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Abstract: A novel multivariate model predictive control strategy (LV-MPC) for 
trajectory tracking and disturbance rejection for batch processes, based on multiway 
PCA models, is presented. It directly computes the manipulated variable trajectory 
adjustments over a future horizon using the structure of the PCA model. The 
advantages and the modest data requirements are illustrated using an emulsion 
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1. INTRODUCTION 

Batch/semi batch processes are commonly used 
because their flexibility to manage many different 
grades and types of products. In these processes, one 
of the requirements to achieve consistent final quality 
specifications and adequate operation is that the low 
level controllers can adequate follow the set-points 
determined by master controllers or optimizers. 
Proportional-integral (PI) and Proportional-integral-
derivative (PID) controllers are by far the most 
common approach used in industry. However, batch 
processes usually exhibit large time constants, time 
varying dynamics and need to track complex set-
point trajectories. Under this situation the standard 
PID controller might not achieve adequate control 
performance.  Enhancements to conventional PID 
controllers have proven to lessen some of these 
deficiencies (Clarke-Pringle and MacGregor, 1997). 

Several advanced control approaches have been 
presented in order to further improve PID 
performance. Differential geometry methods have 
been applied for the control of batch and continuous 
processes (Kravaris et al., 1989; Clarke-Pringle and 
MacGregor, 1997) while Cott and Macchietto (1989), 
and Aziz et al., (2000) used generic model control to 
track batch reactor temperature set points.  

A considerable number of studies using nonlinear 
model predictive control have also been presented. 

Özkan et al., (2001), for example, used nonlinear 
dynamic model control to track optimal reactor 
temperatures in the solution polymerization of 
styrene.

Lee et al., (1999) proposed a model predictive 
control technique for trajectory tracking aided with 
iterative learning. The methodology is illustrated for 
the temperature control of a laboratory batch reactor.  

Statistical controllers for continuous processes based 
on Principal Component Analysis (PCA) have also 
been proposed (Chen and McAvoy, 1996; Shah et al., 
1998). However, their objective is mainly to regulate 
the controlled variables around a fixed operating set 
point, and the use of PCA is mainly to reduce the 
dimension of the control variable space.  

The purpose of this paper is to introduce a novel 
multivariate control strategy based on latent variable 
models for set-point trajectory tracking and 
disturbance rejection in batch processes. The control 
strategy and manipulated variable adjustments, over 
a future horizon, are formulated in the space of a 
dynamic PCA model. The outline of the paper is as 
follows: in section 2 the methodology is introduced; 
in section 3, the control approach is illustrated using 
an emulsion polymerization process.  Conclusions 
and future work are stated in section 4. 



2. CONTROL METHODOLOGY

2.1 Basic Methodology

Modeling

The proposed algorithm uses historical databases and
a few complementary identification experiments for 
model building. The empirical model is obtained
using PCA.

The database used for building the PCA model,
denoted as , consists of K matrices, Xk (k=1,…,K),
where K is the number of batches used for model
building.
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Each matrix Xk contains the information of k-th batch.
For the sake of simplicity, the subscript k is omitted
in the following explanation of the structure of Xk.

Consider a batch run. Denote N as the total number
of samples collected along the time. For sampling
time i, define a vector such that T
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where is a vector of measurements on S on-line
(and potentially off-line) process variables  such as 
pressure, agitation, flows, etc. that can be
incorporated to give information on disturbances and
process conditions changes; is a vector of R

controlled process variables needed to be 
tracked; is the vector of corresponding set-points;

and is a vector of A manipulated variables. The

length of is then equal to (S+2R+A). Notice that if 
time delays are important, these can be easily 
incorporated in by simply shifting the delayed
variables.
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Every row vector of X is composed of vectors at
different sampling times (i), including the M-step
future data, current data and the L-step past data.
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                             Past data              Current data             Future data

Therefore, the total dimension of matrix is [(N-M-
L)K]  [(M+L+1) (S+2R+A)].

The data-set used for model building consists of data
in which pseudo random binary sequences (PRBS)
have been added on the output of the controller
currently used (i.e. added on the manipulated
variables). PRBS are needed to establish causal
relationship between the manipulated variable
changes and the tracked trajectories. Rebuilding the
model by adding new batch data collected after
implementing the proposed control scheme may also
be done in order to further improve the causal
relationship. The data requirements are further
discussed in the examples.

