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Abstract: Monitoring of chemical processes is becoming increasingly difficult as a result of 
growing complexity and larger scale of operation. In this paper, Kohonen self-organizing map s 
(SOM) is used to monitor the operation of a lab-scale distillation column and to identify process 
states. SOM projects high -dimensional data to a lower two dimensional grid maps while 
preserving the metric relations of the original data. The results from this paper show that  using this 
property of SOM, process monitoring can be performed effectively through observing time series 
trajectory of process operations on SOM while fulfilling the objective of state identification at the 
same time. Occurrence of a fault will result in the deviation from the normal operating trajectory. 
Root cause identification can also be performed through simple visualization of component planes. 
Copyright © 2004 IFAC  
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1. INTRODUCTION 
 
Incidents occurred in the past have shown the 
catastrophic consequences of improper monitoring of 
chemical processes; the resulting effect is not merely 
the loss of capital from shar eholders but also injuries 
and loss of precious human lives. There is an 
increasing need for monitoring technique so that 
abnormal situations can be detected in the shortest 
amount of time. Over the past few decades, a lot of 
monitoring techniques have been introduced e.g. 
enhanced trend analysis, principal-component 
analysis, artificial neural-networks, etc; some have 
been implemented in industry successfully  
(Venkatasubramanian, et al ., 2003), but what is still 
lacking in the chemical plant is a powerful 
visualization technique that help plant personnel to 
visualize the evolution of a process and detect 
abnormal situations efficiently. These situations are 
worsening with the growing scale and complexity of 
chemical processes; at any instant, the number of 
variables that plant personnel need to track can easily 
range in the thousands.  Due to the above mentioned 
reasons, monitoring through conventional control 
charts has become less effective and there is a need 
for new and effective methods to help plant personne l 
to monitor the progression of chemical processes.   

 
In this paper, Self-Organizing Map s (SOM) has been 
used for the purpose of monitoring of chemical 
processes. SOM is a powerful projection method 
which is capable of projecting high dimensional data 
onto a lower two dimensional grid while preserving 
the metric relationships of the original data. The 
effort to perform process monitoring is  reduced many 
fold by SOM as compared to conventional methods  
since visualizat ion is performed on a much lower two 
dimensional grid. The organization of this paper is as 
follows: A brief description of the underlying 
concepts behind SOM is presented in Section 2. 
Section 3 presents the review of SO M-based process 
analysis while Section 4 presents the method of using 
SOM for process monitoring and state identification. 
Monitoring and fault detection through SOM for a 
lab-scale distillation column is presented in Section 
5.  
 

 
2. THE SELF ORGANIZING-MAP 

 
SOM was first proposed by Kohonen (Kohonen, 
1981) and has been widely used since then. SOM 
algorithm employs nonparametric regression 



 

technique which involves the fitting of discrete, 
ordered reference vectors, to the distribution of input 
feature vectors. The dimensions of the prototype 
vectors are equal to the dimensions of input vectors. 
The hexagonal lattice type has been employed as it is 
more effective for visualization. Consider an input 
vector, x

r
, given by  
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Each imr also represents a node on a hexagonal 

output grid. The  map im
r

which gives the smallest 

Euclidean distance with x
r

 is defined as the best-
matching unit (BMU), represented here as c, 
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During the training of the SOM, the reference weight 
vector im

r
will be updated and the topological 

neighbors around the BMU are updated as well by 
moving them towards the training sample x

r
. The 

SOM learning rule is given by  
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where )(thci  is the neighborhood function and 

)(tα is the learning rate factor. It is necessary that 

cih reduces to zero as the training proceeds to 

guarantee convergence. A large value of α is 
employed initially and usually decreases 
monotonically with time (Kohonen, 2000). During 
the training phase, SO M will fold onto the pattern 
formed by the training data and neighboring units are 
pulled nearer together because of the neighborhood 
relations. Thus neighboring units are in a sense, 
similar to each other. The SOM is usually visualized 
using the U-matrix (Ultsch, 1990), where distances 
of each map unit to its corresponding neighbors are 
calculated and displayed through gray or color -
scales. A  similar technique can also be applied to 
visualize the individual components (or variables) so 
that correlations am ong components can be 
investigated and abnormality can be detected at the 
variable level. The combinatory use of U-matrix and 
component planes can so fulfill  the objectives of 
monitoring of chemical processes on both a plant 
wide and variable level. 
  

