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Abstract: Control-relevant nonlinearity analysis has gained importance with the
need to control nonlinear processes more tightly. To this effect, the recently
proposed closed-loop optimal control law (OCL) nonlinearity measure quantifies
the degree of nonlinearity of the optimal state feedback controller for a given
control problem. The current paper attempts to gain more insight into the
characteristics and behavior of the formulation through a case study using a CSTR
model. The multivariate character and the correlation of plant and control-relevant
nonlinearity are analyzed with particular focus.
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1. INTRODUCTION

Nonlinear systems have been the most challenging
ones for a control engineer. For many of these
systems, a linear controller no longer suffices for
the desired degree of performance. Regarding the
complexity of nonlinear controller design, an an-
swer is needed to the question: in which cases
is the effort for nonlinear controller design jus-
tified by the resulting performance gain? The
first approaches to this question considered the
plant nonlinearity to be the determining factor
and analysis of the degree of nonlinearity in-
herent to the system have been made (Guay
et al., 1995; Mäkilä and Partington, 2003; Sun
and Hoo, 2000; Hahn and Edgar, 2001; Harris et
al., 2000). But the first assumption is found to
be doubtful as the performance criterion plays an
important role as well. This leads to the concept
of control-relevant nonlinearity dealing with the

1 This work was done while this author was an exchange
student at the University of Stuttgart.

assessment of the nonlinearity of a suitable con-
troller (Stack and Doyle III, 1997).

Although an optimal state feedback controller of
the form u=k(x) is a good control structure for
analysis, it is well-known that the derivation of
such a controller is mathematically complex and
not feasible for many practical systems. To cir-
cumvent these difficulties, Stack and Doyle (1997)
have proposed the so called Optimal Control
Structure (OCS) based on the optimal control the-
ory and an approximation of the exact controller
dynamics. Picking on the idea of analyzing the op-
timal controller, a more rigorous formulation, the
closed-loop optimal control law nonlinearity mea-
sure has been recently proposed (Schweickhardt et
al., 2003) which quantifies the nonlinearity under
the condition of closed-loop operation.

In this article this closed-loop optimal control
law has been studied on a well-known chemical
model of a CSTR. Owing to its interesting system



dynamics, the work deals with the plant as well
as control-relevant nonlinearity studies for better
insight. The next section first briefly introduces
the general nonlinearity measure, which is the
basic tool used for nonlinearity quantification, and
then describes the philosophy of the closed-loop
optimal control law nonlinearity measure. Section
3 deals with the CSTR case study which includes
a short system description, the plant and the
control-relevant nonlinearity analysis followed by
the interpretation of the results. The last section
draws conclusions.

2. THE CLOSED-LOOP OPTIMAL
CONTROL LAW NONLINEARITY MEASURE

2.1 General nonlinearity measure

Nonlinearity measures, first proposed by Desoer
and Wang (1981), rank various systems by quan-
tifying their nonlinearity. Amongst the various
formulations proposed for the nonlinearity mea-
sure in literature (Guay et al., 1995; Nikolaou and
Hanagandi, 1994; Sourlas and Manousiouthakis,
1992) this work uses the measure proposed by
Allgöwer (1995).

Definition of the nonlinearity measure: The
nonlinearity measure φUN of a nonlinear dynamic
system N : U → Y is defined by the non-negative
number

φUN := inf
G∈G

sup
u(.)∈U

‖G[u]−N [u]‖L2

‖N [u]‖L2

(1)

where G : U → Y is a linear dynamic operator
belonging to the space of linear operators G. U
and Y are the spaces of admissible inputs and
outputs, respectively and ‖.‖ is a suitable norm
in Y. In this work the L2-norm is used although
some other norm can also be used. The measure
is bounded between 0 and 1. While a value of zero
(practically very close to zero) indicates that the
given system is linear, a value of 1 (practically
very close to 1) indicates that system is highly
nonlinear. For computational purposes, the infi-
nite dimensional min-max problem given by (1)
is converted into finite dimensional constrained
convex minimization problem. For this work, si-
nusoidal and step inputs of relevant amplitude
and frequency were considered. Simulations and
optimization were preformed in MATLAB using
standard toolboxes.