PCA is then performed by projecting the scaled and
mean centered matrix onto a reduced dimension
score space T:

                   (1) 
PT

TPTˆ

where P is the loading matrix and . In this
paper the matrix is mean centered and scaled to 
unit variance. This mean centering simply subtracts
the overall average value of each variable over all 
batches. An alternative is to mean center by
subtracting the average trajectory of each variable as
done in the statistical monitoring of batch processes
(Nomikos and MacGregor, 1995). However, in this
LV-MPC approach we are interested in performing
trajectory tracking for different set-point patterns
(not included in the training data), and so a PCA
model for the complete trajectories rather than for the
deviations about one given set-point pattern was 
considered more suitable. However, if several
representative set-point trajectory patterns were used
in the training data set, the mean centering about the
average of those trajectories would be reasonable.
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Control

Consider sampling time i. We can rearrange the
vector T
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where  contains the known information, including

all past information ( , j=i-

T
1x

T
j L, …, i-1) and future

controlled variable set point trajectories ( ,

j=i,…,i+M), while  contains the unknown

information, including future process variable
measurements ( ,j=i,…,i+M), future controlled

variables ( , j=i,…,i+M) and future control

action adjustments ( ,j=i,…,i+M).
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The loading matrix P can also be decomposed into
two corresponding parts:
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Two conditions need to be considered to compute x2.
First, the unknown information x2 should keep the



correlation structure as in the training dataset.
Therefore, from the PCA model,

TTT
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where is the estimated score vector for the current
batch. Second, should be the projection in the
score space of . Therefore, can be 
obtained by solving:
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The solution for (3) can be easily obtained (Q=I) as:
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Then, can be obtained by substituting (4) in (2):T
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Equation (5) can be further restated as 
since = I. A

very important thing to note is that this equation is 
the same as the missing data estimation algorithm for
x
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2 known as Projection to the Plane (Nelson et al.,
1996).

This control algorithm is recomputed at every
sampling time i until completion of the batch. Only
the current control actions ( , j=i) are
implemented.

T
jc,u

In practice it is possible that the matrix
becomes ill conditioned.  In this case it is
recommended to obtain t̂ by using either a pseudo-
inverse procedure based on single value
decomposition or iteratively using (3) until
convergence of t is achieved.  This last approach is 
the one taken in the simulation examples.
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In the objective function (Equation 3), if desired,
hard constraints to the scores, manipulated variables, 
and movement suppression factors can also be
included.

An alternative modeling and control strategy is to 
simply build a PCA model by defining asT
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which does not contain controlled variable set point
information. In the control calculation step, however,
at sampling time i, the future controlled variable
trajectories can be specified as their desired set-point
trajectories, = , j=i,…,i+M and then

included in . In this case, will only include
future measurements and future control actions that 
can be computed using (3). This is the approach used 
in the examples of section 3.
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2.2 Adaptive multi-model methods 

By using the structure in the last section, a single set
of P coefficients is determined for the whole duration
of the batch. Depending on the process, improved
control may be obtained by using adaptive modeling.
This can be accomplished by using a moving
window (such as shown in figure 1) to model only
the local behavior of the batch over the window
centered at each time i. This will lead to multiple
models, each one centered at a time point during the
batch. To build these models, the window is placed
over the data centered at time i, and the window
weights applied to the past and future data relative to 
time i. This gives the following data matrix for a 
batch at time i:
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where  is the matrix X for sampling time i. Then
a training dataset for sampling time i is obtained by
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Loading matrix for sampling time i, , is 
computed by performing PCA on . In the
control algorithm, one only need to replace P by
to compute the control action at sampling time i.
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Different weighting vectors can be used. Here we use
a weighting vector as shown in Figure 1. This
weighting vector consists of two mirrored sigmoid
functions, which can be calculated using:
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Figure 1. Weighting vector for adaptive modeling
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where 2/)(,2/)( 21 abba (a and b are
two adjusting factors, which can be used to change
the shape of the weighting vector). For other adaptive
PCA methods, please refer to Rännar et al., (1998). 