 
3. SOM-BASED PROCESS ANALYSIS 

 
SOM has been widely used as a visualization tool for 
unsupervised learning. (Vesanto, 2002). It has 
several powerful features which make it popular for 
the task of process monitoring. SOM implements an 
ordered dimensionality reduction through the 
mapping of the input feature vectors while preserving 
the most crucial topological and metric relationships 
of the original data, hence producing a similarity map 
of the input feature vectors The self-organizing maps 
is readily explainable, simple and easy to visualize 
(Vesanto, 1999). SOM has found successes in 
diverse fields of applications. Li Xiao, et al. (2003) 

used component plane presentation of SOM for 
microarray data analysis of yeast cells and human 
breast tumors, permitting the visualization of 
transcriptional changes of tumor sample at a genome 
scale. López-Rubio, et al . (2003) proposed a self-
organizing neural model that performs principal  
components analysis. Kolehmainen, et al.(2003) used 
SOM and Sammon’s mapping to identify  the growth 
phases of brewer’s yeast. In their work, the exhaust 
gas from the fermenter was measured with ion 
mobility spectrometry and a new growth phase for 
the fermentation process has been identified in 
addition to the four phases reported in the literature. 
While the previous applications of SOM are mainly 
on data clustering, some recent applications of SOM 
on process monitoring and fault diagnosis are 
presented in the next subsection. 
 
Deventer, et al. (1996) demonstrated how 
disturbances in a plant for froth flotation of minerals 
can be visualized with SOM. They track the changes 
in operating conditions through an on-line computer 
system utilizing features extracted from froth images 
and visualize the degree of dispersion of the various 
input feature vectors through SOM. Chan, et al .  
(2001) presented a modified version of Kohonen 
SOM called constrained Kohonen networks (CKN) 
to overcome the problem of redundant sensors by 
constraining the weight vectors in the parity space. 
Srinivasan and Gopal (2002) showed how SOM can 
be used to extract operating information from 
operating data from a fluidized catalytic cracking 
unit. Jämsä-Jounela,  et al. (2003) presented a SOM 
based fault diagnosis system for a smelter based on 
heuristic rules. SOM has been used to determine the 
coefficient for oxygen enrichment and detection of 
aggregations in various part of the plant after 
principal component analysis. Abonyi, et al., (2003) 
applied SOM to a polyethylene process for product  
quality estimation. They developed multiple local 
linear model for the Philips polyethylene process 
through piecewise linear regression with SOM. More 
than 4000 scientific publication on SOM have been 
written to date (Kohonen, 2001) and the majority of 
them deal with the classification of input feature 
vectors and data mining. A comprehensive reference 
of SOM research has been compiled by Kaski, et al. ,  
(1998). In this work, we propose a methodology for 
process monitoring and state identification through 
the use of SOM.  
 
 

4. PROPOSED SOM -BASED MONITORING 
METHODOLOGY 

 
The proposed methodology can be summarized as 
follows. Measurements of the normal operating 
process will first be collected and range normalized 
before being projected onto the U-matrix of SOM. 
The clusters formed on the U-matrix are interpreted 
and different states , which correspond to different 
operating phases is identified. Different clusters will 
be separated by large distances, modeled in the 
SOM’s U-matrix by a border of darker color , 
predefined by the user. During the on-line 
monitoring phase, the trajectory being formed by the 



 

real time data will follow the trajectory of the normal 
operating data and significant deviation from the 
normal operating trajectory can be regarded as a 
fault. Duration of operation can be read from the size 
of the hexagon on the U-matrix, in which the size of 
the hexagon is directly proportional to the duration of 
operation. State identification of the process is done 
through the identification of the location of the 
projected operating data (data hit) on SOM. The 
proposed methodology is illustrated next through a 
case study. 
 