2.2 The closed-loop optimal control law nonlinearity
measure

Consider a general nonlinear system governed by
the equation

ẋ = f(x,u) (2)

where x(t) ∈ Rn is the state vector and u(t) ∈
Rp is the control vector and the initial condi-
tion is given by x(t0) = x0. According to the
theory of calculus of variations, for a particu-
lar objective function J, the optimal open-loop
control policy is given by the solution of a two
point boundary value problem, while the opti-
mal feedback law is determined by the solution of
the Hamilton-Jacobi-Bellman PDE (Kirk, 1970).
While the open-loop control problem is solvable
by numerical methods for practical problems, the
feedback controller synthesis is not feasible for
most practical problems. But note that, for a given
initial condition of the plant, the solution of the
open-loop control problem and the application of
the optimal feedback law will lead to the same
trajectories of the manipulated variable and the
system states. The closed-loop optimal control law
(OCL) nonlinearity measure assumes the problem
to be that of infinite time horizon. In that case the
optimal control law is a static state feedback law
(Kirk, 1970).

Definition of the closed-loop OCL nonlin-
earity measure: The closed-loop optimal con-
trol law (OCL) nonlinearity measure for a control
problem is defined as (Schweickhardt et al., 2003)

φ̂BNOCL
:= inf

K∈Rq×n
sup
x0∈B

‖NOCL[x∗x0
]−Kx∗x0

‖L2

‖NOCL[x∗x0
]‖L2

(3)

with NOCL[x∗x0
] := u∗x0

being the solution of the
infinite horizon open-loop optimal control prob-
lem for the initial condition x0. The region B ⊂
Rn is the set of considered initial conditions. n is
the dimension of the state space of the plant and
q is the number of manipulated variables.

The definition is the application of the nonlin-
earity measure defined previously to the optimal
control law with respect to closed-loop trajecto-
ries where the input signals are parameterized by
their corresponding initial conditions. This mea-
sure can be efficiently computed by considering
a finite set of initial conditions B, because only
optimal control trajectories need to be computed
in order to assess the nonlinearity of the optimal
control law. The computation is further facilitated
by considering static approximations only. This
approach is appropriate as the optimal control
law is known to be static as well. Computations
first involve the generation of optimal trajectories
x∗x0

and u∗x0
through the boundary value problem

solution for different x0. These trajectories are
then used in the optimization scheme to generate
a linear approximation using the K matrix. It is
important to note that the nonlinearity captured
is the input to state nonlinearity and the output
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Fig. 1. Schematic of the CSTR.

nonlinearity is not accounted for. It is assumed
that all the states are available. The OCL non-
linearity measure is therefore some sort of special
application of the general formulation of Sec. 2.1
and is used to quantify the degree of nonlinearity
of a suitable controller. The system considered in
the OCL formulation is not any system but the
solution to an optimal control problem that is
known to be a nonlinear algebraic function and
the considered class of input functions is the set
of closed-loop trajectories.

3. CSTR CASE STUDY

3.1 System description

The system considered in this work for case study
is a Continuous Stirred Tank Reactor (CSTR)
system shown in figure 1. It consists of a CSTR
with a cooling jacket carrying out the van der
Vusse reaction scheme described by the following
reactions:

A
k1→ B

k2→ C

2A
k3→ D

Here B is the desired product while C and D
are are the undesired byproducts. k1, k2 and k3

are the reaction rate constants. The nonlinear
dynamics in the reactor are governed by the
following equations:

dcA

dt
=

q

VR
(cA0 − cA)− k1(T )cA − k3(T )c2

A (4)

dcB

dt
=− q

VR
cB + k1(T )cA − k2(T )cB (5)

dT

dt
=

q

VR
(T0 − T )− 1

ρCP
(k1(T )cA∆HRAB

+ k2(T )cB∆HRBC
+ k3(T )c2

A∆HRAD
)

