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Abstract: Metabolic control analysis is a framework for characterizing the para- 
metric sensitivity of metabolic pathways and genetic networks. We establish a 
connection between metabolic control analysis and control theory. The main result 
is that  we can use classical control theory and the associated signal-flow (block) 
diagrams to analyze biochemical reaction networks and that  many results in 
metabolic control analysis have direct counterparts in control. In the process, we 
illustrate how some problems in biochemical network analysis can be reformulated 
in a control-theoretic framework. 
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1. INTRODUCTION 

Metabolic control analysis (MCA) is a framework 
for analyzing metabolic pathways and genetic 
networks. The theory aims to link steady-state 
changes in the individual pathway components to 
steady-state changes in the systematic behavior of 
the network. The basic framework was proposed 
over the thirty years ago in a variety of forms 
by a number of biologists (Kacser and Burns, 
1973; Burns, 1971; Heinrich and Rapoport,  1974b; 
Heinrich and Rapoport,  1974a; Savageau, 1971; 
Savageau, 1972). The theory was motivated by the 
realization that  metabolic flux is not controlled 
by one rate-limiting enzyme. Rather, the control 
is shared by all of the enzymes in the pathway. 
This distributed control is particularly striking 
in regulated and branched pathways. The basic 
theory is now mature (Heinrich and Schuster, 
1996; Fell, 1997), though many opportunities exist 
to extend MCA. 

In addition to its name, there is striking similarity 
between the equations in MCA and those found 
in classical control theory. Intrigued by the cur- 
sory resemblance, we develop this connection and 
demonstrate that  MCA can be entirely reformu- 
lated in control-theoretic terms. In the process we 
demonstrate that  the MCA formulation, which is 
really just specialized sensitivity analysis, offers a 
promising foothold at the interface of biology and 
control theory. 

2. BACKGROUND 

We assume that  the dynamics of the biochemical 
reaction network are described by the following 
differential equation 

i(t) = Nv(s( t) ,p) ,  (1) 

where the vector s C ]I{ '~ contains the concentra- 
tions for n chemical species, the matrix N C ]I '~x'~ 



defines the stoichiometry of the reaction network, 
the function v(-,-) : ~'~ × ~P ~ ~'~ describes 
the rates for m chemical reactions, and the vector 
p C ~P contains the relevant kinetic parameters 
for these rates such as enzyme concentrations and 
catalytic efficiencies. 

As the inclusion of some species in the model 
(1) leads to redundant equations because of mass 
conservation constraints, one commonly removes 
these species to create a reduced stoichiomet- 
ric matrix Nr  with linearly independent rows 
(Reder, 1988). We can recover the full matrix by 
introducing the link matrix L where 

N - LNr.  

Let si(t) denote the concentration of the reduced 
set of species. Then, we can recover s(t) from si(t) 
using the relation 

s(t) - Lsi( t )  + T 

with the appropriate choice for the constant vec- 
tor T. The vector T accounts typically for mass 
conservation. For example, the mass constraint 

a(t)+b(t)  - 1 yields the link matrix L - [ 1 - 1  ]T 

and constant vector T - [ 0 1 ]  T with s(t) = 

[a(t) b(t) ]T and si(t) - a(t). 

MCA is concerned with how the properties of 
the network change when the parameters p are 
perturbed. The sensitivity function or con t ro l  
coefficient  is defined as 

x( t )  
dsi(t) 

@ 

Using the chain rule for differentiation, one can 
show that the control coefficient x(t)  satisfies the 
following differential equation 

X(t) -- ( N  r Ov(8(t),__08__~i p)L) x(t) -Jr- N r 
Ov(s(t) ,p)  

% . ( 2 )  

Note that equation (2) is linear: it is identical to 
the linearization of equation (1). If the reaction 
network (1) is at a steady state s88, then the sensi- 
tivity equation (2) for infinitesimal perturbations 
about the steady state satisfies the linear, time- 
independent, differential equation 

&(t) -- (NrcsL)x( t )  + Nrcp(t), (3) 

isolation is changed by infinitesimal perturbations 
either to the concentrations s or parameters p. 
It is possible to directly measure the elasticity 
coefficients from experiments without needing to 
know the rate laws v(-) explicitly. In fact, it is 
easier to determine experimentally the elasticity 
coefficients than the actual rate laws (Fell, 1997). 