 
5. MONITORING OF DISTILLATION-COLUMN 

OPERATION 
 
The proposed method has been tested on an Armfield 
lab-scale distillation column. The schematic of the 
distillation column is shown in Figure 1. The 
distillation column is of 2 meters height and 20cm 
width and has 10 trays, where the feed enters at tray 
4. The system is well integrated with a control 
console for controllers setting and data recording. 
Cold startup of the distillation column with ethanol -
water at 30% v/v as bottoms is performed following 
the standard operating procedu re (SOP) as shown in 
Table 1. The feed passes  through a heat exchanger 
before being fed to the column. 19 variables --- all 
tray temperatures, reboiler and condenser 
temperature, reflux ratio, top and bottom column 
temperature, feed pump power, reboiler heat duty, 
cooling water inlet and outlet temperature - are 
measured at 10-second interval . The startup normally 
takes  two hours and different faults such as sensor 
fault, failure to open pump, too high a reflux ratio 
etc., can be introduced at different states of 
operation.  
 
The constructed SOM for a normal startup of 
distillat ion column is shown in Figure 2. The fully 
trained SOM consists of 30 x 8 map units and its 
corresponding bar-plane is shown in Figure 3. Each 
unit of the bar-plane is a representation of the 
magnitude of the 19 variables of the distillation 
column after normalization.  Two observations can be 
seen from Figure 2. Firstly, the startup process has 
been observed to follow a trajectory on the U-matrix. 
Each label represents the corresponding operating 
time (x 10 seconds). Secondly, it  has been observed 
that any significant deviation from the normal 
operating trajectory is an indication of a faulty 
operation.  
 
By comparing Figure 2 and Figure 3, even without 
any prior knowledge on the process,  one can deduce 
that during the normal run, most of the variables are 
increasing over time as represented by the trajectory 
on the U-matrix as indicated in Figure 2. Different 
clusters which correspond to different operating 
phases can be defined for each U-matrix or 
component plane constructed. As can be seen from 
the U-matrix on Figure 2, four clusters of operations 
can be identified for the startup of distillation 
column, each representing different phases of the 
start -up of distillation column. The border of each 
cluster is separated by map units of darker color   

 

 
Figure 1. Schematic of the lab scale distillation 
column.   
 
 
Table 1 Standard operating procedures (SOP) for the 

startup of distillation column 
 

Distillation column startup SOP 
1. Set all controllers to manual 
2. Fill reboiler with liquid bottom product 
3. Open reflux valve and operate the column on 

full reflux 
4. Establish cooling water flow to condenser 
5. Start the reboiler heating coil power 
6. Wait for all of the temperatures to stabilize 
7. Start feed pump 
8. Activate reflux control and set reflux ratio 
9. Open bottom valve to collect product  
10. Wait for all the temperatures to stabilize 
 
 
which can be interpreted as a boundary marker 
between different clusters. The color code on the 
right tells the exact distance among neighboring 
units, which were trained using Gaussian 
neighborhood function during the batch training 
phase. Operating  trajectory  from the starting of the 
heating process till time 3630s can be regarded as a 
separate state from the rest of the data points – 
reboiler heating phase. Time series 3630s to 3820s is 
the boiling phase where evaporation of the bottom 
liquid takes place and there is  an abrupt rise of 
temperature in the distillation tower. Time series 
3840s to 4800s correspond to the full reflux heating 
phase before the feed was introduced and thus 
causing a switch in operating phase as shown from 
time trajectory from 4930s to 6340s, which is 
representing the steady state operating phase of the 
tower. 
 
The use of SOM to monitor faulty operations is  
shown in Figure 4 and Figure 5. Scenario 1: Figure 4 



 

 
Figure 2. Trajectory of a normal run on U-matrix. 

Labels indicate the corresponding operating time 
(x10 seconds).  

