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Abstract: Due to the lack of reliable and/or inexpensive hardware sensors in cement
grinding, development of software sensors is particularly significant for control and
monitoring purposes. In this study, a nonlinear distributed-parameter, full-horizon
observer is designed, which allows the contents of the mill to be described in terms
of hold-up and particle size distribution. When measurements are available at
relatively high sampling rates and at, at least, two spatial locations along the
mill, fast observer convergence is obtained. However, in practical situations where
measurements can be collected at the mill outlet only and with a relatively low
sampling rate, the observer convergence deteriorates and , as the sampling rate
decreases, performance becomes similar to an asymptotic (simulation) observer.
The robustness of the software sensor can be improved by on-line identification
of some time-varying parameters, such as the material grindability. These several
concepts are discussed and tested in simulation based on a realistic process model.
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1. INTRODUCTION

Control and monitoring of cement grinding cir-
cuits are notoriously delicate tasks. Together with
the strong nonlinearity of the process, the general
lack of (reliable) measurement sensors of relevant
process variables are among the major difficulties
to be faced. When available, measurement signals
are usually corrupted by noise (e.g., the mechan-
ical vibrations affecting the elevator power used
as a mill flow rate measurement), and collected at
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relatively low sampling rates (e.g., sample anal-
ysis in laboratory facilities to determine parti-
cle size distribution, color, etc.). On the other
hand, the cost of on-line analyzers is still pro-
hibitive in most industrial applications (Hodouin
and Del Villar, 1994).
Therefore, the development of software sensors for
reconstructing the process state variables on line
is particularly significant. These software sensors
are based on a dynamic model of the process and
some available measurement signals.
With regard to the process nonlinearity and
stochastic nature of the measurement signals, a
natural approach is given by full-horizon observers



which estimate the most-likely initial conditions
for the process model. The algorithm minimizes a
maximum-likelihood criterion which measures the
deviation between the model prediction and the
real system outputs (Bogaerts and Hanus, 2001).
In this particularly versatile approach, signals of
different nature (e.g., mass flow rates, particle
size distributions, etc.) can be incorporated in
the criterion, measurement errors can be taken
into account, initial conditions can be parameter-
ized, and equality and/or inequality constraints
can be easily included. In addition, periodic
model updates can be computed as well, based
on parameter estimation techniques. Finally, this
optimization-based state estimation technique is
consistent with a nonlinear model predictive con-
trol (NMPC) approach (Lepore et al., 2003) in
terms of concepts, model and software tools.

The contribution of this paper is therefore:

• to develop a distributed-parameter, full-horizon
observer, based on a process model consist-
ing of partial differential equations (Lepore
et al., 2002), which allows the particle size
distribution inside the mill to be described.
This feature has to be contrasted from results
published in the mineral processing litera-
ture, where attention is mostly focused on
global variables, such as sieve residue at the
mill and/or classifier outlet or material mass
content of the mill (Hodouin and Del Vil-
lar, 1994). The particle size distribution in-
side the mill is, however, of primary interest
for the operator to evaluate the mill opera-
tion, and for model-based control, such as the
nonlinear model predictive control schemes
presented in (Lepore et al., 2002; Lepore et
al., 2003);

• to analyze, through a simulation case study,
the properties of the observer in terms of
convergence and reliability. This study con-
siders two situations: a) the ideal case, for
which several sensors are available inside the
mill and measurements are collected at high
sampling rate, b) the nonideal (or real) case,
for which measurements are available at low
sampling rate at the mill outlet only;

• to discuss the potentiality of on-line param-
eter estimation to periodically update the
process model.

The continuation of this article is divided into
five sections. Section 2 describes the process and
the model equations. The design of full-horizon
observers in the context of cement grinding is
discussed in Section 3. In Section 4, numerical
results are presented, whereas Section 5 is devoted
to future extensions, including on-line parameter
updates. Finally, conclusions and perspectives can
be found in Section 6.
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Fig. 1. Closed-loop grinding circuit

2. PROCESS DESCRIPTION AND
MODELLING

2.1 Process description

A typical cement grinding circuit is represented in
figure 1, which consists of a single-compartment
ball mill in closed-loop with an air classifier.
The raw material (usually clinker) flow qC is
fed to the rotating mill, in which balls perform
the breakage of the material particles by fracture
and/or attrition. At the other end, the output or
mill flow qM is lifted up by a bucket elevator onto
the classifier which separates the material into
two parts: the product flow qP and the rejected
flow qR, which is recirculated to the mill inlet.
The selectivity of the classifier and, in turn, the
product fineness, can be modified by acting on
special registers Reg. The sum of qC and qR is
the total feed flow, denoted by qF .