+
kW AR

ρCP VR
(TC − T ) (6)

dTc

dt
=

1
mcCpc

(Q̇K + kW AR(T − TC)) (7)

With the reaction rate constants described by

ki = ki0e
(

Ei
T ), i = 1, 2, 3. (8)

The concentrations cA and cB , reactor tempera-
ture T and the coolant temperature TC constitute
the four states of the plant. The heat flow Q̇K

is constant. Two different stable operating points
are considered. One is the optimal operating point
(OP) characterized by the maximum yield with
respect to the desired product B and the other
one is a sub-optimal operating point (SP) with a
lower yield. Further details about the process and
the parameters are available in (Chen et al., 1995).

3.2 Previous results on CSTR nonlinearity

The CSTR has been previously analyzed for non-
linearity at the two operating points in (Helbig
et al., 2000). The nonlinearity was calculated be-
tween the scaled input flow rate (q/VR) as input
for the plant and concentration of desired product
B (cB) as the output for the plant. The nonlinear-
ity measures reported at the two operating points
are:

• Optimal operating point (OP): 1.0
• Sub-optimal operating point (SP): 0.37

The difference in nonlinearity measures is quite
significant and interesting. The aim of the control-
relevant nonlinearity analysis of this model was
thus twofold:

(1) To check the result of the closed-loop OCL
nonlinearity measurement on a multi-state
model

(2) To check whether the plant nonlinearity val-
ues of the CSTR get translated into the
control-relevant nonlinearity

3.3 Control-relevant nonlinearity analysis of CSTR

The closed-loop OCL nonlinearity measure of the
CSTR was analyzed for the two different operat-
ing points using definition (3). The performance
criterion used is the quadratic objective functional
given by:

J [u(·)] =

∞∫

0

x(t)T Qx(t) + αu(t)2dt (9)

where x(t) is the state vector, u(t) is the input
(scaled input flow rate), α is the controller weight-
ing parameter and Q is the weighting matrix for
the states.
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Fig. 2. Variation of OCL nonlinearity measure for
the CSTR.

Since OCL nonlinearity gives input to state non-
linearity of the system, for the CSTR with four
states, the OCL becomes a four input-one out-
put (MISO) system, i.e. n = 4 and q = 1 in
the definition given in (3). A higher dimension
of the plant state results in a larger number of
considered initial conditions and translates into
an increased number of constraints in the convex
optimization framework. The starting conditions
x0 should be in the range of the observed values
of physical variable. For the CSTR, the range
of starting conditions in terms of the deviation
variables were: cA = ±0.25, cB = ±0.10, T = ±3
and Tc = ±3 in [mol/l] and [K] respectively for
the sub-optimal operating point and cA = ±0.5,
cB = ±0.10, T = ±3 and Tc = ±3 in [mol/l]
and [K] respectively for the optimal operating
point. The matrix Q in the objective function is a
fourth-order identity matrix. The dependence of
the OCL nonlinearity on the controller weighting
parameter α was sought.

The variation at the two different operating points
is plotted in figure 2. From the graph, it can be
seen that the OCL nonlinearity at OP is very high
which is in agreement with the high plant non-
linearity at this operating point. The nonlinearity
measure is seen to vary between 0.9999 and 0.8997
for the considered range of α. But for the sub-
optimal operating point (SP), the OCL nonlin-
earity is found to vary between 0.9454 and 0.6609
and is decreasing with increasing value of α. This
result is somewhat unexpected as reported plant
nonlinearity is 0.37 and so the control-relevant
nonlinearity is significantly higher.

This observed difference between the plant and
control-relevant nonlinearity measures was postu-
lated to be arising from their differing analytical
setups. For the CSTR plant analysis, the non-
linearity measure gives the relationship between
input q/VR and output cB . On the other hand, the
OCL nonlinearity measure, being input to state,
describes a relationship between all four states of
the plant and the solitary input (corresponding

to four inputs and one output of the optimal
control law) and thus considers dynamics between
all the input-output pairs. In order to verify this
hypothesis and shed more light on it, following
two different kinds of analysis were carried out at
both the operating points.