 

 
Figure 3. Bar-plane for the trained self-organizing 

maps.  
 
shows the trajectory of a faulty run. Two trajectories 
can be observed from Figure 4, the light solid 
trajectory is the trajectory of a normal run whereas 
the dark solid line is the trajectory of the faulty run. 
The first fault occurred from 2650s (shown as 265 in 
Figure 4), where operator failed to turn on the feed 
pump and thus causing deviation from normal run. 
The situation is later rectified by the operator and the 
recovery can be seen on the U-matrix where the  
 

 
Figure 4. Trajectory of Scenario 1 (Dark solid line 

represents the faulty run while light solid line 
represents the normal run). 

 

 
Figure 5. Trajectory of Scenario 2 (Dark solid line 

represents the faulty run while light solid line 
represents the normal run). 

 
trajectory returns to follow the trajectory of a normal 
run at 3570s. A second fault occurred at time 6520s, 



 

when a feed flow of 1.5 times the normal value was 
introduced. The corresponding trajectory was found 
to deviate from normal operating trajectory from 
6520s to 6770s. Secnario 2: The second scenario 
consists of high reflux ratio and temperature sensor 
fault as shown in Figure 5. At 4900s, the operator 
accidentally set the reflux ratio to 2 times higher as 
compared to the normal run and the column is 
operated in this condition for a long period of time 
(as seen from the size of the data hits), before a 
temperature sensor break down at 5600s. 
 
While U-matrix is a simple 2-dimensional plot for 
operators to perform process monitoring, it does not 
contain sufficient information for diagnosing the 
fault. The component planes of the corresponding 
run have to be investigated in order to locate the 
fault. For the second scenario (Figure 5), variable 6 
can be identified to be the main cause of deviation as 
it moves into a cluster of lower value (see Figure 6). 
The corresponding operating chart for variable 6 is 
given in Figure 7. Similar analysis can also be 
applied to other scenarios for fault identification (not 
shown in this paper).  
 
The knowledge inferred from the normal operating 
run in Figure 2 can also be applied to other cases 
such as the one in Figure 4 and Figure 5. The 
operating state of a different run can be directly 
obtained from the location of the data point on the 
self-organizing maps. As an illustrative example, for 
the operation of distillation column shown in Figure 
4, even though there are faults in the system, the 
process of state identification can still be done fairly 
 

 
Figure 6. Component plane of variable 6 (5th tray 

temperature sensor).  
 

 
Figure 7. Time variations of variable 6 (5th tray 

temperature sensor). 
 
successfully. Reboiler heating phase can be observed 
from time 0 – 3650s. Evaporation of bottom s has 
been observed to take place from 3680s – 3870s 
while full reflux operation prior to feed is from 3890s 
– 5220s, and lastly the steady state operation can be 
seen to take place from 5230s – 6770s. Similar 
interpretations can be applied to other case studies  as 
well.  
 
 

6. CONCLUSIONS AND DISCUSSION 
 
This paper illustrates how Kohonen SOM can be 
used for monitoring of process dynamic transitions, 
in this case the operation of a distillation column. 
High dimensional data has been projected ont o a 
lower two dimensional grid maps, consequently the 
task of process monitoring has been simplified as 
compared to conventional control charts approach. 
One only needs to keep track of the trajectory in 
order to deduce whether the operation is normal or 
abnormal. A faulty run will result in deviation from 
normal trajectory, and component planes can then be 
analyzed to locate faulty variables for root cause 
identification.  This paper has also shown that  SOM 
can be used for state-identification. The exact phase 
of different run at any instant can be inferred from 
the location of the data hit on the self-organizing 
maps. Our current research is targeted at  automating 
the SOM -based approach to improve the efficiency 
of monitoring. Two methods that use the results from 
SOM for automated abnormality detection and 
diagnosis have been formulated. Firstly, statistical 
analysis has been used to generate variable specific 
residual  by using SOM as local model during the 
transition. Secondly, a pattern recognition approach 
is being explored for diagnosis and fault isolation 
purposes. By using a fault database and machine 
learning approaches, faults can be identified in a 
short amount of time. A robust formulation of normal 
trajectories is also being investigated to 
accommodate multiple normal operating conditions. 
 