2.2 Process model

The size continuum is divided into three size
intervals (noted s.i. in the following) numbered
1, 2 and 3 for the coarse, intermediate-size and
fine particles, respectively. Mass balances lead to:
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where:

- Xi is the mass per unit of length of the
particles in s.i. i;

- k is the yield fraction of the particles in size
interval 2 appearing from the breakage of the
particles in s.i. 1; ϕj is the breakage rate of
the material in s.i. j;

- ui and Di are the convection velocity and
the diffusion coefficient, respectively, of the
particles in s.i. i;



The partial differential equations (1) are supple-
mented by initial (2) and boundary (3) conditions:

Xi(0, x) = H0(x)w0;i(x) ∀ x; i=1,2,3 (2)

0 = uiXi − Di

∂Xi

∂x
− qF wF ;i x=0; i=1,2,3

0 =
∂Xi

∂x
x=L; i=1,2,3 (3)

where:

- H0(x) is the initial material content per unit
of length (e.g., in tons per meter), w0;i(x) is
the corresponding mass fraction in s.i. i;

- qF is the total feed flow rate, wF ;i is the
corresponding mass fraction in s.i. i.

The breakage rates are formulated as follows:

ϕj = αjXje
−βH ; j=1,2 (4)

where αj is the specific rate of breakage for s.i. j,
H is the hold-up, i.e., (X1 + X2 + X3), β is an
inhibition coefficient.
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Fig. 2. Classifier selectivity (for a single register
position and several mill flow rates)

The classifier has very fast dynamics compared to
the mill and is therefore described by a nonlinear
steady-state model. Selectivity is the fraction of
material in each size interval which is recirculated
(see the ”fish-hook” curves in figure 2).

3. FULL-HORIZON OBSERVER

3.1 Basic principles

Consider the general nonlinear model:

dx

dt
= f(x(t), u(t)), x(t0) = x0 (5)

y(tk) = h(x(tk)) + ǫ(tk) (6)

where x(t), u(t), y(t) are the vectors of states,
inputs and measurements, respectively, tk are the
sampling times and ǫ(tk) is a white noise sequence
with zero mean and variance Q(tk).

Following (Allgöwer et al., 1999; Bogaerts and
Hanus, 2001) and the references therein, the ob-
server is defined as:

x̂(t) = g(t, u(t), x̂0;k) ∀t ∈ [t0 tk[ (7)

where g(.) is the state trajectory of model (5) and
x̂0;k is the estimated initial-condition vector at
time tk.

x̂0;k is obtained by minimizing the maximum-
likelihood criterion Jk(x0;k):

Jk(x0;k) =
∑

j∈HOk

ǫ(tj)
T Q(tj)

−1ǫ(tj) (8)

ǫ(tj) = y(tj) − h(g(tj ; u(tj); x0;k)) (9)

where HOk is the observation horizon, of which
x0;k is the initial condition, y(tj) are the measured
values.

When all the measurements, from t0 up to tk,
are used to estimate the initial condition, HOk =
0, 1, . . . k and the observer is called a full-horizon
observer.

3.2 Implementation

Spatial discretization of the PDE model (1-4)
leads to a large number of variables to estimate
(for instance, in a finite difference scheme, the
number of state variables increases proportion-
nally with the number of spatial grid points).
However, experimental and simulation results
demonstrate that the spatial profiles of the hold-
up and the weight fractions inside the mill can
be reasonably approximated by simple, linear or
quadratic functions. Hence, five parameters de-
scribe the state vector
x0 = H0(x).[w1;0(x) w2;0(x) w3;0(x)]T ,
based on the following assumptions:

• hold-up: H0(x) is constant (requires one pa-
rameter);

• coarse particles: w1;0(x) is a concave quadratic
law, the minimum value being reached at the
outlet of the mill (requires two parameters);

• fine particles: w3;0(x) is a convex quadratic
law, the maximum value being reached at the
outlet of the mill (requires two parameters);

• intermediate-size particles: w2;0(x) requires
no parameter since it is equal to 1−w1;0(x)−
w3;0(x).

On the other hand, several box and linear inequal-
ity constraints can be derived from the fact that:

• H0(x) ≥ 0, ∀x;
• 0 ≤ wi;0(x) ≤ 1, ∀i, x.