As equation (3) is linear and time invariant, we 
can take the Laplace transform and obtain the 
frequency response for the control coefficients: 

X ( j w )  - ( j w I -  N rc xL) - lN rc p ,  (4) 

where X ( j w )  is the Laplace transform of x(t)  
and j is the complex number v/Z-1. While the 
perturbations are typically constant, it is also 
possible to consider time-varying perturbations 
A(t). To explore frequency variations, we replace 
Cp with CpA(jw) in equation (4). At steady state 
(co = 0), the sensitivity equation (4) become 

X(0) - -  - ( N r c x L ) - l N r c p ,  

assuming the inverse exists. This equation is 
known as the con t ro l  equa t ion ,  because it re- 
lares the control coefficients X (0) to the elasticity 
coefficients Cp at steady state. It is a cornerstone 
of MCA (Burns, 1971; Heinrich and Rapoport,  
1974b; Heinrich et al., 1977; Reder, 1988). 

In addition to the concentrations s(t), MCA is 
concerned with perturbations to the flux through 
the network. We define the flux control coefficient 
as 

y(t) A_ dv 

The flux control coefficient y(t) is related to the 
control coefficient x(t)  by the affine relation 

* ( * )  v( t )  - + x ( t ) ,  

= + 

where the second relation holds for perturbations 
about the steady state S ss. Note the difference 
between y and Cp. 

If A A (NrcxL), B A Nr,  C A A -- -- - - cxL  a n d D - I ,  
then we represent the control equations using the 
following state-space form: 

where 

Cx = Os , C p -  019 

The matrices ex C 1~  " ~ x ' ~  and ep C 1~ "~xp are 
called the e las t i c i ty  coefficients.  They provide 
a measure for how strongly a single reaction in 

= Ax + Bop, (5a) 

y = Cx + Dcp, (5b) 

where Cp is the input. 

In the remainder of this article, we explore the 
control equation (5) and demonstrate how some 
elementary tools from control analysis can be 



applied to this equation to explore regulation in 
biochemical networks. 

3. SIGNAL-FLOW GRAPHS 

Molecular biologists commonly draw complex di- 
agrams describing intracellular pathways in car- 
toon format. While these diagrams successfully 
enumerate the players and interactions within the 
pathway, they are unable to convey any informa- 
tion regarding dynamic or regulatory properties. 

When analyzing and designing control systems, 
engineers often employ signal-flow graphs. Signal- 
flow graphs diagram the feedback structure using 
unambiguous notation. Signal-flow diagrams are 
also able to convey dynamic information. While 
signal-flow graphs are less relevant for design now 
with numerous CAD procedures, they are still 
indispensable for analysis, especially for linear 
systems. 

As we demonstrate, it is possible to diagram the 
(linear) regulatory structure of pathways charac- 
terized by the control and elasticity coefficients 
using signal-flow graphs. While we would be too 
optimistic if we expect molecular biologists will 
adopt a similar convention, our pragmatic goal is 
to bridge biological network analysis with control 
theory, and in the process leverage the tools, the- 
ories, and intuition from control for biology. What  
better way than to start with a control diagram! 

3.1 Linear Chain 

Consider the following linear chain of reactions 

() ~ S1 ~ S2 ~ () (6) 

We assume that  the reaction mechanisms are 
elementary to the degree that  

Vl -- V1 (81 ,p ) ,  V2 -- V 2 ( 8 1 , 8 2 , p ) ,  V3 -- V3 (82 ,p ) .  

