). Chap. 8, pp. 278-294. Springer Verlag,
Berlin.

Dose, E. V., S. Jacobson and G. Guiochon (1991). De-
termination of isotherms from chromatographic
peak shapes. Anal. Chem., 63, 833-839.

Felinger, A., A. Cavazzini and G. Guiochon (2003).
Numerical determination of the competivite
isotherm of enantiomers. Journal of Chromatog-
raphy A, 986, 207-225.

Glickauf, E. (1947). Theroy of chromatography: Part
I1. Chromatography of a single solute. J. Chem.
Soc., 1302-1308.

Gliickauf, E. (1955). Theory of chromatography: For-
mulas for diffusion into spheres and their appli-
cation to chromatography. Trans. Faraday Soc.,
51, 1540.

Gu, T. (1995). Mathematical Modelling and Scale
Up of Liquid Chromatography. Springer Verlag,
New York.

Guiochon, G., S. Golshan-Shirazi and A. Katti (1994).
Fundamentals of Preparative and Nonlinear
Chromatography. Academic Press, Boston.

Hanisch, F. (2002). Prozessfiihrung Préaparativer Chro-
matographieverfahren (Operation of preparative
chromatographic processes). Dr.-Ing. Disserta-
tion. Shaker Verlag, Aachen. (in German)

Helfferich, F. G. and D. L. Peterson (1963). Chro-
matographic methods for sorption isotherms and
phase equilibria. Science, 142, 661-662.

James, D. H. and C. S. G. Phillips (1954). The chro-
matography of gases and vapours: Part Ill. the
determination of adsorption isotherms. J. Chem.
Soc., 1066-1070.

James, F. and M. SepUlveda (1994). Parameter identi-
fication for a model of chromatographic column.
Inverse Problems, 10, 1299-1314.

James, F., M. Sepulveda, F. Scharton and I. Quinones
(1999). Determination of binary competitive
equilibrium isotherms from the individual chro-
matographic band profiles. Chemical Engineer-
ing Science, 54, 1677-1696.

Kipping, P. J. and D. G. Winter (1965). The measure-
ment of adsorption isotherms by a gas chromato-
graphic technique. Nature, 205, 1002-1003.

Ma, Z., A. Katti, B. Lin and G. Guiochon (1990).
Simple wave effects in two-component nonlinear
liquid chromatography. application to the mea-
surement of competitive adsorption isotherms. J.
Phys. Chem., 94, 6911-6922.

Ruthven, D. M. (1984). Principles of Adsorption and
Adsorption Processes. Wiley, New York.

Schay, G. and G. Szekely (1954). Gas adsorption mea-
surements in flow systems. Acta Chim. Hung.,
5, 167-182.



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