• Plant nonlinearity measurement for other
three states as output and also considering
all outputs simultaneously in a single input
multi output (SIMO) setup

• OCL nonlinearity measurement using weighted
states i.e. giving importance to a particular
state in the objective function

3.4 Nonlinearity analysis of CSTR in a modified
setup

The nonlinearity measure calculation of the CSTR
model with the other three states as outputs is
very similar to the previous case, with change
only in the output vector considered for analysis.
The measurement was carried out using sinusoidal
and step inputs of amplitude up to ±11hr−1 and
maximum frequency (for sinusoidal inputs) of 100
Hz. The results, values of nonlinearity measures
at both operating points, are reported in Table 1
where the previous values, with cB as output are
also reported for the sake of comparison.

The nonlinearity measure was also calculated
considering all the states as outputs simultane-
ously i.e. calculation in single input multi output
(SIMO) setup. The implementation of the nonlin-
earity measure definition for the multi output case
is logically straight forward but becomes com-
putationally more demanding due to increased
dimensionality. The output, which previously was
a scalar function of time, is now a vector function
of time. The dynamics between different input-
output combinations are approximated by differ-
ent linear systems. Thus, the computational load
grows linearly to the number of outputs of the
plant (that are here identical to the states). Care
must be taken during computation to scale the
outputs to the same range so as to avoid mask-
ing of linear/nonlinear behavior due to differing
ranges. The values of the nonlinearity measure for
this case are also reported in table 1. The values
in the table will be referred to in the next section
for discussion.

3.5 OCL nonlinearity measure of CSTR in a
modified setup

The previous nonlinearity analysis for the closed-
loop optimal control law in Sec. 3.3 was done using
an identity weighting matrix Q i.e. equal weight-
ing given to all the four states in the objective



Table 1. Plant nonlinearity measures of
the CSTR at the suboptimal operating

point considering different outputs.

Output Nonlinearity
measure at OP

Nonlinearity
measure at SP

cA 0.2478 0.2524
cB 0.9912 0.3045
T 0.9921 0.5987
Tc 0.9957 0.5988
All 0.9695 0.5877

function. As reported in the previous subsection,
the (open-loop) plant nonlinearity measure de-
pends on the input-output pairing. The aim of this
section is to perform a similar analysis which will
report control-relevant nonlinearity assessment fo-
cussing on single states. The optimal control law
(OCL) has four states as the four inputs and the
plant input q/VR as its output. The concept of
varying only one of the four inputs (states) at
a time through different starting conditions does
not fit in the realms of optimal control theory
as the four states are dynamically highly inter-
connected and such a situation will never arise
in actual closed loop operation. Another way to
relate the results of the previous section to OCL
nonlinearity measurement is to vary the weights
on different states in the objective function. By
doing so, different states will dominate the objec-
tive and hence the degree of nonlinearity of the
optimal control law. There are thus four differ-
ent cases generated by modifying the weighting
matrix Q such that at any time all but one of
the diagonal elements are zero, the only non-zero
element being equal to one.

Using this setup, the nonlinearity measure calcu-
lation for the OCL was carried out at both oper-
ating points. Apart from the weighting scheme, all
the other aspects of the computation remain the
same. The plots for various cases are given in Fig-
ure 3 and Figure 4 for the optimal (OP) and sub-
optimal (SP) operating points respectively. The
plots for the first case with diagonal weighting
matrix are also included in the figure for the sake
of comparison (labelled as “all states”). These
plots will be used to draw conclusions in the next
section.