The kinetic equations for this mechanism are of 
the form 

81 -- Vl (81 ,p)  i V2(81 ,82 ,p ) ,  

82 -- V2(81 ,82 ,p )  i V3(82,p) .  

Let 

i C j - -  
08 j  ' 

where sj denotes the jth element of the n- 
dimensional vector s. 

The control equations for this reaction mechanism 
a re  

Xl (t) -- (C~ i C21) Xl (t) i C2x2(t)  _Jr_ Clp i C2p(Ta) 

x 2 ( t ) -  (c 2 i c 3) x2 ( t )  -Jr- C21Xl (t) -Jr- Cp i 

If we take the Laplace transform, then we can 
recast the control equations (7) in the frequency 
domain 

jCOXl (jcd) -- (C~ -- C21) X l  (jcd) -- c 2 Z 2 ( j c d )  

2 (jw), _ 

j w X 2 ( j w )  - (c~ - c ~ ) X 2 ( j w )  + c21X1 (jcd) 

3 (jw). - 

We can represent the control equations for the 
1 using a signal-flow diagram single perturbation Cp 

(Figure 1). For aesthetic reasons, we prefer this 
graphical representation to the block-diagram rep- 
resentation. 

Evident from the diagram (Figure 1), simple re- 
actions are equivalent to local feedback loops. 
These loops result from the reaction dynamics. 
For example, a degradation reaction is equivalent 
to a negative feedback loop. Consider the kinetic 
equation 

i - p - k s  

where p is the rate of production and k is the 
degradation rate constant. In this mechanism, the 
degradation rate ks functions as a negative feed- 
back loop on the concentration s. In the linear 
chain example, the reactions v2 and v3 act as nega- 
tive feedback loops on Sl and s2 respectively (-Cl  2 
and -c3) .  For reversible reactions, the product 
negatively regulates the reactant (-c~).  Likewise, 
if the reactions Vl and v2 are reversible, then 
the product inhibits its synthesis. This inhibition 
is equivalent to a negative feedback loop on the 
substrates Sl and s2 respectively (c~ < 0 and 
e~ < 0). If these reactions are autocatalytic, then 
the product enhances its synthesis and the process 
is equivalent to a positive feedback loop (el > 0 
and e~ > 0). In terms of control, the perturbations 
cp are equivalent to additive disturbances. 

We do not need to know the specific rate equations 
in order to construct the signal flow diagram. 
All we need to know is the stoichiometry of the 
reaction network and variable dependencies for 
the rate laws. If we wish to numerically evaluate 
the network, then we need to know the elasticity 
coefficients or the kinetic parameters. 

For a signal-flow graph, the transfer function Ti j  

between ith and j t h  node is given by Mason's rule 
(Mason, 1953; Mason, 1956)" 

Tij - 
~-~-k P i j k  Z~ijk 

A 

where the summation is taken over all possible 
paths from node i to j and 



1 Ep 

Fig. 1. A signal-flow representation of the dynamic 
control equations. The open circle denotes a 
summer and the shaded triangle denotes an 

1 . Evident from the diagram, re- integrator:)-  5 
versible reactions introduce feedback loops as 
the concentration of the downstream species 
regulates the concentration of the upstream 
species. 

_ kth Pijk path from node i to j,  

A = determinant of flow graph, 

Aijk  = cofactor of the path Pijk. 

Numerous algorithms exist for applying Mason's 
rule to generic signal-flow networks. 

Applying Mason's rule we obtain the following 
1 to the control coef- transfer function relating £p 

ficients X l ( j w )  and X2(jw)"  

The kinetic equations for this mechanism are 

81 -- V 1 ( 8 1 , 8 N , p )  -- V 2 ( 8 1 , 8 2 , p ) ,  

82 -- V 2 ( 8 1 , 8 2 , p )  -- V 3 ( 8 2 , 8 3 , p ) ,  

'3N -- VN(SN--1, 8N) -- VN+I (SN, p). 