To keep the things clear, let us consider, say,
that w1;0(x) = θw1;1x(x − 2L) + θw1;2 is the



quadratic law defined on [0 L] (L being the mill
length). Convexity and 0 ≤ w1;0(0) ≤ 1 result in
θw1;1 ≥ 0 and 0 ≤ θw1;2 ≤ 1, respectively (box
contraints) whereas 0 ≤ w1;0(L) ≤ 1 results in
0 ≤ −θw1;1L

2 + θw1;2 ≤ 1 (linear inequality con-
straints). Similar arguments are applied on H0(x)
and w3;0(x) leading to box and linear inequality
constraints on the three other parameters.

In addition, in order to evaluate quantitatively
and qualitatively the information available to de-
termine the vector θ, the sensitivity functions,
Si;θj

(t) = (∂hi

∂θj
)(t), are analyzed and, in order

to estimate the confidence in the parameters, the
covariance matrix is reasonably approximated by
the inverse of the Fisher information matrix de-
fined as follows:
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∑

j∈HOk
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tj

Q(tj)(
∂h
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)tj

(10)

The minimization of (8) is performed using the
”Optimization toolbox 2.2”, Matlab 6.5.0. The
solution of the partial differential equations is
achieved using (a) a ”method of lines” Matlab
procedure for spatial differentiation (b) standard
solvers from Matlab 6.5.0 for the integration in
time of the differential equations.

4. NUMERICAL RESULTS

A mathematical model, previously calibrated to
mimic an industrial grinding circuit (Lepore et
al., 2002; Boulvin et al., 2002), is used in this
study as a reference system to test the perfor-
mance of the observer. Figure 3, which represents
the evolution of the relevant operating variables,
illustrates a change in the operating point of the
cement grinding circuit: from a steady state, the
manipulated variables are moved at time 40 so as
to produce more cement (see the increase in the
product flow rate qP ) of lower quality (see the
decrease in the weight fraction of the fine parti-
cles wP ;3) while maintaining the same grinding
efficiency (in fact, one holds the mill flow rate
and the weight fraction of the intermediate-size
particles wM ;2 at constant values).
From time 0 on, several state estimations are
performed. In all the observer designs considered
in this study, the flow rate and the particle size
distribution of the input material are supposed to
be measured. In order to assess the quality of the
state estimates, a global indicator,
er(X) = ‖X̂ − X‖/‖X‖ is used, where X̂ and
X are the predicted and the actual state vector,
respectively, and ‖.‖ is the Euclidean norm.
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Fig. 3. Change in the cement production: decrease
of the cement fineness
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Fig. 4. Deviation between estimated and real
values in the ideal case; upper: initial state
vector; lower: state vector; (dotted: deviation
when plain simulator is used)

4.1 Ideal case

In the following, we consider that the material
hold-up and particle size distribution are available
at two locations inside the mill (18% and 100%
of the mill length), at sufficiently high sampling
rate (Ts = 1 min). The maximum error on the
measurements is 0.005 t/m (overall mean value
of the measurements is 0.25 t/m). Figure 4, which
represents the temporal evolution of the deviation
between the real and estimated states (at the ini-
tial time and at the current time), shows that the
estimation error of the initial conditions quickly
converges to a minimum, yet nonzero, value. This
nonzero minimum results from the approximation
of the real spatial profiles of the initial conditions
by polynomials. Despite this residual error, the
state estimates converge rapidly towards the sys-
tem states, as depicted in figure 4. For comparison
purposes, the convergence of a plain simulator
(which can be viewed as an asymptotic observer)
is also shown in figure 4. In addition, Table 1 con-
firms the high reliability of the procedure since the
individual error on the initial condition estimates
is very small (globally, a few percents).



θH θw1;1 θw1;2 θw3;1 θw3;2

0.7473 0.2084 0.2264 −0.3425 0.1680
0.0006 0.0042 0.0031 0.0034 0.0024

Table 1. Confidence in the parameter es-
timates in the ideal case; row 1: param-
eter value; row 2: standard deviation

4.2 Nonideal (real) case

In the following, we consider only on-line measure-
ments that can be achieved at reasonable costs in
practice. Particularly, flow rates and particle size
distributions obtained by a two-sieve technique
(i.e., weight fractions of coarse, intermediate-size
and fine particles) can be measured in real-life op-
eration, provided that the sampling period is large
enough. This way, at each time tj in the horizon
HOk, the following measurements are available at
the mill output: the flow rate qM and the weight
fractions wM ;i (i = 1 . . . 3).