3.6 Discussion

From Table 1, most obvious observation for both
the operating points is that the nonlinearity mea-
sures with respect to the two temperatures (reac-
tor and coolant) are significantly high whereas the
nonlinearity with respect to the concentration of
A, is quite low. The previously reported (Helbig
et al., 2000) difference in the nonlinearity with
respect to the concentration of B, is also observed.
In both cases, the overall nonlinearity measure
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ties of CSTR model at sub-optimal operating
point.
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Fig. 4. Comparison of weighted OCL nonlinear-
ities of CSTR model at optimal operating
point.

is also very close to that for the temperatures
indicating that the overall nonlinearity (in a multi
output setup) is dominated by the temperature
nonlinearities. This result leads to the conclusion
that the temperature nonlinearities pose problems
in the regulation of both systems (SP and OP).
But the regulation of concentration of B is oper-
ating point dependent. But the results also stress
the importance to consider all possible dynamic
relationships within a system to draw a picture of
the nonlinearity of the system as a whole.

The nonlinearity measure variation of the OCL
shows a similar qualitative behavior. From the
graphs it can be concluded that from control point
of view also, the nonlinearity with respect to the
two temperatures is always dominant. Another
interesting thing to observe is that the differ-
ence in the plant nonlinearity with respect to
the concentration of B is nicely reflected in the
OCL nonlinearity. Not only does the qualitative
behavior agree, but quantitatively also the two
sets of values are close. Given these results, one
can conclude that for this particular system the



plant nonlinearity is getting translated into equiv-
alent control-relevant nonlinearity for all dynamic
paths of the system. The OCL nonlinearity fur-
ther shows that the need for nonlinear control
does not strongly depend on the cost of control
action in this particular example (expressed by
the weak dependence on α). But both, plant and
OCL nonlinearity values show that the variable to
be controlled plays an important role.

Two types of computations are involved in the
determination of the OCL nonlinearity measure:
first, a finite number of optimal open-loop control
problems have to be solved, equivalent to two
point boundary value problems. Then the best
linear approximation K for the state feedback
controller is determined by convex optimization.
The computational demand of the optimal control
problem solution certainly strongly depends on
the specific plant and performance requirements
at hand. For the example system, it was observed
that for singular Q matrices and very low values
of α (less than 0.1) the boundary value problem
solution poses accuracy problems. Not surpris-
ingly, the problem is more severe at OP where the
system is highly nonlinear. The accuracy prob-
lems for the temperatures at OP could not be
completely eliminated at low values of α. As a
result, the somewhat fluctuating behavior at low
α can possibly be due to numerical problems.
The computation of the optimal K matrix poses
no problem and can be completed very efficiently
even for high dimensional systems with multiple
inputs.

4. CONCLUSIONS

Nonlinearity analysis of an example CSTR has
been done using a general and a control-relevant
nonlinearity measure, the optimal control law
(OCL) nonlinearity measure. Under similar con-
ditions, the two methods show consistent re-
sults. The results suggest that at both operating
points, a nonlinear controller would be necessary
to control the system temperatures and a linear
controller would suffice for concentration of A.
The controller requirement for concentration of B
though is operating point dependent. This result
is in accordance to the working experience that
concentration of B at sub-optimal operating point
is controller by a PI controller while at the optimal
operating point a linear control is not feasible.
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Allgöwer, F. (1995). Definition and computation
of a nonlinearity measure. In: 3rd IFAC Non-
linear Control System Design Symposium.
Lake Tahoe, CA. pp. 279–284.

Chen, H., A. Kremlin and F. Allgöwer (1995).
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(2003). Nonlinearity quantification for the
optimal state feedback controller. In: Proc.
of the European Control Conference ECC’03.
Cambridge, UK.

Sourlas, D. and V. Manousiouthakis (1992). De-
velopment of linear models for nonlinear
plants. In: AIChE Annual Meeting. Miami,
FL.

Stack, A.J. and F.J. Doyle III (1997). Optimal
control structure: an approach to measuring
control-law nonlinearity. Comp. Chem. Eng.
21(9), 1009–1019.

Sun, D. and K.A. Hoo (2000). Non-linearity mea-
sures for a class of SISO non-linear systems.
Int. J. Contr. 73(1), 29–37.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