For this example, the control equations become 

1 X l ( t )  -- (£~ -- £21) X l ( t )  -- £ 2 x 2 ( t )  -}- £1NXN + £p 

X 2 ( t ) -  (£2 __ £3) x 2 ( t )  -}- £21x1(t ) -- £ 3 x 3 ( t )  

XN(t)  - (£N N £N 1 X N _ I  -- £N+I)XN + 

Figure 2 diagrams the control equations as a 
signal-flow graph. As with the previous exam- 
ple, the reactions result in local feedback loops. 
However, there is also the global negative feed- 
back loop resulting from endproduct inhibition 
(-£~). This example illustrates how it is often 
difficult to identify regulatory genes as the con- 
trol may be embedded directly in the process 
(Savageau, 1972; Kacser and Burns, 1973). 

X l ( j w )  - 3.3 Tryptophan Biosynthesis  
1 + 2 2  

( jw - (£~ - £3)) £p £2£p The trp operon encodes five genes that  synthesize 
1 2  2 3  

_w2 _ ((£~ _ £~) + (£~ _ £3 ) ) jw  + £1£2 -- £~£3 _+_ £1£2 t ryptophan from chorismate, the common pre- 
X 2 ( j w ) -  cursor for the aromatic amino acids phenylala- 

2 nine, tyrosine, and tryptophan. As with many 1 + + - 

_ 1 2 2 3 biosynthetic pathways, the process is subject to _w2 ((£~ _ £21) + (£22 _ £3 ) ) jw  + £1£2 -- £~£3 _+_ £1£2 
a hierarchy of regulatory feedback loops. At the 

Note that  both equations have the same denom- 
inator and the perturbations £p arise only in the 
numerator. This fact is well known in control: the 
denominator is the characteristic equation for the 
loop. 

At steady state, we have the control equations 

1 +  22  _ ( £ 2  _ £3)£p  £2£p 
X x ( 0 )  - -  

- -  £ 1 £ 2  + £ 1 £ 2  

1 2 2 £2£p11 + (E 1 + £ 1 ) £  p 
X 2 ( O )  - 1 2  ~ - 3 - - - ~ - 3 "  

£1£2 -- £1£2 -}- £1£2 

Both these equations describe how perturbing a 
single reaction effects the entire network. 

3.2 Linear  Chain With Feedback Inhibit ion 

Consider the following set of reactions with end- 
product inhibition 

V l  v 2  v 3  V N  V N + l  

( )  , > 8 1  > 8 1  . . . . .  8 N  

i i 
i 
i i 
i i 

> () 

level of the gene, expression of the operon is 
negatively regulated by tryptophan: t ryptophan 
binds the trp repressor and inhibits transcription. 
Tryptophan, when bound with tRNAs, inhibits 
transcription through the process of translation 
attenuation. At the metabolic level, t ryptophan 
allosterically inhibits the enzymes in the pathway. 

A simple model (Xiu et al., 1997) for t ryptophan 
biosynthesis is described by the following differen- 
tial equations 

# t  = V l ( p )  -- V2(?Yb) 

transcription mRNA deg. 
e =  - 

translation prot. deg. 

b = p )  - -  7(p) 

trp synthesis trp deg. trp consump. 

where rn is the concentration of mRNA, e is the 
lumped concentration of the trp enzymes, and p 
is the concentration of tryptophan. 

The control equations for this model take the 
following form 



Fig. 2. Signal-flow diagram for a linear cascade with feedback inhibition (N - 5). The open circle denotes 
a summer and shaded triangle denotes the integrator :1 . 
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Fig. 4. Branched Pathway Example 

3.~ Branched  Pa thway  

Fig. 3. Tryptophan Example: Signal-flow diagram 
for the t ryptophan pathway. The open circle 
denotes a summer and the shaded triangle 
denotes the integrator 1 . 
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Consider the branched pathway illustrated in Fig- 
ure 4 where the goal is to produce substrate s2 
without effecting a key metabolic substrate Sa. 
The kinetic equations are 