3. SIMULATION EXAMPLES

The control algorithm was tested using two non-
linear simulators: the emulsion polymerization of
styrene (Lynch and Kiparissides, 1981) and the
solution polymerization of vinyl acetate (Teymor,
1997). However, for brevity, only results on the
emulsion polymerization process are presented.

Lynch and Kiparissides (1981) developed a non-
linear model, with simple kinetics, for the styrene
emulsion polymerization. This model, originally
developed for tubular reactors with full recycle, has 
been adapted for use in batch and semi-batch
processes. For a complete description of the model
and model parameters the reader is referred to the
original publication. The non-linear simulator is used
for data generation and controller performance
evaluation. The control objective is to perform
reactor temperature (Tr) trajectory tracking by
adjusting the inlet jacket temperature (Tj). On-line Tr
measurements, considered to be available every
30sec, are corrupted by normally distributed random
error with standard deviation =0.15 K. Simulation
time is 300min. Control action is taken every 30sec. 

3.1 Control studies

In order to evaluate the control algorithm, several
studies involving the effect of information content of 
data available for model building and the type of 
model (adaptive versus fix) were performed for
different set points and disturbances. In what follows
some of these studies are presented.

As shown in section 2, PCA modeling allows having
different species for model building. For example,
one can use  or simply

 ( ). Both situations
were studied. For brevity only results in which

are presented.
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The first step in model building is to obtain a data set. 
In most of the situations (at least for temperature
control of batch reactors), the base controller is PI or 
PID. Therefore, it is feasible to assume that closed 
loop data containing some of the effects that Tj and 
normal operating disturbances have on Tr is available.
However, in order to further establish a casual
relationship between uc= Tj and ycv= Tr, a few
complementary experiments, in which PRBS are 
added on the top of the output of the PI controller (uc)
are needed. Two scenarios are illustrated here: in the
first one a dataset is obtained from a system in which
a fine tuned PI (denoted as fine PI) is employed
together with PRBS, while in the second one a 
slightly sluggish PI (denoted as sluggish PI) is used

together with smaller PRBS. Comparison between
the proposed algorithm and PI is given (PID
performance is similar to those obtained from PI and
therefore not shown). 

Figure 2a shows the performance of the model
predictive control algorithm for the Tr trajectory
tracking of Model 1, set-point 1 of Table 1 (set-point
1 is the set-point from which the model was
identified, Figure 3) versus that obtained from a fine
tuned PI. Figure 2b shows their corresponding
manipulated variable. It is evident that the trajectory
tracking of Tr from the LV-MPC (Model 1) is better
than that of PI, while having a much smoother
manipulated variable behavior.

The good control performance can be further
observed by inspecting the mean absolute error

NyyMAE
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i ispicvy 1 ,, for the CV and the

NuuMAE
N

i icic1 1,, for the changes in the

MV in Table 1. It can be seen that smaller values of
MAEy and MAE  are obtained by using the LV-
MPC algorithm.

The data requirements to build Model 1 are small
considering that only 3 batches were used and that
the PRBS do not affect substantially the batch
operation as can be seen in Figure 3. In this Figure
( ) indicates the control obtained when in the MV
(Tj) has been added PRBS, and ( ) that under
normal operation (no PRBS in the PI output). The
MAE of the CV for this data set is MAEy=0.85 (only
30% higher than when no PRBS is added). 

One of the advantages in using dynamic PCA is that
the usefulness of the model is not limited to only the
set point trajectory from which the model was
identified. This is illustrated in Figure 4a for a 
different set point (set point 2 of Table 1) using
Model 1 (model identified using the data shown in 
Figure 3) and compared to that obtained using a fine
tuned PI. Figure 4b shows their corresponding
manipulated variables. Clearly, the LV-MPC can be
used for tracking different set-points. Some reasons
for this are: 1) causation is introduced into the model
by the PRBS’s, which give information on how the
uc trajectory affects the ycv trajectory, 2) the model
focuses on local trajectory information rather than in
the shapes of the complete trajectory, and 3) the
correlation structure of the model over the local
horizons (i-L,…i+M) does not change significantly
for the different set-point conditions. If any
deterioration in the control is evident for a new set-
point trajectory, the result can be added to the
previous training data and the model refitted.