Figure 5 depicts the deviation between real and
estimated states for three different sampling peri-
ods (20 min: solid; 10 min: dashed; 5 min: dash-
dotted). The following conclusions can be drawn:

• Ts = 20min appears to be a limiting period,
for which the full-horizon observer and the
asymptotic observer exhibit similar conver-
gence speeds;

• the asymptotic values of the estimation error
on the initial conditions are much larger than
in the ideal case;

• however, despite this observation, it appears
that a small correction of the initial condi-
tions is responsible for a significant improve-
ment in the estimation of the actual state.

However, very large uncertainties are associated
with the parameters of the polynomial approxi-
mations of the initial condition profiles. From the
evolution of the sensitivity functions SM ;iθ(t) =
∂XM;i

∂θ
(t) (XM ;i being the material weight in size

interval i at the mill output) (see figure 6), the
following conclusions can be drawn:

• valuable information with respect to the ini-
tial hold-up is available until t = 80 min;

• valuable information with respect to size in-
terval 3 and size interval 1 are available until
t = 20 min and t = 10 min, respectively.

So, unless a sufficiently small sampling period
is used (appropriately, 1 ∼ 2 min), which is
unfeasible in practice, the particle weight fractions
cannot be determined with enough accuracy when
using a single measurement at the mill output.
On the other hand, since the hold-up can be
reconstructed accurately in all cases, an additional
sensor (such as an electronic ear) to measure the
hold-up is probably useless (due to the low level
of accuracy and reliability of these equipments).

5. EXTENSIONS

Whatever the solution adopted (full-horizon ob-
server or asymptotic observer), an accurate model
is a prerequisite to the design of a state estima-
tor. However, it is by no means true that all the
parameters are constant during normal operation.
For instance, due to changing storage conditions,
the grindability of the input material is subject
to variations. In the following, we will focus on
the estimation of the grindability factor, which is
the variation of the fragmentation rates α1 and α2

from their reference values.
The estimate of the grindability factor θ̂k at
time tk is obtained by minimizing a maximum-
likelihood criterion Jk(θk):

Jk(θk) =
∑

j∈HOk

ǫ(tj)
T Q(tj)

−1ǫ(tj) (11)

ǫ(tj) = y(tj) − h(g(tj ; u(tj); x0;k; θk)) (12)

As a test example, consider that the process is
in steady state until time 30, at which a change
in the process grindability factor of −20% occurs.
This process variation is supposed to be detected,
so that an identification procedure can start.
Figure 7 represents 1) the real and estimated
grindability factors, 2) the standard deviation of
the estimates, for three horizon lengths, i.e., 1, 5
and 10 sampling periods (with Ts = 10min). The
following conclusions can be drawn:

• the longer the horizon, the smaller is the
deviation from the real value;

• whatever the horizon length, the results in
terms of standard deviations of the estimates
are very satisfactory.

At this stage, one should investigate other issues,
such as estimating additional model parameters
(e.g., transport velocity), selection of the horizon
length (e.g., grindability could be considered as an
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additional model state, estimated together with
the initial conditions), stability issues, etc.

6. CONCLUSION

A distributed-parameter, full-horizon observer is
implemented in order to predict the material
contents of the mill (i.e., hold-up and particle
size distribution). The observer is based on the
computation of the most-likely initial conditions,
expressed via a small number of parameters.

With a reference model calibrated to mimic an in-
dustrial plant, the observer has been evaluated in
two different situations. In the ideal situation, for

which several sensors are available along the mill
and measurements are collected at high sampling
rates, the algorithm exhibits good performance,
especially when compared to the asymptotic ob-
server, and reliability (or confidence) with respect
to the estimates. On the other hand, in practical
situations, for which only a few low-cost measure-
ments (low sampling rate) are available at the
mill output only, an important degradation of the
performance is noticed, which is confirmed by the
analysis of the sensitivity functions. This obser-
vation tends to designate the asymptotic observer
as the only feasible solution in this real situation.
Interestingly, hold-up is estimated accurately in
all cases, which tends to demonstrate that addi-
tional equipements, such as electronic ear, could
be of little use, considering the low accuracy and
reliability of these hardware sensors.

Finally, in order to ensure robust estimation,
on-line parametric adaptation of the observer is
tested. Preliminary results are obtained for the
estimation of the material grindability using a
receding-horizon parameter estimation procedure.
Future studies should focus on the estimation of
more than one parameter (for example, grind-
ability and transport velocity), considering the
correlations between parameter estimates and sta-
bility issues. Work should also be devoted to the
automatic detection of such parameter variations.
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