3~1--C~X3 -- C21Xl 

3~2 - -C3Xl  + C3X3 -- C4X2 

~ - ~ x ~  + ( ~  - ~ - ~ ) x ~  

where xl is the control coefficient for m, x2 for e, 
and xa for p. The signal diagram (Figure 3) illus- 
trates the signaling hierarchy in the t ryptophan 
example. The global loop (-c~) results from the 
genetic regulatory mechanisms. The loops (c3 5 < 0, 
-c3  6, and -c3 7) result from allosteric inhibition 
by tryptophan,  degradation, and consumption, 
respectively. In terms of the control equations and 
local dynamics, they are equivalent, though obvi- 
ously they each have a unique role. One limitation 
of the MCA representation is that  we see only a 
snapshot of the regulatory dynamics around the 
steady state. In the case of tryptophan,  there are 
two feedback loops controlling gene expression. In 
terms of the control equations, these loops are 
equivalent. However, their relative strength de- 
pends on the concentration of t ryptophan as they 
likely form a split-range controller. The control 
equations cannot capture this behavior as they 
are in reference to a single steady state. 

81 = Vl (p )  -- V 2 ( 8 1 , p )  - -  V 3 ( 8 1 , p ) ,  

82 = V 2 ( 8 1 , p )  - V 4 ( s 2 , p ) ,  

83 = V3 (81 ,P )  i V5(82 ,p ) .  

The steady-state control equations are 

1 2 3 Cp -- Cp -- Cp 

Xl---- C2p + C3 

x~ - -~ ~ + ~ (~; - ~ )  + 

x ~ -  -~ ~ + ~ (~; - ~ )  

The control equations are diagrammed in Fig- 
ure 5. Simple inspection of these equations in- 
dicates that  we need to simultaneously perturb 
reactions vl and v2 in order to satisfy the design 
objective. This is also evident from the signal-flow 
diagram (Figure 5). While perturbing reaction v2 
increases the concentration of s2, it depletes the 
concentration of s l and sa. To compensate for the 
substrate depletion, we need to increase the rate 
for reaction vl to satisfy the design objective. 
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Fig. 5. Branched Pathway Example: Signal Flow 
Diagram. The open circle denotes a summer 
and the shaded triangle denotes the integra- 
tor .1 . 

3w 

3.5 Comments 

The aim in the preceding sections was to demon- 
strate that MCA is subsumed by control theory. In 
fact, the previous discussion extends M CA which 
until recently was limited to steady-state analysis 
(Ingalls, 2004). For brevity, we have avoided ex- 
plicit rate expressions and numerical values. How- 
ever, one can imagine how tools from control the- 
ory can be applied to the analysis of biochemical 
networks (at least to first order approximation). 
Possible questions include controllability, robust- 
ness, and the influence of noise using frequency 
domain analysis. 

4. CONCLUDING REMARKS 

While MCA is a popular and powerful tool for 
analyzing the regulatory properties of intracellu- 
lar networks, there is still much to be desired. 
The analysis is linear and consequently can only 
characterize infinitesimal perturbations to the dy- 
namic behavior in a small neighborhood about the 
steady state. Despite its limitations, the M CA for- 
mulation provides a convenient gateway between 
biology and control. As much of the complexity 
in biology results from the regulatory interactions 
between individual genes, there are many inter- 
esting and important problems at the interface 
between control and biology. Currently, there is no 
satisfactory theory or set of tools (MCA included) 
for unraveling these complex regulatory interac- 
tions. By illustrating the similarity between the 
problem formulations in MCA and control, our 
goal was to show that this interface does exist 
and suggest MCA as one possible route for ex- 
ploration. In some respects MCA is a mature 
theory, but in other respects it is still young 
and uncharted. Many important problems such 
as multivariable interactions, nonlinearity, noise, 
robustness, and discrete events have not been ad- 
dressed yet in MCA. As each of these topics has 

a rich history in control, perhaps control can be 
useful for the analysis of biological networks. 
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