 
 
 
 
 



 

REFERENCES 
 

Abonyi, J.,  Nemeth, S., Vincze., Arva, P., (2003). 
Process analysis and product quality estimation 
by self-organizing maps with an application to 
polyethylene production. Computers in Industry 
52. 221-234. 

Chan, C.W., Jin, H., Cheung, K.C., Zhang, H.Y., 
(2001). Fault detection of systems with 
redundant sensors using constrained Kohonen 
networks. Auomatica 37. 1671-1676. 

Deventer, J.S.J.V., Moolman, D.W., Aldrich, C., 
(1996). Visualization of plant disturbances using 
self-organizing maps, Computers Chem. Engng 
Vol.20, pp.S1095-S1100. 

Jämsä-Jounela, S.L., Vermasvuori, M., Endén, P., 
Haavisto,S., (2003). A process monitoring 
system based on the Kohonen self-organizing 
maps. Control Engineering Pract ice 11. 83-92. 

Kaski, S., Kangas, J., Kohonen, T., (1998). 
Bibliography of self-organizing map (SOM) 
papers: 1981-1997, Neural Computing Surveys, 
1:102-350. 

Kohonen, T., (1981). Automatic formation of 
topological maps of patterns in a self-organizing 
system, Proc. 2SCIA, Scand. Conf. on Image 
Aanlysis, pp 214-220, Helsinki, Finland.  

Kohonen, T., (2000). Self-Organizing Maps, 
Springer Series in Information Sciences, 
Springer, Berlin, Germany.   

Kohonen, T., (2001). Seiffert, U., Jain, L. C., Editors, 
Self-Organizing Neural Networks: Recent 
Advances and Applications, Phisica-Verlag 
Heidelberg, Springer-Verlag, Germany.  

Kolehmainen, M., Rönkkö, P., Raatikainen, O., 
(2003). Monitoring of yeast fermentation by ion 
mobility spectrometry measurement and data 

visu alization with self-organizing maps. 
Analytica Chimica Acta 484. 93-100. 

López -Rubio,E., Muñoz-Pérez, J., Gómez -Ruiz, J.A., 
(2003). A principle component analysis self-
organizing map. Neural Networks. In -press. 

Srinivasan, R., Gopal, S., (2002). Extracting 
information from high-dimensional operations 
data using visualization techniques, AIChe 
meeting, Indianapolis, #271c. 

Ultsch,A., Siemon, H.P., (1990). Kohonen’s self 
organizing feature maps for exploratory data 
analysis, Proceedings of International Neural 
Network Conference (INNC’90), Kluwer 
academic Publishers, Dordrecht, pp. 305-308. 

Venkatasubramanian, V., Rengaswamy, R., Yin, K. 
& Kavuri, S.N., (2003). A review of fault 
detection and diagnosis  Part I: Quantitative 
model-based methods, Computers and Chemical 
Engineering 27, 293-311.  

Vesanto, J., (1999). SOM -based data visualization 
methods, Intelligent Data Analysis 3, 111-126. 

Vesanto, J., (2002). Data Exploration Process Based 
on the Self-Organizing Map, phD thesis, 
Helsinki University of Technology, Acta 
Polytechnica Scandincavica: Mathematics and 
Computing Series No. 115, Department of 
Computer Science and Engineering, FIN-02015 
HUT, Finland. 

Vesanto, J., Himberg., Alhoniemi, E., Parhankangas, 
J., (2000).  SOM Toolbox for Matlab 5. SOM 
toolbox team, Helsinki University of 
Technology, Finland. 

Xiao, L., Wang, K., Teng, Y., Zhang, J., (2003). 
Component plane presentation integrated self-
organizing map for microarray data analysis. 
FEBS Letters 538. 117 -124. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