In spite of that the data requirements for Model 1 are 
not very demanding, it is not uncommon to find
processes in which the PI performance is sluggish.
Model 2 and 3 of Table 1 were designed in order to
evaluate the performance of the algorithm when the
data used for model building is obtained with a more
sluggish PI. 
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Table 1 Control Results for the emulsion polymerization of styrene

Set point 1 Set point 2 Control Model Model
type

Data from
PI tuned MAEy MAE MAEy MAE

1 Fix fine 0.49 4.5 0.32 2.8
2 Fix sluggish 0.72 4.7 0.48 2.9PCA
3 Adaptive sluggish 0.34 4.3 0.37 4.3

fine 0.66 13.4 0.35 14.1PI sluggish 1.09 5.9 0.54 6.1

Fig. 2a-b. Control performance for Model 1 vs. fine-
tuned PI for set-point 1. In Figure 2a ( )
represents Tsp, while in Figure 2a/2b ( ) Tr/Tj

from Model 1 and ( ) from the fine-tuned PI. 

Fig. 3. Dataset used for building Model 1. ( )
indicates the control obtained when in the MV 
(Tj) has been added PRBS, and ( ) that under
normal operation for the fine-tuned PI. 

a
a

bb

Fig. 4a-b. Control performance for Model 1 vs. fine-
tuned PI for set point 2. In Figure 4a ( )
represents Tsp, while in Figure 4a/4b ( ) Tr/Tj

from Model 1 and ( ) from the fine-tuned PI. 

Figure 5a shows the performance of the control
algorithm for the Tr tracking of Model 2 (set-point 1)
versus that obtained from the sluggish PI. Figure 5b
shows their corresponding manipulated variable. It is
clear (see Table 1) that also in this situation the
performance of the proposed control algorithm
(Model 2, MAEy=0.72) is better than that of PI 
(MAEy=1.09), while also having a smother
manipulated variable behavior. However, it seems
that at certain instances, the control from the data
based algorithm is a little sluggish. This can be
further corrected by using adaptive modeling (Model
3), which as can be seen in Figure 5a and Table 1
(MAEy=0.34), it practically overlaps on the set points.
Notice that the advantage of the predictive part of the
algorithm is evident in Figure 5b, where the
manipulated variable obtained from the algorithm
anticipates the changes in the set-points, while the
MV of the PI responds much slower.
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Fig. 5a-b. Control performance for Model 2 and 3 vs.
sluggish PI. In Figure 5a ( ) represents Tsp,
while in Figure 5a/5b ( ) Tr/Tj from Model 2,
( · ) form Model 3 (Adaptive) and ( ) from
the PI. 

From Table 1 and Figures 2,4 and 5, it can be seen
that the control performance of the proposed LV-
MPC control strategy is generally superior to that
obtained using PI even in cases that the data set used 
for model building contains no information on new
set-points.

The effect of the information content on the data-set
is evident from the results: if a model is obtained
using an initially better tuned PI the resulting LV-
MPC would perform better than when the model is 
obtained using a sluggish PI (This situation can be
corrected, to a considerable extent, by using adaptive
modeling as can be seen in Table 1 and Figure 5a).
Moreover, independently of the PI and PRBS used to
generate the model, the performance obtained from
the data based method generally outperforms that
obtained from PI (Similar conclusion were observed
when using other recipes and when using a solution
polymerization system (Teymor, 1997). However,
these results are not shown here for brevity.)

4. CONCLUSIONS AND FUTURE WORK

A novel and simple multivariate model predictive
control strategy (LV-MPC) for trajectory tracking
based on PCA models is presented. It computes M
step ahead trajectory manipulated variable
adjustments using the structure of the PCA model.
The advantages of the control algorithm and data

requirements are illustrated using an emulsion
polymerization process for reactor temperature
tracking.

The performance of the LV-MPC is shown to be very
good in comparison to traditional PI controllers, not
only for achieving tighter trajectory tracking, but also
by doing so with much less effort in the manipulated
variables. Perhaps the most interesting aspect of 
designing these LV-MPC algorithms is that the data
requirements for model identification are very
modest.a
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